ESTUDIO DE IMPACTO AMBIENTAL DE LA
PLANTA FOTOVOLTAICA GR COLIMBO Y SUS
INFRAESTRUCTURAS DE EVACUACIÓN,
COMUNIDAD DE MADRID

8 de abril de 2021
Contenido

1 INTRODUCCIÓN ... 1
 1.1 JUSTIFICACIÓN DEL PROYECTO .. 1
 1.2 PROCEDIMIENTO AMBIENTAL DE APLICACIÓN ... 2

2 DESCRIPCIÓN GENERAL DEL PROYECTO ... 3

3 ÁMBITO DE ESTUDIO ... 7

4 ESTUDIO DE ALTERNATIVAS ... 9
 4.1 CARACTERIZACIÓN AMBIENTAL DEL ÁMBITO DE ESTUDIO............................ 9
 4.1.1 Clima ... 9
 4.1.2 Hidrología .. 9
 4.1.3 Geología ... 10
 4.1.4 Geomorfología ... 12
 4.1.5 Vegetación .. 15
 4.1.6 Hábitat de interés comunitario .. 16
 4.1.7 Fauna .. 18
 4.1.8 Espacios protegidos ... 21
 4.1.9 Medio socioeconómico .. 22
 4.1.10 Vías pecuarias .. 23
 4.1.11 Montes protegidos .. 24
 4.1.12 Infraestructuras ... 25
 4.1.13 Paisaje .. 26
 4.2 ANÁLISIS DE LA CAPACIDAD DE ACOGIDA DE LAS INFRAESTRUCTURAS
 ELÉCTRICAS PROYECTADAS ... 27
 4.2.1 Metodología del modelo de capacidad de acogida (MCA) 27
 4.2.2 Modelo de capacidad de acogida para la implantación de la planta solar
 fotovoltaica (PFV) .. 28
 4.2.3 Modelo de capacidad de acogida para la definición de los pasillos de la línea
 eléctrica de alta tensión (LEAT) .. 36
 4.2.4 Modelo de capacidad de acogida para la implantación de subestaciones
 transformadoras (ST) ... 41
 4.2.5 Análisis de sinergias en relación con el paisaje ... 46
 4.2.6 Análisis de sinergias en relación con la fauna ... 57
 4.3 PROPUESTA Y ANÁLISIS DE ZONAS, PASILLOS Y UBICACIONES
 AMBIENTALMENTE VIABLES. IDENTIFICACIÓN DE ALTERNATIVAS 63
 4.3.1 Selección de zonas ambientalmente viables para las PFV 63
 4.3.2 Selección de pasillos viables para las LEAT .. 64
 4.3.3 Selección de ubicaciones viables para las ST ... 65
 4.4 ANÁLISIS Y SELECCIÓN DE ALTERNATIVAS .. 67
 4.4.1 Alternativa cero .. 67
 4.4.2 Comparativa entre las alternativas viables para plantas solares
 fotovoltaicas .. 68
 4.4.3 Comparativa entre las alternativas de emplazamientos viables para
 subestaciones transformadoras ... 84
 4.4.4 Comparativa entre las alternativas viables para líneas eléctricas 93
 4.5 ÍNDICE DE SENSIBILIDAD AMBIENTAL (IMITERD) ... 138
 4.6 CARACTERÍSTICAS TÉCNICAS DE LAS ALTERNATIVAS SELECCIONADAS 140
 4.6.1 Planta Fotovoltaica GR Colimbo ... 140
 4.6.2 Subestaciones Eléctricas de Transformación ... 148
5 INVENTARIO DE DETALLE ... 194

5.1 CLIMA .. 194
5.2 ATMÓSFERA Y SALUD HUMANA .. 196
 5.2.1 Calidad del aire .. 196
 5.2.2 Niveles sonoros .. 200
 5.2.3 Cambio Climático ... 201
5.3 GEOLOGÍA, GEOMORFOLOGÍA Y GEOTÉCNIA 204
 5.3.1 Geología .. 204
 5.3.2 Geomorfología ... 207
 5.3.3 Condiciones geotécnicas ... 210
5.4 HIDROGEOLOGÍA ... 211
5.5 HIDROLOGÍA ... 215
 5.5.1 Dominio Público Hidráulico (DPH) .. 219
5.6 SUELOS .. 223
 5.6.1 Datos de partida para la caracterización de los suelos 223
 5.6.2 Clasificación edafológica de los suelos del ámbito de estudio 223
 5.6.3 Distribución de los tipos edáficos en las proximidades a los elementos del proyecto ... 228
 5.6.4 Descripción de los estados erosivos ... 229
5.7 VEGETACIÓN, FLORA Y HÁBITATS DE INTERÉS COMUNITARIO 229
 5.7.1 Vegetación potencial ... 230
 5.7.2 Descripción general de la vegetación y los usos en el ámbito de estudio. 232
 5.7.3 Especies de flora amenazada ... 239
 5.7.4 Hábitat de interés comunitario (HICs) .. 241
5.8 FAUNA ... 248
 5.8.1 Listado de fauna .. 248
 5.8.2 Descripción de biotopos y comunidad faunística asociada 257
 5.8.3 Áreas de interés faunístico ... 260
 5.8.4 Especies protegidas ... 263
5.9 ESPACIOS PROTEGIDOS .. 265
5.10 POBLACIÓN Y MEDIO SOCIOECONÓMICO 281
 5.10.1 Descripción demográfica .. 281
 5.10.2 Indicadores socioeconómicos ... 288
5.11 MEDIO TERRITORIAL .. 294
 5.11.1 Planeamiento urbanístico ... 294
 5.11.2 Montes de régimen especial ... 295
 5.11.3 Cotos de caza ... 296
 5.11.4 Vías pecuarias .. 299
 5.11.5 Derechos mineros .. 302
 5.11.6 Infraestructuras y servicios .. 303
 5.11.7 Servidumbres aeronáuticas ... 307
5.12 PAISAJE .. 308
 5.12.1 Alcance y metodología ... 308
 5.12.2 Identificación de ámbitos paisajísticos 309
 5.12.3 Identificación de las unidades de paisaje 311
 5.12.4 Intervisibilidad general ... 312
 5.12.5 Análisis de la calidad paisajística del ámbito de estudio 313
5.13 PATRIMONIO CULTURAL ... 315
 5.13.1 Elementos del patrimonio identificados 316
 5.13.2 Bienes de Interés Cultural (BIC) ... 316
6 IDENTIFICACIÓN Y EVALUACIÓN DE LOS POTENCIALES IMPACTOS DE LAS ALTERNATIVAS SELECCIONADAS

6.1 METODOLOGÍA PARA LA CUANTIFICACIÓN Y VALORACIÓN DE LOS EFECTOS AMBIENTALES

6.1.1 Criterios de importancia

6.1.2 Valoración global de los efectos

6.2 EFECTOS SOBRE LA CALIDAD ATMOSFÉRICA

6.2.1 Calidad del aire

6.2.2 Incremento de los niveles sonoros

6.2.3 Contaminación lumínica

6.2.4 Efectos sobre el Cambio Climático

6.2.5 Valoración final del impacto potencial sobre la atmósfera

6.2.6 Efectos sobre los campos electromagnéticos

6.3 EFECTOS SOBRE LA GEOLOGÍA

6.3.1 Efectos sobre los Lugares de Interés Geológico

6.3.2 Valoración final del efecto potencial sobre la geología

6.4 EFECTOS SOBRE LA HIDROLOGÍA

6.4.1 Alteración de la red de drenaje natural

6.4.2 Alteración de la calidad de las aguas (Arrastre de sólidos y vertidos accidentales)

6.4.3 Afección a aguas subterráneas

6.4.4 Efectos en el Dominio Público Hidráulico y sus zonas de protección

6.4.5 Valoración del impacto potencial en la hidrología

6.5 EFECTOS SOBRE LOS SUELOS

6.5.1 Modificación del relieve y alteración de los procesos geomorfológicos

6.5.2 Ocupación y pérdida de suelos

6.5.3 Incremento en los procesos erosivos

6.5.4 Alteración de la calidad de los suelos

6.5.5 Valoración final del impacto potencial sobre el suelo

6.6 EFECTOS SOBRE LA VEGETACIÓN, LA FLORA Y LOS HICS

6.6.1 Alteración de la cobertura vegetal

6.6.2 Degradación de la vegetación circundante

6.6.3 Efectos sobre la flora amenazada

6.6.4 Efectos los Hábitats de Interés Comunitario (HICs)

6.6.5 Valoración global de los efectos potenciales sobre la vegetación, la flora amenazada y los HICs

6.7 EFECTOS SOBRE LA FAUNA

6.7.1 Molestias y perturbaciones

6.7.2 Alteración y destrucción de hábitats

6.7.3 Fragmentación del territorio y efecto barrera

6.7.4 Pérdida de individuos de especies sensibles

6.7.5 Valoración del impacto potencial en la Fauna

6.8 EFECTOS SOBRE LOS ESPACIOS PROTEGIDOS

6.9 POBLACIÓN Y MEDIO SOCIOECONÓMICO

6.10 EFECTOS SOBRE LOS USOS DEL SUELO

6.10.1 Efectos sobre la productividad agrícola

6.10.2 Efectos sobre los usos forestales

6.10.3 Efectos sobre el uso ganadero y el dominio público pecuario

6.10.4 Efectos sobre los usos cinegéticos

6.10.5 Efectos sobre los usos mineros

6.10.6 Valoración final del impacto potencial sobre los usos del suelo
6.11 EFECTOS SOBRE LAS INFRAESTRUCTURAS ... 454
 6.11.1 Efectos sobre las infraestructuras viarias 454
 6.11.2 Efectos sobre las infraestructuras ferroviarias 456
 6.11.3 Efectos sobre las infraestructuras eléctricas 457
 6.11.4 Efectos sobre los gasoductos y oleoductos 459
 6.11.5 Efectos sobre servidumbres aeronáuticas 461
 6.11.6 Valoración final del efecto potencial sobre las infraestructuras 461
6.12 EFECTOS SOBRE EL PAISAJE ... 462
 6.12.1 Efectos derivados de la PSFV GR Colimbo y ST Colimbo 462
 6.12.2 Efectos derivados del trazado de las LEATs 132kV y 400 kV y STs Colectora
 – La Cereal .. 465
 6.12.3 Valoración de efectos sobre el paisaje ... 467
6.13 PATRIMONIO CULTURAL .. 469
6.14 SÍNTESIS DE LOS EFECTOS POTENCIALES DE LA ALTERNATIVA SELECCIONADA ... 472

7 VULNERABILIDAD DEL PROYECTO FREnte A ACCIDENTES GRAVES O CATÁSTROFES .. 477
 7.1 IDENTIFICACIÓN Y CLASIFICACIÓN DE LOS RIESGOS 478
 7.2 EVALUACIÓN GLOBAL DEL RIESGO .. 482

8 MEDIDAS DE DISEÑO, PREVENTIVAS Y CORRECTORAS 483
 8.1 MEDIDAS DISEÑO ... 483
 8.1.1 Selección de las alternativas de menor impacto 483
 8.1.2 Criterios generales de diseño ... 484
 8.2 MEDIDAS PREVENTIVAS .. 487
 8.2.1 Medidas preventivas para la protección de la calidad atmosférica 488
 8.2.2 Medidas preventivas para la geología ... 489
 8.2.3 Medidas preventivas en materia de hidrología 490
 8.2.4 Medidas preventivas para la protección del suelo 491
 8.2.5 Medidas preventivas para la protección de la vegetación 493
 8.2.6 Medidas preventivas de incendios forestales 494
 8.2.7 Medidas preventivas para la protección de la fauna 496
 8.2.8 Medidas preventivas para la protección de los espacios protegidos . 497
 8.2.9 Medidas preventivas en materia de usos del suelo 498
 8.2.10 Medidas preventivas para la gestión de residuos 498
 8.2.11 Medidas preventivas en materia de paisaje 499
 8.2.12 Medidas preventivas en materia de infraestructuras 500
 8.2.13 Medidas preventivas para la protección del patrimonio cultural 500
 8.3 MEDIDAS CORRECTORAS ... 501
 8.3.1 Medidas correctoras de protección de cauces 501
 8.3.2 Medidas correctoras para movimientos de tierras y excedentes 502
 8.3.3 Adecuación de caminos y de las nuevas superficies generadas 504
 8.3.4 Restauración del suelo y de la vegetación 505
 8.3.5 Restauración de los HICs ... 506
 8.3.6 Medidas correctoras para el tratamiento de restos vegetales 507
 8.3.7 Medidas correctoras para la avifauna ... 507
 8.3.8 Medidas correctora en materia de espacios protegidos 508
 8.4 MEDIDAS COMPENSATORIAS ... 508
 8.4.1 Medidas compensatorias de la pérdida de HICs 508
 8.4.2 Medidas compensatoria avifauna .. 508

9 IDENTIFICACIÓN Y EVALUACIÓN DE LOS EFECTOS RESIDUALES 509
APÉNDICES
APÉNDICE I. MARCO NORMATIVO DEL PROYECTO

ÍNDICE DE ANEXOS
ANEXO 1. ESTUDIO ANUAL DE AVIFAUNA
ANEXO 2. VULNERABILIDAD DEL PROYECTO FRENTE A ACCIDENTES GRAVES O CATÁSTROFES
ANEXO 3. HOJA INFORMATIVA / INVENTARIO ARQUEOLÓGICO DEL ÁMBITO DE ESTUDIO

ÍNDICE DE PLANOS
PLANO 1. SITUACIÓN
PLANO 2. ALTERNATIVAS DE PROYECTO
PLANO 3. LOCALIZACIÓN DEL PROYECTO Y DE LA ALTERNATIVA SELECCIONADA
PLANO 4. GEOLOGÍA
PLANO 5. CLINOMÉTRICO
PLANO 6. HIDROLOGÍA
PLANO 7. RIESGOS DEL MEDIO FÍSICO
PLANO 8. RIESGO DE INCENDIOS
PLANO 9. VEGETACIÓN
PLANO 10. HÁBITATS DE INTERÉS COMUNITARIO
PLANO 11. FAUNA
PLANO 12: ESPACIOS NATURALES PROTEGIDOS
PLANO 13: MEDIO SOCIOECONÓMICO
PLANO 14: PATRIMONIO CULTURAL
PLANO 15: PAISAJE: INTERVISIBILIDAD PONDERADA TOTAL
PLANO 16: PAISAJE: CALIDAD PAISAJÍSTICA
PLANO 17: SÍNTESIS AMBIENTAL
1 INTRODUCCIÓN

1.1 JUSTIFICACIÓN DEL PROYECTO

Las plantas de generación renovable se caracterizan por funcionar con fuentes de energía que poseen la capacidad de regenerarse por sí mismas y, como tales, ser teóricamente inagotables si se utilizan de forma sostenible. Esta característica permite en mayor grado la coexistencia de la producción de electricidad con el respeto al medio ambiente.

Este tipo de instalaciones, presentan las siguientes ventajas respecto a otras instalaciones energéticas, entre las que se encuentran:

● Disminución de la dependencia exterior de fuentes fósiles para el abastecimiento energético, contribuyendo a la implantación de un sistema energético renovable y sostenible y a una diversificación de las fuentes primarias de energía.

● Utilización de recursos renovables a nivel global.

● No emisión de CO2 y otros gases contaminantes a la atmósfera.

● Baja tasa de producción de residuos y vertidos contaminantes en su fase de operación.

Sería por tanto compatible con los intereses del Estado, que busca una planificación energética que contenga entre otros los siguientes aspectos (extracto artículo 79 de la Ley 2/2011 de Economía Sostenible): “Optimizar la participación de las energías renovables en la cesta de generación energética y, en particular en la eléctrica”.

A lo largo de los últimos años, ha quedado evidenciado que el grado de autoabastecimiento en el debate energético es uno de los temas centrales del panorama estratégico de los diferentes países tanto a corto como a largo plazo.

Esta situación hace que las instalaciones de energías renovables sean tomadas muy en consideración a la hora de realizar la planificación energética en los diferentes países y regiones.

En cuanto a los diferentes convenios internacionales a los que está ligada España, buscan principalmente una reducción en la tasa de emisiones de gases de efecto invernadero, y la necesidad de desarrollar proyectos con fuentes autóctonos para garantizar el suministro energético y disminuir la dependencia exterior.

El uso de esta energía renovable permite evitar la generación de emisiones asociadas a la producción de energía mediante combustibles fósiles. En este sentido, el ahorro de combustible previsto significa evitar una emisión equivalente de dióxido de azufre, óxidos de nitrógeno, dióxido de carbono y partículas.
Además, el Plan Nacional Integrado de Energía y Clima (PNIEC) 2021-2030 impulsado por el Ministerio de Transición Ecológica, fija objetivos vinculantes y obligatorios mínimos en relación a la cuota de energía procedente de fuentes renovables en el consumo energético total. En concreto, dicho plan contempla los siguientes objetivos a 10 años vista:

- Aumentar la cobertura con fuentes renovables de energía primaria a un 42% para el año 2030.
- Aumentar la cobertura con fuentes renovables del consumo bruto de electricidad a un 74% para el año 2030.
- Aumentar la potencia instalada de energía solar fotovoltaica hasta alcanzar los 36.882 MW y la energía eólica hasta los 50.258 MW en 2030.

Más a largo plazo, el plan establece el ambicioso objetivo de convertir España en un país neutro en emisiones de carbono para el año 2050. Sin lugar a dudas, la construcción de esta planta de producción eléctrica se justifica por la necesidad de cumplimiento de los objetivos y logros propios de una política energética, climática y medioambiental sostenible.

En resumen, dichos objetivos se apoyan en los siguientes principios fundamentales:

- Reducir la dependencia energética.
- Aprovechar los recursos de energías renovables.
- Diversificar las fuentes de suministro incorporando los menos contaminantes.
- Reducir las tasas de emisión de gases de efecto invernadero.
- Facilitar el cumplimiento del Plan Nacional Integrado de Energía y Clima (PNIEC) 2021-2030.

1.2 PROCEDIMIENTO AMBIENTAL DE APLICACIÓN

Desde el punto de vista administrativo, el ámbito competencial para la aprobación sustantiva del desarrollador en la Comunidad de Madrid, queda establecido en la Ley 24/2013, de 26 de diciembre, del Sector Eléctrico.

Por su parte, la aprobación ambiental requiere de expedientes en los que el órgano ambiental será el MITERD (antiguo MITECO), siendo a la Comunidad Autónoma de Madrid y Administraciones públicas a las que se solicitará informe en la fase de consultas, conforme al procedimiento establecido en la Sección 1.ª Procedimiento de evaluación de impacto ambiental ordinaria para la formulación de la declaración de impacto ambiental de la Ley 21/2013, de 9 de diciembre, de evaluación ambiental, modificado por la Ley 9/2018.
2 DESCRIPCIÓN GENERAL DEL PROYECTO

La implantación objeto de este estudio cuenta con permisos de acceso y conexión, con fecha 18 de diciembre de 2020, en la respectiva posición asignada por REE en el parque de la subestación de La Cereal 400 kV.

La PFV GR Colimbo, subestación transformadora Colimbo, línea aérea-soterrada 132 kV Colimbo – Colectora La Cereal, subestación colectora La Cereal, línea aérea 400 kV Colectora La Cereal – La Cereal REE, objeto todas de este estudio de impacto ambiental, se encuadran dentro de un conjunto de 9 proyectos fotovoltaicos y sus infraestructuras de conexión que vierten en la Subestación receptora a 220 kV Tres Cantos GIS y en la SE 400 kV La Cereal, propiedad de REE (ambas con declaración de conformidad de acceso y conexión).

Con el fin de minimizar el impacto ambiental de las líneas de alta tensión se han diseñado tramos compartidos. Como resultado de ello, se ha logrado proyectar una única línea de evacuación común hasta cada una de las subestaciones receptoras de REE. Completada con los necesarios ramales hasta alcanzar cada una de las PFV. Además, en la medida de lo posible se ha compartido evacuación con otros promotores como ALTEN Energías Renovables.

Concretamente, la energía que vierte en la SE de 400 kV La Cereal se transporta desde la SET El Cubillo (PFV GR Martineta, PFV Porrón y PFV GR Calamón), pasando por la SET Colimbo (PFV GR Colimbo y PFV GR Bisbita) hasta la SET Colectora La Cereal donde se eleva a 400 kV, y viaja en simple circuito hasta la SE de REE La Cereal 400 kV (cuerpo 2 – La Cereal).

El tramo de línea desde la SET Cubillo hasta la SET Colectora Tres Cantos (SET intermedia antes de llegar a la SET La Cereal) es de doble circuito a 132 kV. El circuito 1 procede de las PFV GR Avutarda, PFV GR Sísón, y de la PFV ALTEN Tres Cantos, localizadas en la Castilla – La Mancha, y vierte en la SE de REE de Tres Cantos. El circuito 2 es el anteriormente expuesto desde la SET El Cubillo hasta la SET Colectora La Cereal.

A continuación, se presenta un unifilar de ambos nudos.
Figura 1. Unifilar del conjunto de proyectos
Figura 2. Localización del conjunto de proyectos.
DATOS DE POTENCIA A EVACUAR

Nudo TRES CANTOS GIS 220 kV

Las plantas fotovoltaicas que pertenecen al nudo TRES CANTOS GIS 220 kV son: GR MANDARIN, GR SISON, GR AVUTARDA Y ALTEN TRES CANTOS. La potencia instalada de cada uno de los proyectos y su ubicación se incluyen en la siguiente tabla:

<table>
<thead>
<tr>
<th>Planta fotovoltaica</th>
<th>Potencia pico (MWp)</th>
<th>Potencia nominal (MW)</th>
<th>Ubicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR MANDARIN</td>
<td>100</td>
<td>85</td>
<td>Soto del Real (Madrid)</td>
</tr>
<tr>
<td>GR SISON</td>
<td>100</td>
<td>85</td>
<td>Usanos, Guadalajara (Guadalajara)</td>
</tr>
<tr>
<td>GR AVUTARDA</td>
<td>100</td>
<td>85</td>
<td>El Casar (Guadalajara)</td>
</tr>
<tr>
<td>ALTEN TRES CANTOS</td>
<td>100</td>
<td>85</td>
<td>EL Cubillo de Uceda (Guadalajara)</td>
</tr>
</tbody>
</table>

Nudo LA CEREAL 400 kV

Las plantas fotovoltaicas que pertenecen al nudo LA CEREAL 400 kV son: GR MARTINETA, GR PORRON, GR CALAMON, GR BISBITA y GR COLIMBO. La potencia instalada de cada uno de los proyectos y su ubicación se incluyen en la siguiente tabla:

<table>
<thead>
<tr>
<th>Planta fotovoltaica</th>
<th>Potencia pico (MWp)</th>
<th>Potencia nominal (MW)</th>
<th>Ubicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR MARTINETA</td>
<td>49,9</td>
<td>33,17</td>
<td>EL Cubillo de Uceda (Guadalajara)</td>
</tr>
<tr>
<td>GR PORRON</td>
<td>49,9</td>
<td>33,17</td>
<td>EL Cubillo de Uceda (Guadalajara)</td>
</tr>
<tr>
<td>GR CALAMON</td>
<td>49,9</td>
<td>33,17</td>
<td>EL Cubillo de Uceda (Guadalajara)</td>
</tr>
<tr>
<td>GR BISBITA</td>
<td>100</td>
<td>82,78</td>
<td>Torremocha del Jarama (Madrid)</td>
</tr>
<tr>
<td>GR COLIMBO</td>
<td>25</td>
<td>20</td>
<td>Torremocha del Jarama (Madrid)</td>
</tr>
</tbody>
</table>

OBJETIVOS Y ESTRUCTURA DEL PRESENTE ESTUDIO DE IMPACTO AMBIENTAL

El objeto del presente estudio de impacto ambiental es evaluar los potenciales efectos ambientales de la construcción, puesta en funcionamiento y, en su caso, desmantelamiento de las siguientes instalaciones:

- PFV GR Colimbo
- ST Colimbo 132/30 kV
- Línea a 132 kV Colimbo – Colectora La Cereal
- SET Colectora La Cereal 400/132 kV
- Línea a 400 kV Colectora La Cereal – La Cereal REE

SOCIEDADES PROMOTORAS DE LAS PFV INCLUIDAS EN EL PROYECTO

La sociedad promotora de la planta solar fotovoltaica que forma parte del proyecto es:
3 ÁMBITO DE ESTUDIO

La construcción del ámbito de estudio del proyecto de PFV GR Colimbo y sus infraestructuras de evacuación hasta la SE REE La Cereal contempla dos fases bien diferenciadas con diferente escala de trabajo y, por tanto, amplitud territorial; en efecto, el diseño de soluciones que permitan alcanzar los objetivos del proyecto se comienza a construir a partir del centroide y radio de 10 Km solicitado para la localización de las alternativas de PFV, lo cual impone una limitación a la ubicación de estas, mientras que los posibles trazados de las infraestructuras lineales se van a ver condicionados por la localización de las plantas pero, muy especialmente, por la subestación de evacuación, en este caso SE REE La Cereal.

La realidad del proceso de diseño nos obliga al establecimiento de límites generosos sobre el territorio que den cabida, no sólo a la solución definitiva, sino también a las alternativas analizadas previamente. De este modo, la construcción del ámbito de estudio se apoya en un buffer de 5 Km sobre la línea imaginaria que une el centroide solicitado y la subestación de evacuación, matizado a partir de accidentes y límites geográficos que supongan una frontera física o administrativa para el promotor, como ríos, límites provinciales o municipales, vías de comunicación, etc.

Pero, además, ese ámbito de análisis previo del territorio, que denominamos como ámbito ampliado resulta de gran interés para el análisis del paisaje ya que las afecciones visuales se pueden producir sobre una mayor extensión del territorio que sobre otras variables como la vegetación o el suelo, de forma que su ampliación hasta un mínimo de 5 Km (según está construido) permite considerar las posibles cuencas visuales de gran amplitud que pueden observarse desde los miradores y/o puntos de observación cualificados. Sin embargo, este ámbito ampliado sólo regirá para el estudio de la visibilidad desde estos lugares cualificados para observación paisajística, ya que, para el resto de lugares de observación (rutas y senderos paisajísticos y carreteras) el ámbito de estudio de la variable paisaje será el mismo que para el resto de las variables.
Una vez decididas las ubicaciones definitivas de la PFV y subestaciones transformadoras asociadas y diseñado el trazado de la línea eléctrica de evacuación, el ámbito de estudio para el análisis detallado de las variables ambientales, territoriales y/o paisajísticas, que en este caso denominamos como ámbito del inventario de detalle se configura como un buffer de 2 Km generado a partir de la traza de las líneas eléctricas de evacuación y del vallado de la PFV. Sin embargo, en este caso, el ámbito resulta algo menos extenso ya que se ha considerado recortarlo por el sur al no ser viable ningún trazado de línea eléctrica al sur de SE REE La Cereal, y recortarlo ligeramente también por el noreste para evitar el análisis detallado de aspectos territoriales de la Comunidad de Castilla – La Mancha que nunca se pueden ver afectados pues el proyecto, por definición, se desarrolla en la Comunidad de Madrid.

La superficie del ámbito de estudio así definido es de 175,86 km2 y se localiza sobre un total de 13 términos municipales: Algete, Colmenar Viejo, El Molar, El Vellón, Madrid, Pedrezuela, San Agustín de Guadalix, Talamanca del Jarama, Torrelaguna, Torremocha del Jarama, Tres Cantos, Valdepiélago y Valdetorres del Jarama, todos ellos en la provincia de Madrid.
4 ESTUDIO DE ALTERNATIVAS

4.1 CARACTERIZACIÓN AMBIENTAL DEL ÁMBITO DE ESTUDIO

Considerando el ámbito territorial ampliado, descrito en el capítulo anterior, en el presente capítulo se analizan las diferentes variables del medio físico, biótico y socioeconómico, para tener un conocimiento adecuado del ámbito de implantación de las infraestructuras eléctricas del proyecto, y anticipar aquellos espacios en los que, por tratarse de lugares protegidos o con valores ambientales relevantes, no sería posible la implantación de dichas infraestructuras.

4.1.1 Clima

El clima dominante viene determinado por su condición de interioridad. Es de tipo mediterráneo continentalizado o mediterráneo de interior, que es un clima templado con características del clima mediterráneo y del clima semiárido, típico de lugares alejados considerablemente del mar y que se caracteriza por tener inviernos largos y fríos con lluvias muy irregulares, veranos cortos y cálidos con temperaturas medias de las máximas en torno a los 28ºC y además un fuerte contraste entre la temperatura del día y la noche. El periodo frío, por otro lado, se extiende a lo largo de 3,7 meses, con promedios de días de helada que oscilan entre los 40 y 60 anuales.

En relación con la pluviometría, en el ámbito de estudio la precipitación media ronda los 450 mm de media anual. La temporada de lluvia abarca 10 meses, de septiembre a junio, aunque la mayoría de la lluvia cae entre los meses de octubre y noviembre.

4.1.2 Hidrología

Respecto a la hidrología, el ámbito de estudio se localiza en la cuenca del Tajo. Dentro del ámbito de estudio destaca la presencia del río del Riato, el río Guadalix, el río Jarama, el río Lozoya y el río Manzanares:

Tabla 1. Ríos presentes en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Longitud coincidente con el ámbito (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riato</td>
<td>0,17</td>
</tr>
<tr>
<td>Jarama</td>
<td>59,62</td>
</tr>
<tr>
<td>Guadalix</td>
<td>23,78</td>
</tr>
<tr>
<td>Manzanares</td>
<td>13,72</td>
</tr>
<tr>
<td>Lozoya</td>
<td>72,78</td>
</tr>
</tbody>
</table>

El río Jarama atraviesa el ámbito de estudio de este a oeste al norte del ámbito y luego vira hacia el sur por la zona centro oriental del mismo, el río Guadalix, atraviesa la zona de estudio de noroeste a sureste por la zona central del ámbito, el río Lozoya coincide con el límite septentrional del ámbito y el río Manzanares lo atraviesa también de norte a sur el extremo suroccidental.
Los afluentes presentan un corto recorrido perpendicular dada la proximidad a su cuenca de distintas formaciones montañosas, y se ven afectados por un fuerte estiaje. Su régimen hidrológico queda determinado por las variaciones pluvio-nivales propias de la región central de la Península Ibérica, lo condiciona un curso muy irregular, con fuertes oscilaciones de caudal.

Además, el ámbito coincide con 290 cursos de menor rango (arroyos y barrancos), lo que da una idea de la importancia y complejidad de la red fluvial presente en el ámbito de estudio. La mayoría de estos arroyos y barrancos sufren las consecuencias climáticas características de la zona, quedándose en ocasiones sin caudal en algunos tramos durante el estío.

De estos arroyos destacan por su longitud e importancia el arroyo Tejada (20.73 km), arroyo de San Vicente (17.33 km), arroyo de la Vega (14.99 km), arroyo de las Cañas de la Parrilla (12.36 km), arroyo de Pozo (11 km), arroyo de la Higueruela (10.51 km) y arroyo de la Galga (10.15 km).

4.1.3 Geología

Desde el punto de vista geológico, el área de estudio se engloba totalmente en el marco de las Hojas MAGNA-484 “Buitrago de Lozoya”, MAGNA-485 “Valdepeñas de la Sierra”, MAGNA-535 “Algete”, MAGNA-509 “Torrelaguna”, MAGNA-510 “Marchamalo” y MAGNA-534 “Colmenar viejo” y, por tanto, se sitúa en el sector central y Norte de la provincia de Madrid, al norte del núcleo urbano de la capital. Pertenece a la Depresión del Tajo, si bien al norte se elevan las estribaciones meridionales de la Sierra de Guadarrama, la tradicional “Sierra” de los madrileños.
Los materiales que afloran en este ámbito pueden agruparse en dos grandes conjuntos, relacionados con los principales eventos orogénicos que han dejado impresa su huella en la región: hercínico y alpino. Por ello, a grandes rasgos, pueden distinguirse:

- Materiales ígneos y sedimentarios preordovícios, metamorfizados y deformados durante la orogenia hercínica, afectados por intrusiones plutónicas en sus etapas tardías. Afloran en el sector noroccidental, dentro del ámbito de la Sierra de Guadarrama, e integran el zócalo regional.

- Materiales sedimentarios neógenos, constituyentes del terreno de la Cuenca de Madrid, tapizados por extensos depósitos cuaternarios y aflorantes en la mayor parte del ámbito.

Figura 5. Litologías presentes en el ámbito de estudio. Fuente: Instituto Geológico y Minero de España (IGME).

La zona de estudio se encuentra situada en el límite entre dos de los principales dominios geológicos de la Península Ibérica: el Sistema Central y la Cuenca del Tajo.

El Sistema Central Español constituye una cadena montañosa de directriz ENE-OSO que se extiende desde la Sierra de la Estrella (Portugal) al SO, hasta la Cordillera Ibérica (provincia de Guadalajara), al NE; se alza por encima de los 2.000 m de altitud, separando las Cuencas de los ríos Duero y Tajo.

Este conjunto hercínico constituye el basamento regional sobre el que aflora, a modo de orla discontinua, una serie sedimentaria mesozoica, con menor representación superficial y espesor hacia el oeste. En aparente concordancia y de forma discontinua, por encima de los materiales mesozoicos,
aparece una serie paleógena, sobre la que se disponen discordantemente los sedimentos neógenos que rellenan las depresiones del Duero y Tajo.

La morfoestructura actual del Sistema Central es el resultado de la orogenia alpina, durante la cual se crea y reactiva una red de fracturas del basamento, generándose igualmente numerosos pliegues y fracturas en su cobertura mesozoico-paleógena. El resultado final es la elevación del basamento de la zona axial de la cordillera y el hundimiento de las zonas adyacentes, produciéndose en éstas la acomodación de la cobertura y su posterior soterramiento como consecuencia del relleno mediante sedimentos neógenos de las cuencas así creadas.

Por lo que respecta a la cuenca del Tajo, en sentido amplio, se encuentra situada en la submeseta meridional, pudiendo individualizarse dentro de ella la Cuenca de Madrid, a la que pertenece la mayor parte del ámbito.

Los sondeos profundos denuncian la existencia de materiales cretácicos y, en el sector oriental, triásmicos, sobre el basamento hercínico, que presenta una fuerte asimetría en sentido NO-SE, de tal forma que el relleno terciario de la cuenca se acerca a los 4.000 m en las proximidades de la cuenca central, disminuyendo hasta menos de 2.000 m en los bordes meridional y central. La sucesión terciaria posee una gran continuidad estratigráfica, con depósitos paleógenos que aparecen a modo de retazos en los bordes de la cuenca, sobre los que se dispone discordantemente un conjunto neógeno que constituye la mayor parte de los afloramientos, con una típica disposición subhorizontal. Los valores anteriores dan una idea de la asimetría de la Cuenca de Madrid, cuyo relleno sedimentario ha estado controlado a lo largo del Terciario por la diferente actividad tectónica de sus bordes, así como por las diferencias litológicas que presentan.

4.1.4 Geomorfología

En el ámbito de estudio se pueden distinguir dos grandes dominios geomorfológicos estructurales o regiones fisiográficas: la Sierra y la Depresión.

La Sierra. Constituye el frente montañoso de la parte noroccidental de la Comunidad de Madrid como resultado de la reactivación tectónica de una antigua penillanura, producida esencialmente durante el Terciario. A partir de este momento se producen una serie de acontecimientos geológicos que desembocan en una morfoestructura de bloques elevados (“horst”) y hundidos (“graben”). Es el dominio de los materiales más antiguos, paleozoicos y previos, de composición predominantemente sílica, aunque en las áreas de rocas metamórficas de bajo grado de transformación pueden apartarse ligeramente de tal composición. Estas rocas presentan un alto grado de alteración, sobre todo donde se definen grandes fracturas o cruce de varios sistemas de las mismas, hecho frecuente a lo largo de todo el Sistema Central. Está organizada fisonómicamente en varios subdominios:

- Vertientes. Se distinguen entre ellas:
 - Laderas. Unidad de transición entre las cumbres y las parameras y directamente con los piedemontes o rampas. Se trata de escarpes de gran linealidad, con un origen
fundamentalmente estructural, pues corresponden a grandes planos de falla ligeramente modelados por la acción de las torrenteras y glaciares durante el Pleistoceno.

- **Piedemontes o rampas.** Superficies de erosión labradas sobre un substrato duro, fundamentalmente granítico y gneísico. Corresponden a las llanuras de piedemonte de las grandes elevaciones. Morfológicamente corresponden a una llanura irregular con topografía relativamente suave, donde se pueden encontrar relieves residuales de tipo “inselberg” o valles poco profundos de fondo amplio y plano, conocidos localmente como navas.

- **Depresiones o Valles Interiores.** Corresponden al fondo de los “graben” o valles de fractura. Presentan morfología y carácter de llanura intramontana. Su génesis se debe a sucesivas fases de encajamiento, pero en este caso fuertemente condicionadas por accidentes tectónicos, como muestran el valle del Lozoya y la depresión del Manzanares-Guadalix.

La Depresión. Ocupa el área Central, Este y Sureste de la Comunidad de Madrid. Corresponde a la parte septentrional de la denominada submeseta Sur o Cuenca del Tajo, y los materiales que la constituyen son, casi en su totalidad, de naturaleza detrítica en su mayoría pertenecientes al Terciario. Se han considerado cuatro subdominios:

- **Altas superficies.** Se distinguen dos unidades:
 - **Los páramos y aícarrias** están constituidas por antiguas superficies de colmatación labradas sobre rocas calizas y posteriormente disectadas por la red fluvial actual. La morfología resultante es de amplias mesas limitadas por estrechos valles de vertientes abruptas. Sobre ellas se desarrollan diversas formas, entre las que destacan las dolinas, a veces de grandes dimensiones. Ambos ámbitos geomorfológicos, Alcarrias y Parameras, son llanuras elevadas, con predominio de cotas por encima de los 1.000 m.s.n.m. Son llanuras de equilibrio, entre las erosiones tendentes a aminorar los relieves del Sistema Ibérico y las sedimentaciones en zonas de menor cota de la cuenca hidrográfica del río Tajo.
 - **Campiñas de sustitución del páramo (Divisorias).** Estrechas y largas superficies aplanadas, con dirección general N-S, que constituyen la línea de interfluvió de los cauces. Se desarrollan entre los 800 y 680 m. Son antiguas superficies de erosión anteriores a la formación de los valles fluviales actuales.

- **Relieves intermedios.** Se distinguen tres unidades:
 - **Cuestas Estructurales.** Forman los relieves desarrollados sobre materiales calcáreos situados entre los Dominios de la Sierra y la Depresión, en el límite N y NO de la Comunidad.
o **Relieves de transición (Plataformas estructurales).** Su génesis se debe a un proceso de erosión sobre las llanuras del páramo. Se sitúan al este y sureste de la Comunidad de Madrid y suelen aparecer encajadas por debajo de la unidad de los páramos, formando grandes escalones que destacan en la topografía.

o **Cerros testigo.** Se originan sobre llanuras de transición, debido a la existencia de capas duras resistentes a la erosión que presentan una cierta inclinación. Suelen estar coronados por un nivel duro, en general de caliza o silex, y presentan una morfología de plano inclinado a favor de la pendiente de los estratos. Es frecuente que, sobre estas formas, se sobreimpongan encajamientos fluviales que dan lugar a gargantas y pequeñas hoces.

- **Valles fluviales.** Son formas de relieve sobreimpuestas a los grandes dominios. Su límite se suele situar en la divisoria de cuencas fluviales contiguas. Es una zona con morfología en franjas escalonadas y paralelas a un canal que por su acción erosiva y sedimentaria los genera. Están subdivididos en dos unidades:

 o **Vertientes:** Glacis y terrazas (medias y altas). Constituyen la forma de enlace entre las Vegas y las Altas Superficies. Su génesis se debe a los diferentes y continuados procesos de erosión, encajamiento y deposición que han tenido lugar a lo largo del Cuaternario. Esta unidad presenta una morfología escalonada, con rellenos más o menos potentes y escarpes reducidos. Es el nivel inferior de las campiñas y el superior de las llanuras encajadas o valles fluviales.

 o **Vegas:** Llanuras aluviales y fondos de valle. Se han incluido aquí las terrazas de campiña, es decir, las terrazas bajas de amplio desarrollo y morfología muy plana. Las de mayor amplitud en el ámbito de estudio son las del propio río Tajo.
4.1.5 Vegetación

La **vegetación natural** del ámbito de estudio, está constituida según el Mapa Forestal de España fundamentalmente por las siguientes unidades de vegetación: arbolado disperso de frondosas, arbustedos, bosque ribereño, bosque mixto de frondosas autóctonas en región biogeográfica mediterránea, dehesas, encinares (**Quercus ilex**), enebrales (**Juniperus spp.**), fresnedas (**Fraxinus spp.**), galerías de herbáceas, galerias arbustivas, herbazal, herbazal-pastizal, herbazal-pastizal con arbolado disperso, herbazal-pastizal con dehesa hueca, matorral, matorral con arbolado disperso, melojares (**Quercus pyrenaica**), mezcla de coníferas autóctonas en la región biogeográfica mediterránea, mezcla de coníferas y frondosas autóctonas en la región biogeográfica mediterránea, mosaico de matorral/pastizal, pastizal-matorral, Pinar de pino albar (**Pinus sylvestris**), pinar de pino carrasco (**Pinus halepensis**), Pinar de pino pinaster en región mediterránea, pinar de pino piñonero (**Pinus pinea**), pinar de pino salgareño (**Pinus nigra**) y quejigares (**Quercus faginea**).

La masa vegetal con una mayor superficie es aquella formada por herbazal-pastizal con 12.863,61 Ha, ampliamente distribuida por el ámbito, le siguen las dehesas, que ocupan 7.811,93 Ha de la zona centro-occidental del ámbito, encinares de **Quercus ilex** que ocupan 7.027,54 Ha, localizadas de forma heterogénea en el ámbito de estudio, y arbustedos con 3.801,68 Ha, localizadas en la zona noroccidental del ámbito.
4.1.6 Hábitat de interés comunitario

En relación con los Hábitat de Interés Comunitario (HIC), según la cartografía más actualizada disponible en la web del MITECO de 2005, el ámbito de estudio alberga los siguientes HIC prioritarios:

- 3170* “Estanques temporales mediterráneos”.
- 6110* “Prados calcáreos cársticos o basófilos del Alysson-Sedion albi”.
- 6220* “Zonas subestépicas de gramineas y anuales del Thero-Brachypodietae”.

Figura 8. Hábitat de Interés Comunitario en el ámbito de estudio. Fuente: MITECO.

También incluye los siguientes **HIC no prioritarios**:

- 1430 “Matorrales halo-nitrófilos (Pegano-Salsoletea)”.
- 3150 “Lagos eutróficos naturales con vegetación Magnopotamion o Hydrocharition”.
- 3250 “Ríos mediterráneos de caudal permanente con *Glaucium flavum*”.
- 4030 “Brezales secos europeos”.
- 4090 “Brezales oromediterráneos endémicos con aliaga”.
- 5210 “Matorrales arborescentes de *Juniperus spp.*”.
- 5330 “Matorrales termomediterráneos y pre-estepicos”.
- 6310 “Dehesas perennifolias de *Quercus spp.*”.
- 6420 “Prados húmedos mediterráneos de hierbas altas del Molinion-Holoschoenion”.
- 6430 “Megaforbios eutrofos hidrófilos de las orillas de llanura y de los pisos montano a alpino”.
- 8220 “Pendientes rocosas siliceas con vegetación casmofítica”.
- 8230 “Roquedos silíceos con vegetación pionera del Sedo-Scleranthion o del Sedo albi-Veronicion dillenii”.
- 91B0 “Fresnedas termófilas de *Fraxinus angustifolia*”.

Página 17
4.1.7 Fauna

Según el Inventario Nacional de Biodiversidad del MITECO, las especies de avifauna más relevantes presentes en el ámbito de estudio (cuadrículas 30TVL20, 30TVL30, 30TVL40, 30TVL41, 30TVL42, 30TVL50, 30TVL51, 30TVL52, 30TVL60, 30TVL61, 30TVL62, 30TVK29, 30TVK39, 30TVK48, 30TVK49, 30TVK58, 30TVK68 y 30TVK69) son las siguientes:

Dentro del grupo de rapaces, destacan las rapaces diurnas como el buitre negro (Aegypius monachus), el buitre leonado (Gyps fulvus), el alimoche (Neophron percnopterus), la águila imperial (Aquila adalberti), águila real (Aquila chrysaetos), azor común (Accipiter gentilis), gavilán común (Accipiter nisus), busardo ratonero (Buteo buteo), culebrera europea (Circaetus gallicus), aguilucho lagunero occidental (Circus aeruginosus), aguilucho pálido (Circus cyaneus), aguilucho cenizo (Circus pygargus), halcón peregrino (Falco peregrinus), cernicalo primilla (Falco naumanni), cernicalo vulgar (Falco Tinnunculus), águila azor perdicera (Hieraaetus fasciatus), águila calzada (Hieraaetus pennatus), milano real (Milvus milvus), milano negro (Milvus migrans), halcón abejero (Pernis apivorus) o alcotán (Falco Subbuteo).

Nocturnas, como el búho chico (Asio otus), el cárago común (Strix aluco), el mochuelo europeo (Athene noctua), el búho real (Bubo bubo), el Autillo europeo (Otus scops) o la lechuza común (Tyto alba).

Asimismo, destacan de entre las especies esteparias el sisón (Tetrax tetrax), la ganga ortega (Pterocles orientalis), y la avutarda común (Otis tarda), y entre las especies ligadas a ambientes acuáticos la garza imperial (Ardea purpurea) y el pájaro moscón (Remiz pendulinus).

El grupo de las aves forestales también cuenta con una buena representación en los ecosistemas arbolados con especies como el torcecuello (Jynx torquilla), el arrendajo (Garrulus glandarius), carbonero común (Parus major), herrerillo (Parus caeruleus), agateador común (Certhia brachydactila), petirrojo (Erithacus rubecula), curruca (Sylvia spp.), pinzón vulgar (Fringilla coelebs), tarabilla común (Saxicola torquata), mirlo (Turdus merula), mosquiteros (Phylloscopus spp.), chochín (Troglydotes troglodytes) o perdiz roja (Alectoris rufa), por citar algunas de las más representativas.

Los pícidos están representados por pico dorsiblanco (Dendrocoptes leucotos), pico picapinos (Dendrocoptes major), pico menor (Dendrocoptes minor) y pito real (Picus viridis).

Entre los mamíferos, se puede destacar la presencia de varias especies muy ubicanas, como es el caso del jabalí (Sus scrofa), la acabra montés (Capreolus capreolus), el zorro (Vulpes vulpes), el conejo (Oryctolagus cuniculus), la liebre (Lepus granatensis), cévidos como el ciervo europeo (Cervus elaphus) y el gamo (Dama dama), así como roedores como la ardilla roja (Sciurus vulgaris), la rata andra (Rattus norvegicus), la rata de agua (Arvicola sapidus), el rata casero (Mus musculus), el topillo mediterráneo (Microtus duodecimcostatus) y el rata moruno (Mus spretus), así como soricomorpos como la musaraña gris (Crocidura russula), el musgaño enano (Suncus etruscus), la
musaraña ibérica (Sorex granarius) y la musaraña enana (Sorex minutus). También se pueden encontrar mamíferos carnívoros como el gato montés (Felis silvestris), la gineta (Genetta genetta), el turón (Mustela putorius), la comadreja (Mustela nivalis) o el tejón (Meles meles).

En representación de los murciélagos, en el ámbito de estudio se encuentra el murciélago enano (Pipistrellus pipistrellus), murciélago de cueva (Miniopterus schreibersii), murciélago ratonero grande (Myotis myotis), murciélago ratonero gris (Myotis nettereri), murciélago ratonero mediano (Myotis blythii), murciélago orejudo dorado (Plecotus auritus), murciélago de herradura grande (Rhinolophus ferrumequinum), murciélago de herradura mediano (Rhinolophus mehelyi), murciélago pequeño de herradura (Rhinolophus hipposideros) y murciélago mediterráneo de herradura (Rhinolophus euryale).

Debido a la presencia de arroyos y ríos en el ámbito de estudio también es posible encontrarse con especies de mamíferos asociadas a formaciones de ribera como la nutria (Lutra lutra) o el visón (Neovison vison).

En relación con las especies de **vertebrados ligadas al ambiente acuático**, el ámbito de estudio alberga poblaciones de anfibios como el sapo corredor (Bufo calamita), el sapo de espuelas (Pelobates cultripes), el sapo pintojo meridional (Discoglossus jeanneae), el sapo pintojo ibérico (Discoglossus galganoi), el sapo partero ibérico (Alytes cisternasi), el sapo partero común (Alytes obstetricans), la rana común (Pelophylax perezi), la ranita de San Antonio (Hyla arborea), el tritón ibérico (Lissotriton boscai), el tritón jaspeado (Triturus marmoratus), el tritón piqué (Triturus pygmaeus) y el gallipato (Pleurodeles walti), y especies de reptiles como el galápago europeo (Emys orbicularis), galápago leproso (Mauremys leprosa), la culebra de collar (Natrix natrix) o la culebra de agua (Natrix maura) y de peces como el pez gato (Ameiurus melas), la bermejuela (Chondrostoma arcasii), el barbo comizo (Barbus comizo), la carpa (Cyprinus carpio), la trucha (Salmo trutta), el cacho (Squalius pyrenaicus) y el calandino (Squalius alburnoides) entre otros.

En cuanto al resto de reptiles no ligados a medios acuáticos destacan la culebra bastardá (Malpolon monspessulanus), la culebra de cogulla (Macroprotodon brevis), la culebra de escala (Rhinechis scalaris), la culebra lisa meridional (Coronella girondica), la culebrilla ciega (Blanus cinereus), el esлизón tridáctilo (Chalcides striatus), el lagarto ocelado (Timon lepidus), la lagartija ibérica (Podarcis hispanicus), la lagartija colilarga (Psammodromus algirus), la lagartija cenicienta (Psammodromus hispanicus) y la salamanquesa común (Tarentola mauritanica), entre otros.

En el ámbito de estudio se inventarían los siguientes corredores ecológicos que lo atraviesan de Norte a Sur y de Este a Oeste.

La distribución de especies de fauna por el ámbito de estudio no es homogénea, habiendo una mayor riqueza de especies en la parte norte y centro del mismo, y menor en la zona nororiental y sur según la información de riqueza de especies ofrecida por el MITERD.
Figura 10. Riqueza de especies en el ámbito de estudio. Fuente: Servicio WMS de Riqueza de especies del MITERD.

Para poder realizar una correcta caracterización de la fauna y evaluación de los efectos se ha realizado un estudio de avifauna.

4.1.8 Espacios protegidos

En relación con los espacios naturales protegidos, el ámbito de estudio incluye 12.919,73 ha del Parque Regional Cuenca Alta del Manzanares y 3,73 ha del Parque Natural Sierra Norte de Guadalajara.

Asimismo, se incluyen las siguientes superficies de espacios Red Natura 2000: 8.389,1 ha de la ZEPA “Estepas cerealistas de los ríos Jarama y Henares”, 3.071,89 ha de la ZEPA ES0000012 “Soto de Viñuelas”, 3,25 ha de la ZEPA “Sierra de Ayllón”, 0,12 ha de la ZEPA “Monte de El Pardo”, 12.842,31 ha del ZEC “Cuenca del río Manzanares”, 9.698,77 ha del ZEC “Cuencas de los ríos Jarama y Henares”, 580,06 ha del ZEC “Cuenca del río Lozoya y Sierra Norte”, 1.960,96 ha del ZEC “Cuenca del río Guadalix” y 0,85 ha del ZEC “Sierra de Ayllón”.

Igualmente, el ámbito de estudio coincide con 14.380,51 ha de la Reserva de la Biosfera “Cuenca Alta del Manzanares”.

Página 21
4.1.9 Medio socioeconómico

En relación con el medio socioeconómico, el ámbito de estudio abarca municipios del centro y norte de la Comunidad de Madrid y de la provincia de Guadalajara.

En concreto, los municipios presentes en el ámbito de estudio se han dividido en cuatro categorías:

- Grupo 1: Madrid. Comprende municipios con más de 3 millones de habitantes.
- Grupo 2: Alcobendas, Colmenar viejo, San Sebastián de los Reyes y Tres Cantos. Comprende municipios de entre 120.000 y 40.000 habitantes.
- Grupo 4: El Berrueco, El Cubillo de Uceda, Patones, Redueña, y Valdepiélagos. Comprende municipios de menos de 1.000 habitantes.

4.1.10 Vías pecuarias

En relación con las vías pecuarias presentes en el ámbito, destacan la Cañada Real Segoviana, la Cañada Real de Castillejo o Mazacorta y la Cañada Real de la Buitrera así como la Cañada del Rabido y de Galga, la Cañada de El Cubillo a la Nava del quemado, la Cañada de Los Rieros, la Cañada de Abir, la Cañada de la Caleriza, la Cañada de la dehesa, la Cañada de la Virgen del Campo, la Cañada de Maroto, la Cañada de San Sebastián y la Cañada del chaparral, y existen 99 coladas, 39 cordeles, 36 descansaderos, 2 fuentes, 1 paso de ganado, 1 portillo y 28 veredas.

En la imagen siguiente se muestra el patrimonio pecuario presente en el interior del ámbito de estudio considerado:
4.1.11 Montes protegidos

Respecto a los montes protegidos, el ámbito de estudio contiene 9.768,54 ha de montes preservados de la Comunidad de Madrid, de las que 9.598,98 ha corresponden al tipo “masas arbóreas arbustivas y subarbustivas de encinar, alcornocal, enebral, sabinar, coscojar y quejigal”, 169,56 ha corresponden al tipo “Masas arbóreas de Castavar, Robledal y Fresnedal”.

Además, el ámbito de estudio coincide con 1.729,80 ha de Montes Propiedad de la Comunidad de Madrid.
4.1.12 Infraestructuras

La **red de infraestructuras de comunicación y transporte** se encuentra bien desarrollada, con presencia de abundantes vías de circulación, que tejen una malla densa entre los núcleos presentes y los inmediatos ya exteriores al ámbito de estudio. Entre ellas destacan tramos de las autovías A-1A, E-05/A-1, E-05/M-40, E-15/A-1, R-2, la carretera nacional N-1, N-1A, N-320 y las carreteras de la Comunidad de Madrid CM-1001, CM-1002, CM-1052, GU-201, GU-202, M-100, M-100/N-1, M-102, M-103, M-104, M-106, M-110, M-111, M-112, M-117, M-12, M-120, M-122, M-123, M-124, M-124/N-320, M-125, M-127, M-128, M-129, M-131, M-133, M-134, M-50, M-603, M-607, M-609, M-610, M-616, M-616, M-618, M-625, M-627, M-911, M-912 y M-963.

En cuanto a la **red de transporte eléctrico**, existen en el ámbito de estudio 265,08 km de líneas de alta tensión, de las que 145,7 km corresponden a líneas de 400kV, 99,5 km a líneas de 220kV y 19,87 km a líneas de menos de 100kV.

El ámbito cuenta también con 93,55 Km de oleoducto.
4.1.13 Paisaje

En relación al paisaje, según el Atlas de los paisajes de España, el ámbito de estudio comprende 6 grandes grupos paisajísticos: “Grandes ciudades y sus áreas metropolitanas”, que corresponde a las ciudades de Alcobendas, San Sebastián de los Reyes y Tres Cantos, que coinciden con la zona sur del ámbito de estudio, “Paisajes abiertos de la meseta sur”, que se caracteriza por zonas de cultivo de pendientes suaves que rodean los núcleos urbanos de Tres Cantos, San Agustín de Guadalix, El Molar, San Sebastián de los Reyes, Valdetorres de Jarama, Talamanca del Jarama, Fuente el Saz de Jarama, y Algete, que ocupa la zona central del ámbito, “Páramos abiertos de la Meseta Sur”, localizado al noreste del ámbito de estudio, coincidente con Uceda y Cubillo de Uceda, “Piedemontes del Sistema Central”, caracterizado por la presencia de algunas sierras de poca entidad ubicadas en la zona central y septentrional del ámbito y cercanas a los núcleos de Colmenar Viejo, Pedrezuela, El Vellón, Torrelaguna, La Cabrera y Torremocha de Jarama y que constituyen un paisaje de transición hacia los grupos paisajísticos “Áreas montañosas del Sistema Central” y “Depresiones del Sistema Central y sus bordes”, ubicado al norte del ámbito de estudio, coincidente con la Sierra de Guadarrama.

Figura 15. Infraestructuras lineales en el ámbito de estudio. Fuente: Centro Nacional de Información Geográfica (CNIG).
4.2 ANÁLISIS DE LA CAPACIDAD DE ACOGIDA DE LAS INFRAESTRUCTURAS ELÉCTRICAS PROYECTADAS

4.2.1 Metodología del modelo de capacidad de acogida (MCA)

El análisis de capacidad de acogida de la PFV GR Colombo y sus infraestructuras de evacuación incluye tres modelos de cálculo distintos, en función de la diferente naturaleza y magnitud de los potenciales impactos de las infraestructuras que integran el proyecto: plantas solares fotovoltaicas (PFV), Subestaciones (ST) y líneas de energía eléctrica (LEAT).

Los ámbitos de estudio de estos MCAs son independientes y han sido construidos bajo diferentes criterios en función de la naturaleza de la infraestructura (punto de acceso de concedido para evacuar la energía, y punto/centroide a través del cual se construye un ámbito de 10 km de radio, que debe de incluir la PFV). La representación de los mismos se realizará tomando como referencia el ámbito de estudio específico del EsiA de 5 km.

Partiendo de una estructura similar, los tres modelos distinguen entre aquellas variables que permiten determinar las zonas de exclusión del territorio y, por tanto, cibar las zonas viables de las no viables y aquellas otras que permiten cuantificar la capacidad de acogida de las infraestructuras, exclusivamente sobre las zonas viables.

Precisamente, las **diferencias metodológicas** entre los modelos de cálculo orientados al análisis de capacidad de acogida de las plantas solares fotovoltaicas, las subestaciones y la definición de los pasillos de las líneas eléctricas, tienen su origen en las variables elegidas tanto para la exclusión como para la cuantificación de zonas, así como en los valores de jerarquización y los coeficientes de ponderación (por ejemplo, la variable “pendiente” resulta mucho más importante para la localización de subestaciones que para la definición del trazado de una línea eléctrica, en la que hay cierta capacidad de reajuste en los vanos entre apoyos para salvar zonas de topografía complicada).

La ejecución material del planteamiento esbozado, se lleva a cabo a través de un **geoprocesamiento raster** en un Sistema de Información Geográfico (GIS), en el que se modelizan todas las variables afectadas atendiendo a la doble consideración, como factores excluyentes o factores de jerarquía en la toma de decisiones según la siguiente expresión:

\[
Rastervalue = \prod_{i=1}^{n} Fi \cdot \left(\sum_{j=1}^{m} Pj \cdot Sj \right)
\]

Donde:

- **Rastervalue** es el valor que adopta el rastre-solución en cada pixel.
- **Fi**: expresa los factores excluyentes y, por tanto, sólo puede adoptar valores dicotómicos 0 y 1.
- **Pj**: son los coeficientes de peso con los que se pondera cada valor asociado a una variable de cuantificación.
- **Sj**: corresponde a los factores de cuantificación que permiten jerarquizar el territorio dentro de las zonas viables (no excluidas). Adopta valores entre 1 y 5.

En los siguientes apartados se expone la metodología específica desarrollada para la obtención del modelo de capacidad de acogida para la implantación de la planta solar fotovoltaica, subestación transformadora y línea eléctrica de evacuación.

4.2.2 Modelo de capacidad de acogida para la implantación de la planta solar fotovoltaica (PFV)

METODOLOGÍA DEL MCA DE PLANTAS SOLARES FOTOVOLTAICAS

El modelo de capacidad de acogida para la localización de la PFV integra un análisis basado a su vez en dos modelos: un modelo que agrupa los **factores técnicos** que condicionan la viabilidad técnica y funcional del proyecto (Modelo de Aptitud Técnica, MAT), y un modelo que agrupa aquellos **factores ambientales** susceptibles de impacto ambiental (Modelo de Incidencia Ambiental, MIA).
Modelo de Aptitud Técnica (MAT)

Este modelo determina las zonas de exclusión del territorio discriminando, del ámbito de estudio, las zonas no viables (de exclusión) del resto de zonas, que dispondrán de diferente grado de capacidad para acoger el proyecto.

Partiendo exclusivamente de las zonas viables, cuantificaremos su capacidad para acoger las PFV. Así pues, las zonas viables se jerarquizan, cuantitativamente, en categorías de capacidad de acogida: **muy alta (1), alta (2), moderada (3), baja (4) y muy baja (5)**. De este modo, el valor (5) indica que el potencial impacto generado sobre el medio es mayor y, en consecuencia, menor su capacidad de acogida; y el valor (1) que el impacto potencial es menor y, por tanto, mayor la capacidad de estos suelos para acoger la instalación.

Así pues, el Modelo de Aptitud Técnica (MAT) discrimina el territorio en base a los factores:

- Irradiación Global Media
- Ubicación de la SE receptora de REE
- Orientación del terreno
- Pendientes
- Zonas de inundación y cauces
- Infraestructuras existentes

Para la cuantificación, se ponderan los factores anteriores, siendo >1 en los casos en los que se le da mayor importancia respecto al resto de factores; y <1, en caso de menor importancia. En caso de que todos los factores tuvieran importancia 1 estaríamos ante un caso de equidad en la importancia de todos los factores. Asignar valores superiores a 1 implica otorgar relativamente más importancia a un factor. Y a la inversa, valores por debajo de 1 implica disminuir la importancia de un factor ambiental.

Así pues, el algoritmo que cuantifica el valor de capacidad de acogida desde el punto de vista técnico es:

\[
MAT = (1.0 \times \text{Irradiación global media}) + (1.5 \times \text{Ubicación SET receptora de REE}) + (1.0 \times \text{Orientación del terreno}) + (0.6 \times \text{Pendientes}) + (0.9 \times \text{Zonas de inundación y cauces})
\]

En la tabla siguiente se relacionan los condicionantes técnicos y los factores para determinar las zonas de exclusión y para la cuantificación la capacidad de acogida (valores de 1 a 5: cuanto mayor, peor capacidad de acogida) para la ubicación de PFV. También se indica la ponderación de los factores para la cuantificación, siendo >1 mayor importancia respecto al resto de factores; y <1, menor importancia):
Tabla 2. Modelo de Aptitud Técnica (MAT) para la implantación de PFV.

<table>
<thead>
<tr>
<th>Condicionantes técnicos</th>
<th>Factores para determinar las zonas de exclusión</th>
<th>Factores de cuantificación de la capacidad de acogida</th>
<th>Ponderación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definición de Zonas excluidas</td>
<td>Valores de 1 a 5</td>
<td></td>
</tr>
<tr>
<td>Irradiación global media</td>
<td>Se establecen 3 categorías de irradación:</td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>5,0 KWh/m²-día, valor 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,9 KWh/m²-día, valor 3;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,8 KWh/m²-día, valor 5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubicación SE receptora de REE</td>
<td>Distancias a la SE de REE:</td>
<td></td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>> 30 km, valor 5;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-30 km, valor 4;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-10 km, valor 3;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-10 km, valor 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><5 km, valor 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientación del terreno</td>
<td>Se establecen 3 categorías en función de la exposición de las laderas (umbria/solana):</td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Sector SE-S-SW = valor 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sector NE-N-NW = valor 5;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resto, valor 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendientes</td>
<td>Se excluyen: Zonas cuya pendiente es superior a 30%</td>
<td>Pendientes: Entre 30% y 20%, valor 5;</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20-15%, valor 4;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-10%, valor 3;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-5%, valor 2;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><5%, valor 1.</td>
<td></td>
</tr>
<tr>
<td>Zonas de inundación y cauces</td>
<td>Se excluyen: Zonas dentro de SNCZI con periodo de retorno de 500 años</td>
<td>Distancia respecto de las zonas excluidas: A menos de 85 m de las, valor 5;</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>Zonas dentro de un buffer de 15 m entorno a cauces</td>
<td>Entre 85 y 200 m de las zonas excluidas, valor 3;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A más de 200 m de las zonas excluidas, valor 1</td>
<td></td>
</tr>
<tr>
<td>Infraestructuras existentes</td>
<td>Se excluyen zonas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><40 m de LEAT de 220 kV o 400 kV;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><30 m de LEAT entre 66 kV y 220 kV;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><20 m de LEAT entre 30 kV y 66 kV <15 m de hasta 30 kV;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><10 m del eje de gasoductos;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><25 m de carreteras</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><50 m de autovías/autopistas y líneas FF.CC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modelo de Incidencia Ambiental (MIA)

El Modelo de Incidencia Ambiental (MIA) discrimina las zonas no viables (de exclusión) desde el punto de vista ambiental del resto de zonas, que dispondrán de diferente grado de capacidad para acoger el proyecto.

Al igual que para las variables del Modelo de Aptitud Técnica, el Modelo de Incidencia Ambiental cuantificara su capacidad para acoger la PFV. Así pues, las zonas viables se jerarquizan, cuantitativamente, en categorías de capacidad de acogida: **muy alta (1), alta (2), moderada (3), baja (4) y muy baja (5)**. Es decir que, nuevamente, a menor valor, mayor será la capacidad de estos suelos para acoger la instalación.

El modelo de incidencia ambiental (MIA) considera los siguientes factores ambientales, susceptible de impacto ambiental:

- Cauces
- Ocupación de suelo y procesos geomorfológicos
- Propiedades edáficas
- Vegetación y usos
- Hábitats de Interés Comunitario (HICs)
- IBAs, poblaciones de especies de fauna protegidas y/o corredores faunísticos
- Presencia de RN2000 o Espacios Naturales Protegidos
- Montes de utilidad pública
- Vías pecuarias
- Zonas de extracción y/o vertido
- Núcleos urbanos y zonas industriales
- Planeamiento urbanístico

No se ha incluido el factor ambiental “Paisaje” ya que el modelo de capacidad de acogida es bidimensional.

La ponderación de los factores ambientales se ha realizado otorgando valores superiores a 1 a los factores de mayor importancia relativa e inferiores a 1 a los factores ambientales de menor importancia relativa.
Así pues, el algoritmo que cuantifica el valor de capacidad de acogida desde el punto de vista ambiental es:

\[MIA = (1,0 \times \text{Cauces}) + (0,75 \times \text{Ocupación suelos}) + (0,75 \times \text{Propiedades Edáficas}) + (1,25 \times \text{Vegetación}) + (1,25 \times \text{Hábitats de Interés Comunitario}) + (1,25 \times \text{IBAs/Fauna}) + (1,0 \times \text{RN200/ENPs}) + (1,0 \times \text{Zonas Urbanizadas}) \]

En la tabla siguiente se relacionan los condicionantes ambientales, así como los factores para determinar las zonas de exclusión y para la cuantificación la capacidad de acogida (valores de 1 a 5: cuanto mayor, peor capacidad de acogida) para la ubicación de PFV. También se indica la ponderación de los factores para la cuantificación, siendo >1 mayor importancia y <1, menor importancia):

Tabla 3. Modelo de Impacto Ambiental (MIA) para la implantación de PFV.

<table>
<thead>
<tr>
<th>Condicionantes ambientales</th>
<th>Factores para determinar las zonas de exclusión</th>
<th>Factores de cuantificación la capacidad de acogida</th>
<th>Ponderación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos del medio hídrico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauces</td>
<td>Se excluye: Zona dentro de un buffer de 15 m entorno a cauces</td>
<td>Distancia a cauces: A menos de 85 m de las zonas excluidas, valor 5; Entre 85 y 200 m de las zonas excluidas, valor 3; A más de 200 m de las zonas excluidas, valor 1</td>
<td>1,00</td>
</tr>
<tr>
<td>Características y usos del suelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocupación de suelo y procesos geomorfológicos</td>
<td>Pendientes. Mayores del 30%, valor 5; Entre 30 y 20%, valor 4; Entre 20 y 10%, valor 3; Entre 10 y 5%, valor 2; Pendientes <5%, valor 1</td>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td>Propiedades edáficas</td>
<td>Suelos de vega de mayor fertilidad pertenecientes al Grupo Xerofluvents (Orden Entisoles, SubO. Fluvents), valor 5; Resto de suelos (Inceptisoles, Alfisoles y Entisoles), valor 3; Sin horizonte edáfico (suelos urbanos, canteras, etc.), valor 1</td>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td>Vegetación y usos</td>
<td>Exclusión de: Bosques autóctonos (encinares, quejigares, coscojares, pinares, fresnedas y choperas) y cualquier tipo de vegetación de ribera</td>
<td>Dehesas y bosques degradados, y matorrales, valor 5; Pastizales-eriales, prados y cultivos forestales, valor 3; Cultivado, urbano y zonas degradadas, valor 1</td>
<td>1,25</td>
</tr>
<tr>
<td>Hábitat y especies protegidas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hábitats de Interés Comunitario (HICs)</td>
<td>HICs prioritarios y no prioritarios, valor 5; Resto, Valor 1</td>
<td></td>
<td>1,25</td>
</tr>
<tr>
<td>IBAs, poblaciones de especies de fauna protegidas y/o corredores faunísticos</td>
<td>Se excluyen: ZEPAs e IBAs, y de los datos obtenidos durante el seguimiento anual: nidificaciones de especies de interés y observaciones de individuos de avutarda y sisón con actitudes reproductoras.</td>
<td>Corredores ecológicos aves esteparias (fuente: Comunidad de Madrid), valor 5; Corredores principales (fuente: Comunidad de Madrid), valor 3; Corredores ecológicos (Fuente: Universidad Politécnica, WWF), valor 5;</td>
<td>1,25</td>
</tr>
<tr>
<td>Condicionantes ambientales</td>
<td>Factores para determinar las zonas de exclusión</td>
<td>Factores de cuantificación la capacidad de acogida</td>
<td>Ponderación</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Definición de zonas excluidas</td>
<td>Valores de 1 a 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Áreas de críticas y de importancias de planes de conservación y recuperación de Castillas – La Mancha, valor 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Áreas de aplicación del RD1432/2008, valor 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tomos de avifauna anual. Valor 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datos de seguimiento de especies en peligro de extinción, valor 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores de observaciones de avutardas y especies esteparias, valor 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores de observaciones de avutardas y especies esteparias, valor 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espacios Naturales Protegidos</td>
<td>Presencia de RN2000 o ENP</td>
<td>Se excluyen: Espacios de la RN2000 ENPs de la Ley 42/2007</td>
<td>Espacios a distancia < 200 m, valor 5; Entre 200 y 1000 m, valor 3; Espacios a más de 1 km, valor 1</td>
</tr>
<tr>
<td></td>
<td>Recursos forestales, pecuarios y mineros</td>
<td>Montes protegidos según legislación forestal</td>
<td>Se excluyen: Montes preservados y MUP</td>
</tr>
<tr>
<td></td>
<td>Montes protegidos según legislación forestal</td>
<td>Se excluyen: Montes preservados y MUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vías pecuarias inventariadas</td>
<td>Se excluyen: Vías pecuarias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canteras en activo</td>
<td>Se excluyen: Canteras en activo</td>
<td></td>
</tr>
<tr>
<td>Espacios Naturales Protegidos</td>
<td>Zonas urbanizadas</td>
<td>Se excluyen las siguientes zonas: Áreas urbanas residenciales y zonas a 200 m de estos; Zonas urbanizadas con uso dotacional Zonas a menos de 100 m de estas; Zonas industriales</td>
<td>Zonas urbanizadas: A menos de 500 m de las zonas residenciales, valor 5; Entre 500 m y 2 km de las zonas residenciales, valor 3; Más de 2 km a las zonas residenciales, valor 1</td>
</tr>
<tr>
<td></td>
<td>Planificación urbanística del suelo</td>
<td>Se consideran como excluidas las siguientes categorías urbanísticas de suelo: Suelos urbanos Suelos urbanizables (con excepción de los no sectorizados), Redes públicas y Sistema general</td>
<td></td>
</tr>
</tbody>
</table>

Es interesante aclarar que, en el caso de la ocupación de suelo y procesos geomorfológicos, se ha utilizado como factor de cuantificación la variable pendiente, que ya fue utilizada, aunque con otros valores y enfoque, en el Modelo de Aptitud Técnica (MAT). El motivo de esta doble utilización es que esta variable supone un doble condicionante, por una parte, técnico, pero también presenta cierta correlación con otros aspectos ambientales, como es el caso de la conservación del suelo o los procesos de erosión. Asimismo, en cuanto a los cauces se consideró, como condicionante técnico, la presencia de zonas inundables, pero también, por otra parte, como condicionante ambiental, consideramos la distancia a cauces, que es una variable diferente a la anterior, aunque está correlacionada con las zonas de inundación, contemplada en el modelo técnico.
Modelo de Capacidad de Acogida conjunto técnico y ambiental (MAT+MIA)

Con los modelos MAT y MIA se construye el modelo de capacidad de acogida conjunto en el que se identifican las zonas excluidas para la localización de PFV y aquellas otras viables, jerarquizadas cuantitivamente en 5 categorías de capacidad de acogida: muy alta, alta, media, baja y muy baja.

Para ello, a partir del Modelo de Aptitud Técnica (MAT) y del Modelo de Impacto Ambiental (MIA), se ha calculado el Modelo de Capacidad de Acogida (MCA) utilizando el siguiente algoritmo:

\[
MCA = 0,6 \times MAT + 0,4 \times MIA
\]

Esto significa que el 60% del valor de capacidad de acogida viene determinado por la aptitud del territorio a presentar los requisitos técnicos que necesita el proyecto, y el otro 40% por los factores relacionados con el posible impacto ambiental. Es importante aclarar que, como paso previo a la cuantificación del MCA, se ha efectuado una eliminación de zonas excluidas.

DETERMINACIÓN DE LAS ÁREAS EXCLUIDAS Y ViableS PARA LA LOCALIZACIÓN DE PFV

Las áreas excluidas y, por extensión, las áreas viables para la implantación de las PFV, se obtienen mediante la multiplicación de todos los rásteres de exclusión correspondientes a los factores utilizados en ambos modelos, en los que las áreas de exclusión presentan píxeles con valor 0 y las viables presentan píxeles con valor 1. Este resultado parcial se representa en el siguiente mapa:
De modo que el rastre resultante también tiene valores entre 0 y 1 y, al multiplicarlo por cualquier otro rastre de cuantificación, siempre discriminará las zonas excluidas de las viables, con independencia de los criterios que se utilicen para cuantificar la jerarquía de éstas.

Determinación de la capacidad de acogida del ámbito de actuación para la localización de plantas solares fotovoltaicas

Finalmente, la capacidad de acogida del ámbito de actuación queda determinada por la aplicación completa de la expresión comentada anteriormente:

\[
MCA = EXC \times (0,6 \times MAT + 0,4 \times MIA)
\]

Capacidad de acogida sobre los intervalos construidos a partir de los datos reales del modelo

Corresponde a la expresión de la capacidad de acogida construida sobre cinco intervalos construidos a través de umbrales naturales o método de Jenks.

El método de Jenks se utiliza para generar intervalos (rangs) dentro de series numéricas. Se basa en la naturaleza de los datos y los agrupa atendiendo a los saltos inherentes a estos, por lo que busca los puntos donde se maximiza esa diferencia y los usa como límites de cada clase o intervalo. Este método calcula las diferencias de valores entre los valores estadísticos ordenados de forma creciente y luego coloca un límite para separar los grupos donde las diferencias de valores son altas.

El algoritmo procede comparando iterativamente las sumas de las diferencias al cuadrado entre valores observados dentro de cada clase y las medias de las clases.

De esta manera, el Modelo de Capacidad de acogida para PFV se ha dividido en los siguientes rangos:

<table>
<thead>
<tr>
<th>CAPACIDAD DE ACOGIDA</th>
<th>VALORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
<td>0 – 14,49</td>
</tr>
<tr>
<td>Alta</td>
<td>14,49 – 16,58</td>
</tr>
<tr>
<td>Moderada / Media</td>
<td>16,58 – 18,67</td>
</tr>
<tr>
<td>Baja</td>
<td>18,67 – 21,08</td>
</tr>
<tr>
<td>Muy baja</td>
<td>21,08 – 28,00</td>
</tr>
</tbody>
</table>

El resultado obtenido de la aplicación de la expresión anterior y los rangos del método Jenks se muestra en el mapa siguiente:
4.2.3 Modelo de capacidad de acogida para la definición de los pasillos de la línea eléctrica de alta tensión (LEAT)

METODOLOGÍA DEL MCA DE LEAT

Como en el caso anterior, el análisis de capacidad de acogida para la definición de los pasillos de las líneas eléctricas está planteado en dos fases:

1. En primer lugar, se lleva a cabo la determinación de las zonas viables y no viables a partir de la superposición de los rasters que determinan las zonas de exclusión, simbolizadas mediante los píxeles de valor 0 (frente a las zonas viables de píxeles igual a 1).

Los factores que se tienen en cuenta para la exclusión de áreas para la implantación de líneas eléctricas son:

- Fauna
- Núcleos de población
- Planeamiento urbanístico
- Espacios Naturales Protegidos
- Red Natura 2000
Como fruto de esta primera fase se obtiene un mapa resultante con las zonas excluidas y zonas viables para la implantación de líneas eléctricas.

2. Una vez definidas las zonas excluidas, se procede a la cuantificación de las zonas viables con el fin de jerarquizar la capacidad de acogida que presenta el territorio no excluido.

Los factores que se tienen en cuenta en el modelo para la cuantificación de las áreas viables para la implantación de líneas eléctricas son:

- Fauna
- Hábitat de Interés Comunitario
- Vegetación
- Pendientes

Como resultado de la aplicación de los factores de cuantificación se obtiene un mapa clasificado en categorías según su grado de capacidad de acogida.

En la tabla siguiente se relacionan los condicionantes ambientales, así como los factores para determinar las zonas de exclusión y para la cuantificación la capacidad de acogida (valores de 1 a 5: cuanto mayor, peor capacidad de acogida) para la definición de pasillos. También se indica la ponderación de los factores para la cuantificación, siendo >1 mayor importancia y <1, menor importancia):

Tabla 4. Modelo de Capacidad de Acogida para la definición de pasillos de LEAT.

<table>
<thead>
<tr>
<th>Condicionantes ambientales</th>
<th>Factores para determinar las zonas de exclusión</th>
<th>Factores de cuantificación la capacidad de acogida</th>
<th>Ponderación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Características y usos del suelo</td>
<td></td>
<td>Pendientes superiores al 20% y menores del 30%, valor 5; Pendientes superiores al 15% y menores del 20%, valor 4; Pendientes superiores al 7% y menores del 15%, valor 3; Pendientes superiores al 3% y menores del 7%, valor 2; Pendientes menores o iguales al 3%, valor 1</td>
<td>1</td>
</tr>
<tr>
<td>Ocupación de suelo y procesos geomorfológicos</td>
<td></td>
<td>Boques ribereños, bosques mixtos de frondosas autóctonas, cursos de agua, encinares, galerías de herbáceas, galerías arbustivas, mezcla de coníferas y frondosas autóctonas, pino de pino carrasco, pino de pino piñonero y quejigos, valor 5; dehesas y mezcla de coníferas autóctonas, valor 4; arbustados, herbazal, herbazal-pastizal, matorral, matorral con arbolado disperso, pastisa-matorral, T.D. incendio, valor 3; choperas y plataneras de producción, cultivos con arbolado disperso, mosaico arbolado sobre cultivo y/o prado,</td>
<td>2</td>
</tr>
<tr>
<td>Condicionantes ambientales</td>
<td>Factores para determinar las zonas de exclusión</td>
<td>Factores de cuantificación la capacidad de acogida</td>
<td>Ponderación</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Definición de zonas excluidas</td>
<td>Valores de 1 a 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prados y prados con setos, repoblaciones con especies desconocidas, y superficie forestal residual, valor 2; agríola, artificial, cultivos, mosaicos agrícola con artificial, zonas erosionadas y urbano, valor 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hábitat y especies protegidas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hábitats de Interés Comunitario (HICs)</td>
<td>HiCs prioritarios valor 5; HiCs y no prioritarios, valor 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBAs, poblaciones de especies de fauna protegidas y/o corredores faunísticos</td>
<td>Se excluyen: ZEPAs e Ibás, Humedales Ramsar, primillares, dormideros, vertederos, y áreas de reproducción de especies focales y catalogadas.</td>
<td>Corredores ecológicos aves esteparias (fuente: Comunidad de Madrid), valor 5; Corredores principales (fuente: Comunidad de Madrid), valor 3; Corredores ecológicos (Fuente: Universidad Politécnica, WWF), valor 5; Datos seguimiento avifauna anual. Valor 5 especies catalogadas como VU o EX sensibles a LE. Valor 4 especies catalogadas como VU o EX (no incluidas en el grupo anterior), valor 3 especies catalogadas no incluidos en los grupos anteriores. Se realiza un buffer por categoría de valor (5:200m, 4:100m y 3:50m) y por comportamiento (nido, dormidero:300m, vuelos de cortejo, territoriales, exhibiciones:100m)</td>
<td>2,5</td>
</tr>
<tr>
<td>Espacios Naturales Protegidos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presencia de RN2000 o ENPs</td>
<td>Se excluyen: Espacios de la RN2000 ENPs de la Ley 42/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medio territorial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonas urbanizadas</td>
<td>Se excluyen las siguientes zonas: Áreas urbanas residenciales y zonas a 200 m de estos; Zonas urbanizadas con uso dotacional Zonas a menos de 100 m de estas; Zonas industriales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planificación urbanística del suelo</td>
<td>Se consideran como excluidas las siguientes categorías urbanísticas de suelo: Suelos urbanos Suelos urbanizables programados (con excepción de los no sectorizados), Redes públicas, sistema general y zonas militares</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Página 38
Determinación de las áreas viables y excluidas para la localización de pasillos eléctricos

La determinación de las zonas excluidas y, por extensión, de las áreas viables, se realiza mediante la multiplicación de todos los rásteres correspondientes a los cuatro factores utilizados, y en los que las áreas de exclusión presentan píxeles con valor 0 y las viables presentan píxeles con valor 1. El resultado parcial se representa en el siguiente mapa:

Este mapa de resultado parcial corresponde al resultado de la aplicación de la siguiente expresión, que resume la metodología empleada:

\[Rastervalue = \prod_{i=1}^{4} F_i \]

De modo que el ráster resultante también tiene valores entre 0 y 1 y, al multiplicarlo por cualquier otro ráster de cuantificación, siempre discriminará las zonas excluidas de las viables, con independencia de los criterios que se utilicen para cuantificar la jerarquía de éstas.

Determinación de la capacidad de acogida del ámbito de actuación para la localización de pasillos de líneas eléctricas

Finalmente, la capacidad de acogida del ámbito de actuación queda determinada por la aplicación completa de la siguiente expresión:
Capacidad de acogida sobre los intervalos construidos a partir de los datos reales del modelo

Al igual que para las PFV, se ha empleado el método de Jenks para la definición de la capacidad de acogida del territorio para acoger LEAT, mediante cinco intervalos (rangos) construidos a través de umbrales naturales.

De esta manera, el Modelo de Capacidad de Acogida para LEAT se ha dividido en los siguientes rangos:

<table>
<thead>
<tr>
<th>CAPACIDAD DE ACOGIDA</th>
<th>VALORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
<td>0 – 7,75</td>
</tr>
<tr>
<td>Alta</td>
<td>7,75 – 11,25</td>
</tr>
<tr>
<td>Moderada / Media</td>
<td>11,25 – 13,75</td>
</tr>
<tr>
<td>Baja</td>
<td>13,75 – 17,00</td>
</tr>
<tr>
<td>Muy baja</td>
<td>17,00 – 21,25</td>
</tr>
</tbody>
</table>

El resultado obtenido de la aplicación de la expresión anterior y los rangos del método Jenks se muestra en el mapa siguiente:

4.2.4 Modelo de capacidad de acogida para la implantación de subestaciones transformadoras (ST)

METODOLOGÍA DEL MCA DE ST

Al igual que el análisis de capacidad de acogida de las LEAT, el análisis de capacidad de acogida de las ST está planteado en dos fases:

1. Primeramente, se determinan las zonas viables y no viables para la implantación de SET, a partir de la superposición de los rásteres que determinan las zonas de exclusión, simbolizadas mediante los píxeles de valor 0 (frente a las zonas viables de píxeles igual a 1).

 Los factores que se tienen en cuenta para la exclusión de áreas para la implantación de subestaciones son:

 - Infraestructuras: redes de transporte
 - Núcleos de población
 - Planeamiento urbanístico
 - Vías pecuarias
 - Montes públicos
 - Red hidrológica
 - Espacios Naturales Protegidos
 - Red Natura 2000
 - Hábitat de Interés Comunitario
 - Vegetación
 - Pendientes
 - Servidumbres aéreas

 Como fruto de esta primera fase se obtiene un mapa resultante con las zonas excluidas y viables para la implantación de subestaciones eléctricas de transformación.

2. Una vez definidas las zonas excluidas, se procede a la cuantificación de las zonas viables con el fin de jerarquizar la capacidad de acogida que presenta el territorio no excluido.

 Los factores que se tienen en cuenta para la cuantificación de las áreas viables para la implantación de subestaciones son:

 - Fauna
 - Pendientes
 - Vegetación
Como resultado de la aplicación de los factores de cuantificación se obtiene un mapa clasificado en categorías, según su grado de capacidad de acogida.

A continuación, se detalla el proceso metodológico anterior, mostrando los resultados obtenidos para cada variable estudiada y el global para el ámbito de estudio.

En la tabla siguiente se relacionan los condicionantes ambientales, así como los factores para determinar las zonas de exclusión y para la cuantificación la capacidad de acogida (valores de 1 a 5: cuanto mayor, peor capacidad de acogida) para la definición los emplazamientos de las subestaciones de transformación. También se indica la ponderación de los factores para la cuantificación, siendo >1 mayor importancia y <1, menor importancia):

Tabla 5. Modelo de Capacidad de Acogida para la definición de pasillos de ST.

<table>
<thead>
<tr>
<th>Condicionantes ambientales</th>
<th>Factores para determinar las zonas de exclusión</th>
<th>Factores de cuantificación la capacidad de acogida</th>
<th>Ponderación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definición de zonas excluidas</td>
<td>Valores de 1 a 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos del medio hídrico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauce</td>
<td>Se excluye: Zona dentro de un buffer de 15 m entorno a cauces y todas las zonas inundables estimadas para un periodo de 500 años.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Características y usos del suelo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocuperación de suelo y procesos geomorfológicos</td>
<td>Pendientes superiores al 30%.</td>
<td>Pendientes. Mayores del 30%, valor 5; Entre 30 y 20%, valor 4; Entre 20 y 10%, valor 3; Entre 10 y 5%, valor 2; Pendientes <5%, valor 1</td>
<td>3</td>
</tr>
<tr>
<td>Vegetación y usos</td>
<td>Exclusión de: Agua, acebuchales, arbolado disperso de coníferas y frondosas, arbolado disperso de frondosas, bosques riberaños, bosques mixtos de frondosas en región biogeográfica mediterránea, cortafuegos, cursos de agua, dehesas, encinares, enebrales, galerías de herbáceas, galerías arbustivas, mezcla de conífera autóctonas con alóctonas, mezcla de coníferas y frondosas autóctonas en las región biogeográfica mediterránea, pinar de pino carrasco, pinar de pino pinaster en región mediterránea, pino de pino piñonero, quejigares, superficies arboladas quemadas y talas.</td>
<td>Arbustos, herbazal-pastizal, herbazal – pastizal con arbolado disperso, herbazal – pastizal con dehesa hueca, matorral con arbolado disperso, mosaico sobre forestal desarbolado, pastizal – matorral, valor 3; choperas y planetas de producción, cultivo con arbolado disperso, mosaico arbolado sobre cultivo, mosaico de pastizal sobre cultivo, mosaico matorral, prados, prados con setos, repoblaciones con especie desconocida y superficie forestal residual, valor 2; agrícola, artificial, cultivos, mosaico agrícola con artificial, mosaicos desarbolado/suelo desnudo, otras zonas erosionadas y urbano continuo.</td>
<td>2</td>
</tr>
<tr>
<td>Hábitat y especies protegidas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hábitats de Interés Comunitario (HICs)</td>
<td>Se excluyen todos los HICs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condicionantes ambientales</td>
<td>Factores para determinar las zonas de exclusión</td>
<td>Factores de cuantificación la capacidad de acogida</td>
<td>Ponderación</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IBAs, poblaciones de especies de fauna protegidas y/o corredores faunísticos</td>
<td>Se excluyen: ZEPAs e IBAs, Humedales Ramsar, prímulas, dormideros, vertederos, y áreas de reproducción de especies focales y catalogadas.</td>
<td>Corredores ecológicos aves esteparias (fuente: Comunidad de Madrid), valor 5; Corredores principales (fuente: Comunidad de Madrid), valor 3; Corredores ecológicos (Fuente: Universidad Politécnica, WWF), valor 5; Áreas de aplicación del RD1432/2008, valor 5 Datos seguimiento avifauna anual. Valores de 1 a 5 especies catalogadas como VU o EX sensibles a LE. Valor 4 especies catalogadas como VU o EX (no incluidas en el grupo anterior), valor 3 especies catalogadas no incluidas en los grupos anteriores. Se realiza un buffer por categoría de valor (5:200m, 4:100m y 3:50m) y por comportamiento (nido, dormidero:300m, vuelos de cortejo, territoriales, exhibiciones:100m)</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Espacios Naturales Protegidos

| **Presencia de RN2000 o ENP** | Se excluyen: Espacios de la RN2000 ENPs de la Ley 42/2007 | - | - |

Recursos forestales, pecuarios y mineros

| **Montes protegidos según legislación forestal** | Se excluyen: Montes preservados y MUP | - | - |
| **Vías pecuarias inventariadas** | Se excluyen: Vías pecuarias | - | - |

Medio territorial

Infraestructuras, redes de trasporte	Se excluyen la red viaria y ferroviaria con los siguientes márgenes de amortiguación: autopistas y autovías (buffer 50m), carreteras convencionales (25 m), red ferroviaria (50m), y estaciones de FF.CC (100 m).	-	-
Núcleos de población	Se excluyen todos los núcleos de población con un área de amortiguación de 200m.	-	-
Planificación urbanística del suelo	Se consideran como excluidas las siguientes categorías urbanísticas de suelo: Suelos urbanos Suelos urbanizables programados (con excepción de los no sectorizados), Redes públicas, sistema general y zonas militares.	-	-
Determinación de las áreas excluidas y viables para la localización de subestaciones eléctricas de transformación

La determinación de las áreas excluidas y, por extensión, de las áreas viables para la localización de SET, se realiza mediante la multiplicación de todos los rásteres correspondientes a los 10 factores utilizados, en los que las áreas de exclusión presentan píxeles con valor 0 y las viables presentan píxeles con valor 1. El resultado parcial se representa en el siguiente mapa:

![Mapa de determinación de áreas excluidas y viables](image)

Figura 21. Determinación de las áreas excluidas y viables para la localización de subestaciones.

Fuente: elaboración propia.

Este mapa de resultado parcial corresponde al resultado de la aplicación de la siguiente expresión, que resume la metodología empleada:

\[
Rastervalue = \prod_{i=1}^{10} F_i
\]

De modo que el ráster resultante también tiene valores entre 0 y 1 y, al multiplicarlo por cualquier otro ráster de cuantificación, siempre discriminará las zonas excluidas de las viables, con independencia de los criterios que se utilicen para cuantificar la jerarquía de éstas.
Determinación de la capacidad de acogida del ámbito de actuación para la localización de subestaciones eléctricas de transformación

Finalmente, la capacidad de acogida del ámbito de actuación queda determinada por la aplicación completa de la siguiente expresión:

\[R_{\text{stvalue}} = \prod_{i=1}^{10} F_i \]

Capacidad de acogida sobre los intervalos construidos a partir de los datos reales del modelo.
Al igual que para las PFV y los pasillos de las LEAT, se ha empleado el método de Jenks para la definición de la capacidad de acogida del territorio para acoger ST, mediante cinco intervalos (rango) construidos a través de umbrales naturales.

De esta manera, el Modelo de Capacidad de acogida para ST se ha dividido en los siguientes rangos:

<table>
<thead>
<tr>
<th>CAPACIDAD DE ACOGIDA</th>
<th>VALORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
<td>0 – 7,75</td>
</tr>
<tr>
<td>Alta</td>
<td>7,75 – 11,25</td>
</tr>
<tr>
<td>Moderada / Media</td>
<td>11,25 – 13,75</td>
</tr>
<tr>
<td>Baja</td>
<td>13,75 – 17,00</td>
</tr>
<tr>
<td>Muy baja</td>
<td>17,00 – 21,25</td>
</tr>
</tbody>
</table>

El resultado obtenido de la aplicación de la expresión anterior y los rangos del método Jenks se muestra en el mapa siguiente:
ANÁLISIS DE SINERGIAS

En este capítulo se aporta el análisis del grado de sinergia/acumulación existente en el ámbito de estudio de las futuras implantaciones de PFV, LE y ST, tanto sobre la avifauna, como sobre la calidad del paisaje, de modo que pueda utilizarse como una capa de información paralela a la de los modelos de capacidad de acogida en la toma de decisiones.

4.2.5 Análisis de sinergias en relación con el paisaje

El análisis del ámbito en relación a su capacidad sinérgica sobre el paisaje para asumir la naturaleza de los proyectos objeto de estudio, debe distinguir entre la sinergia que podría producirse entre las infraestructuras de transporte eléctrico, cuyo carácter es lineal y en altura, y la que podría concurrir con las plantas solares fotovoltaicas, de carácter extensivo y a una altura más limitada.

La incidencia de estos dos factores, dimensiones y altura, resultan fundamentales a la hora de abordar la perceptibilidad paisajística y, por ello, el análisis de sinergias se realiza mediante una metodología de similar implementación a la empleada en el caso de la avifauna\(^1\), pero que tiene en cuenta la diferente percepción de las infraestructuras de transporte y plantas solares, en relación a los usos ya existentes en el territorio y en relación a la calidad paisajística de las diferentes zonas en las que se pretenden implantar estos tipos de infraestructuras.

En efecto, el análisis de la sinergia sobre el paisaje tiene en cuenta la densidad de los usos existentes que se consideren para cada tipología de infraestructuras (más lineales y con altura, para el caso de las LEAT y más extensivos, para el caso de las PFV), pero siempre en relación con otros factores intrínsecos a la propia variable de paisaje, como son: el valor de sus unidades paisajísticas, su perceptibilidad y su vulnerabilidad frente a la fragmentación y/o degradación. Por ello, el análisis que se propone, se realiza a partir de los siguientes factores:

- La **calidad paisajística**, entendiéndola desde una acepción más amplia que incluye en su elaboración y resultado final, tanto la valoración de las unidades de paisaje presentes, como la vulnerabilidad y perceptibilidad de las mismas.

- La **densidad de usos sinérgicos/acumulativos**, calculada a partir de la mayor o menor presencia de los mismos, los cuáles son ponderados, bien con el factor de extensión relativa de sus teselas respecto a la extensión media de un clúster de implantación de PFV (50 Ha) para el caso de las PFV, bien con la altura de sus elementos, para el caso de las LE.

\(^1\) Ver epígrafe siguiente
Determinación de la calidad paisajística

El análisis de la calidad paisajística del ámbito de estudio se realiza a partir de una diagnosis de elaboración propia, configurada a partir del trabajo de campo y gabinete sobre aquellos aspectos que cualifican (o descualifican) las unidades de paisaje presentes (elementos significativos de carácter natural y antropolópico, extensión relativa en la escena, representatividad en el paisaje local, consumo perceptivo, presencia de elementos distorsionantes…), incorporándose, en el caso de existir, fuentes oficiales de información complementarias relativas a la calidad y fragilidad visual del paisaje de las unidades.

Con todo ello, el cálculo de la calidad paisajística del ámbito de actuación se desarrolla en dos escalas; en primer lugar, se valora la calidad intrínseca del paisaje de cada una de las unidades de paisaje presentes en el ámbito de estudio en relación a los siguientes factores:

- La mayor o menor presencia de elementos significativos de carácter natural y/o antropolópico en cada unidad
- La extensión relativa de cada una de ellas en el ámbito de estudio
- La representatividad de la unidad de paisaje en relación con los rasgos identitarios de la comarca
- El consumo perceptivo global de cada unidad de paisaje
- La vulnerabilidad de las mismas.
- La mayor o menor presencia de elementos distorsionantes del paisaje

Y, en segundo lugar, el resultado obtenido se matiza con el análisis ponderado de los siguientes factores:

- La fragilidad visual del paisaje
- La intervisibilidad ponderada total
- La presencia local de elementos singulares de carácter natural y su cuenca visual
- La presencia local de elementos singulares de carácter antropolópico y su cuenca visual
- La presencia local de elementos distorsionantes del paisaje y su cuenca visual

Determinación de la calidad intrínseca de las unidades de paisaje

Con independencia de la información que se pueda obtener desde las capas oficiales de los diferentes portales públicos, en una aproximación metodológica de mayor detalle que la utilizada para la concepción de dichas capas, se acomete la valoración y diagnosis de aquellos aspectos que cualifican la calidad intrínseca de las propias unidades paisajísticas definidas en el ámbito.

De este modo, se lleva a cabo un análisis multicriterio que relaciona, por una parte, las claves del carácter del paisaje de cada unidad valoradas a partir de la presencia de elementos significativos de
índoles natural y antrópico, así como por la representatividad de dicha unidad en el ámbito comarcal o subregional; y por otro lado, los aspectos más relacionados con la perceptibilidad, a partir del análisis de la intervisibilidad general y, fundamentalmente, del potencial consumo perceptivo desde puntos de observación y sendas que propicien una percepción cualificada; finalmente, el análisis tiene en cuenta la vulnerabilidad paisajística frente al posible desarrollo de actividades humanas con “uso consuntivo” del recurso paisaje, y la presencia o no de elementos distorsionantes que actualmente descualifican los escenarios y sus contextos.

Valoración de la calidad paisajística del ámbito de estudio

Una vez evaluada la calidad intrínseca del paisaje de cada una de las unidades definidas, se procede a calcular la valoración conjunta de la calidad paisajística del ámbito de estudio, teniendo en cuenta los siguientes factores:

1. La calidad intrínseca de cada una de las unidades de paisaje
2. La calidad visual y fragilidad visual definidas por fuentes oficiales
3. La intervisibilidad ponderada conjunta
4. La presencia de elementos singulares de carácter natural y el área de influencia (según distancia) de su cuenca visual.
5. La presencia de elementos singulares de carácter antrópico y el área de influencia (según distancia) de su cuenca visual.
6. La presencia de elementos distorsionantes del paisaje y el área de influencia (según distancia) de su cuenca visual.

Para la determinación de la calidad paisajística del ámbito de estudio se procede, finalmente, a rasterizar toda la información obtenida en los puntos anteriores, aplicando, sobre los intervalos de valoración de cada uno de los factores, coeficientes de ponderación adecuados al peso que cada factor tiene sobre la calidad paisajística. Sirva a modo de ejemplo la siguiente tabla:

<table>
<thead>
<tr>
<th>Factores de ponderación</th>
<th>Intervalo de valores</th>
<th>Coeficiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad paisajística de las unidades de paisaje</td>
<td>(14,75 – 23,00)</td>
<td>12,0</td>
</tr>
<tr>
<td>Calidad visual del paisaje</td>
<td>(1 – 5)</td>
<td>3,0</td>
</tr>
<tr>
<td>Fragilidad visual del paisaje</td>
<td>(1 – 5)</td>
<td>3,0</td>
</tr>
<tr>
<td>Intervisibilidad ponderada conjunta</td>
<td>(1 – 5)</td>
<td>6,0</td>
</tr>
<tr>
<td>Presencia de elementos singulares de carácter natural</td>
<td>(0 – 16)</td>
<td>6,0</td>
</tr>
<tr>
<td>Presencia de elementos singulares de carácter antrópico</td>
<td>(0 – 16)</td>
<td>6,0</td>
</tr>
<tr>
<td>Presencia de elementos distorsionantes del paisaje</td>
<td>(0 – 16)</td>
<td>-10,0</td>
</tr>
<tr>
<td>Suma</td>
<td></td>
<td>30,00</td>
</tr>
</tbody>
</table>

Valor Mínimo posible = 29,00
Valor Máximo posible = 528,00
Obviamente, el mayor peso en el cálculo de la calidad paisajística lo aporta la propia calidad intrínseca calculada para cada una de las unidades de paisaje. El motivo por el cual no se utiliza este último factor de manera directa es para evitar el artificio de dotar a toda la extensión de la unidad de paisaje del mismo valor de calidad, perdiendo, por tanto, los matices que pueden ser aportados por la presencia de elementos singulares (en positivo) o distorsionantes (en negativo), la mayor o menor visibilidad ponderada según la cualificación de los observadores o la calidad y fragilidad visual.

 Desde este punto de vista, los efectos de los análisis sinérgicos y/o acumulativos se considerarán positivos sobre el paisaje cuando éste presente una valoración de la calidad paisajística “baja” o “baja-media”; y, al contrario, la sinergia/acumulación presentará valores negativos cuando la proliferación de usos extensivos de carácter sinérgico con las PFV se produzca sobre espacios con “alta” o “media-alta” calidad paisajística. Obviamente, este último hecho tendrá una menor probabilidad de ocurrencia ya que, por el modo en el que se construye la calidad paisajística, la presencia de altas densidades de los usos anteriormente listados, habitualmente distorsionantes del paisaje, sobre cualquier unidad paisajística va a reducir drásticamente la valoración de la calidad de la misma y, por ende, aumentará el grado sinérgico de manera que el método propone, por tanto, como localizaciones óptimas aquellas situadas en las zonas de mayor densidad de este tipo de usos que, a su vez, se asocian con paisajes banales o altamente degradados.
Por contra, la construcción del método persigue la preservación de los paisajes de mayor calidad hasta el punto de que los propone con un signo diferente (positivo) a la situación anteriormente descrita. La causa para este cambio de signo del efecto sinérgico tiene su explicación en los diferentes efectos que se pueden esperar cuando acumulamos instalaciones/usos sobre áreas de alta calidad escénica, a cuando lo hacemos sobre áreas de calidad paisajística baja, de manera que, la valoración calculada apuesta por acumular estas instalaciones en las zonas de peor calidad del paisaje, entendiendo que en ese caso, la acumulación resulta positiva frente a la vulnerabilidad y, por el contrario, trata de mantener expeditos aquellas zonas en las que se acumulan los espacios de alta calidad paisajística, y en los que se entiende favorable una menor presencia de estas instalaciones.

Con este sentido, el análisis comparativo de los efectos sinérgicos/acomulativos esperados se realiza mediante la valoración conjunta de los dos factores anteriores de un modo multiplicativo, es decir, el grado de sinergia esperado sobre el paisaje se puede modelizar según la siguiente expresión:

\[GSP = CP \times p(nf) \]

Siendo:

- **GSP** el grado de sinergia calculado para cada uno de los pixeles que componen el rastéer correspondiente al ámbito de estudio.

- **CP** el factor asignado según las diferentes categorías de calidad paisajística presentes en el ámbito de estudio:
 - Calidad alta = -1,50
 - Calidad media-alta = -1,25
 - Calidad media = +1,00
 - Calidad baja-media = +1,25
 - Calidad baja = +1,50

A partir de esta metodología común para las diferentes tipologías de proyectos que integran el Nudo, se aporta a continuación el análisis de sinergias realizado tanto para plantas solares fotovoltaicas como para infraestructuras eléctricas, donde su principal diferencia estriba en la construcción de las densidades de usos con capacidad sinérgica.

Plantas solares fotovoltaicas (PFV)

En cuanto a la valoración de los emplazamientos posibles para la implantación de plantas solares fotovoltaicas, en relación con los posibles efectos sinérgicos y/o acumulativos relacionados con la presencia de otros usos en el territorio sobre el paisaje, parte de la premisa, ya referida, de que estas instalaciones tienen un carácter extensivo sobre el territorio ya que, como término medio, lo ideal suele ser localizárlas en clústeres de 50 Ha como mínimo.
Por ello, los usos que se han considerado como de posibles efectos sinérgicos y acumulativos con estas infraestructuras de generación de electricidad deben partir de esa misma premisa, primando el carácter extensivo frente al lineal (éste último más asociado a los efectos sinérgicos de las líneas eléctricas). De este modo, partiendo de la información aportada por las capas vectoriales del SIOSE, los usos considerados como de posibles efectos sinérgicos han sido los siguientes:

- Otras instalaciones fotovoltaicas y/o eólicas
- Instalaciones agroindustriales y agrogenaderas
- Invernaderos
- Instalaciones de depuración y potabilización de aguas
- Uso industrial aislado
- Polígonos industriales ordenados y sin ordenar
- Instalaciones de telecomunicaciones
- Aparcamientos de vialidad
- Usos mineros / extractivos
- Zonas de extracción o vertido
- Vertederos y escombreras

Para el cálculo de la densidad de usos sinérgicos/acumulativos, valorada a partir de la mayor o menor presencia del listado de usos anteriores, estos son ponderados con un factor de extensión relativa (de sus teselas) respecto a la extensión media de un clúster de implantación de PFV (50 Ha). En cualquier caso, se pretende, de este modo, que el grado de sinergia sea mayor cuanto mayor sea la aproximación del tamaño de las instalaciones/usos considerados al tamaño de las implantaciones de PFV, aunque obviamente se favorece la localización de las plantas en lugares donde los usos sinérgicos puedan tener incluso mayores dimensiones que los propios clústeres de implantación de PFV. En cualquier caso, la expresión que pondera el cálculo de la densidad es:

\[
\text{Extensión relativa} = \frac{\text{Superficie del uso considerado (m}^2\text{)}}{50.000 \text{ (m}^2\text{)}}
\]

Y el área de influencia de cada uno de estos usos (polos) en relación con los efectos sinérgicos, se considera que no puede ser mayor de 2 kilómetros, en atención a las condiciones de perceptibilidad de los mismos sobre el territorio.

Aplicando, de nuevo, la anterior expresión:

\[GSP = CP \times \rho(1nf) \]

donde:

- **GSP** es el grado de sinergia calculado para cada uno de los pixeles que componen el ráster correspondiente al ámbito de estudio.

- **CP** es el factor asignado según las diferentes categorías de calidad paisajística presentes en el ámbito de estudio:
 - Calidad alta = -1,50
 - Calidad media-alta = -1,25
 - Calidad media = +1,00
 - Calidad baja-media = +1,25
 - Calidad baja = +1,50

- **\(\rho(1nf) \)** es el factor asignado según la densidad de usos sinérgicos/accumulativos ponderados existentes
 - Densidad alta = +2
La interrelación entre ambos factores se representa del siguiente modo:

Figura 25. Interrelación entre los factores de cálculo del grado de sinergia/acumulación, la presencia de usos sinérgicos, la densidad ponderada calculada de estos y la calidad paisajística del ámbito.

Fuente: elaboración propia.

A efectos de los cálculos sinérgicos, se entiende que la densidad resulta nula a distancias superiores a dos kilómetros de la infraestructura considerada por el efecto de desvanecimiento en su percepción.

Con este método, el resultado gráfico que se podría obtener, en una valoración cualitativa del territorio simbolizada en cinco cuantiles, es el siguiente:
Figura 26. Resultado de la valoración de grado de sinergia/acumulación sobre el ámbito de estudio para la localización de PFV. Fuente: elaboración propia.

Líneas eléctricas

La valoración del ámbito de estudio en relación con los posibles efectos sinérgicos y/o acumulativos relacionados con la presencia de infraestructuras de tipología eléctrica existentes, se ha realizado a partir del concepto "densidad de infraestructuras", calculada a partir de los elementos verticales (apoyos) de las líneas y subestaciones (pórticos), los cuáles se han ponderado de forma directa en función de su altura, es decir, se ha considerado que a mayor altura de apoyos (normalmente asociados a mayor tensión en el transporte eléctrico), mayor densidad de la línea ya que los elementos verticales son de mayor tamaño y resultan más perceptibles ("densos") sobre el territorio. Las alturas medias consideradas según tipología de elemento son las siguientes:

- Línea Ferroviaria: 10 m.
- LEAT 66 kV: Apoyos de 15 m.
- LEAT 132 kV: Apoyos de 35 m.
- LEAT 220 kV: Apoyos de 50 m.
- LEAT 400 kV: Apoyos de 70 m.

Con el siguiente resultado:
Figura 27. Mapa de densidad ponderada por la presencia de otros usos eléctricos de carácter lineal. Fuente: elaboración propia.

Aplicando, la anterior expresión en relación a las distintas categorías del mapa de calidad paisajística expuesto:

\[GSP = CP \times \rho(lnf) \]

donde:

- **GSP** es el grado de sinergia calculado para cada uno de los pixeles que componen el ráster correspondiente al ámbito de estudio.
- **CP** es el factor asignado según las diferentes categorías de calidad paisajística presentes en el ámbito de estudio:
 - Calidad alta = -1,50
 - Calidad media-alta = -1,25
 - Calidad media = +1,00
 - Calidad baja-media = +1,25
 - Calidad baja = +1,50
- **\(\rho(lnf) \)** es el factor asignado según la densidad de usos sinérgicos/accumulativos ponderados existentes:
Densidad alta = +2
Densidad media-alta = +1,75
Densidad media-baja = +1,5
Densidad baja = +1,25
Densidad nula = +1,00

La interrelación entre ambos factores se representa del siguiente modo:

Figura 28. Interrelación entre los factores de cálculo del grado de sinergia/acumulación, la presencia de usos sinérgicos, la densidad ponderada calculada de estos y la calidad paisajística del ámbito. Fuente: elaboración propia.

A efectos de los cálculos sinérgicos, se entiende que la densidad resulta nula a distancias superiores a dos kilómetros de la infraestructura considerada por el efecto de desvanecimiento en su percepción.

Con este método, el resultado gráfico que se podría obtener, en una valoración cualitativa del territorio simbolizada en cinco cuantiles, es el siguiente:
4.2.6 Análisis de sinergias en relación con la fauna

La Ley 9/2018 define los efectos sinérgicos como aquellos que se producen cuando el efecto conjunto de la presencia simultánea de varios agentes supone una incidencia ambiental mayor que el efecto suma de las incidencias individuales contempladas aisladamente. Así, el impacto conjunto por dos o más efectos simples generan un impacto superior al que producirían éstos, manifestándose individualmente y no de forma simultánea.

El grado de sinergia del área se calcula combinando la calidad ambiental y la densidad de infraestructuras o usos. Sobre la base de la metodología de valoración del grado de incidencia de los efectos sinérgicos (Tapia, L., Fontán, L., García-Arrese, A., Nieto, C., Macías, F., 2005) se define:

Grado de Efectos Sinérgicos (GES):

\[
GEP = CA \times p(Inf)
\]

Siendo **GES** el grado de sinergia calculado para cada uno de los píxeles que componen el ráster correspondiente al área de estudio. Siendo,

- **Calidad Ambiental** el factor asignado según las diferentes categorías de calidad de la fauna presentes en el ámbito de estudio:

 - Calidad alta = 5
- Calidad media-alta = 4
- Calidad media = 3
- Calidad baja-media = 2
- Calidad baja = 1

- \(\rho(\text{Inf}) \) la densidad de usos de carácter masivo presentes en el ámbito de estudio o infraestructuras (actuales y en proyecto/tramitación), para la situación actual, a los que se le suman el proyecto objeto del presente estudio, para la situación futura, ponderada de la siguiente manera:

- Densidad alta = +2
- Densidad media-alta = +1,75
- Densidad media-baja = +1,5
- Densidad baja = +1,25
- Densidad nula = +1,00

La calidad ambiental para estas tipologías de proyecto se define a partir del grado de fragmentación, destrucción del hábitat, grado de alteración del hábitat y a través de la pérdida de individuos. A mayor fragmentación del hábitat mayor disminución de la calidad de las teselas o fragmentos de hábitat (por un incremento del efecto margen) y de la conectividad biológica.

- Fragmentación del hábitat: las infraestructuras restringen los movimientos de las especies a través de los hábitats, con un efecto más o menos intenso en función de las características de las PFV y de las características de los organismos.

La caracterización de este parámetro se realiza cuantificando los principales corredores presentes en el área definidos en el Estudio para la identificación de redes de conectividad entre hábitats forestales de la Red Natura 2000 en España (Universidad Politécnica de Madrid, WWF- España).

Valores:

- Presencia corredores esteparias: 10
- Presencia corredores prioritarios: 5
- No presencia: 1

- Pérdida de hábitat: corresponde a la pérdida física de los hábitats en el área de implantación de las PFV, LE y ST y la zona de afección inmediata. Conviene puntualizar que la pérdida del hábitat para una especie determinada no tiene por qué ser física, puesto que pérdidas en la calidad del hábitat pueden ser suficientes como para que el hábitat se convierta en inutilizable para dicha especie.
La pérdida de hábitat se define a través de las áreas sensibles por presencia de especies vulnerables al desarrollo de plantas solares fotovoltaicas, obtenidas a partir de fuentes oficiales/fiables:

Valores:

- **Presencia ZEPA y áreas críticas de Planes de Conservación y recuperación de especies de avifauna:** 7
- **Presencia IBA:** 5
- **Presencia ZEC:** 3
- **No presencia:** 1

- Grado de alteración del hábitat: corresponde con la calidad potencial del hábitat definida a través del grado de intervención del territorio. Suponiendo que cuanto menos intervenido este el territorio mayor calidad tendrá el hábitat presente. El grado de alteración se estima:

 - **Áreas edificadas y zona de amortiguación:** 1
 - **Vías de comunicación y zona de amortiguación:** 1
 - **Resto del territorio:** 10

- Alteración de las poblaciones presentes: en el “Estudio de Avifauna” (Anexo 1), resultante del análisis de los datos recogidos en campo se identifican las observaciones de especies de avifauna presentes en el ámbito de estudio. Este parámetro se utiliza para la obtención del GS de LE, no pudiendo utilizar para las PFV al estar sesgados los datos.

 - **Áreas con presencia <75% de especies de valor 5**: 5
 - **Áreas con presencia <75% de especies de valor 4**: 4
 - **Áreas con presencia de entre el 50 y el 75% de especies de valor 5**: 3
 - **Áreas con presencia de entre el 50 y el 75% de especies de valor 4**: 2

*Valor 5: especies catalogadas como vulnerables (VU) o en peligro de extinción (EX) en cualquiera de los catálogos de aplicación y sensibles a la colisión (especies focales).

*Valor 4: especies catalogadas en la categoría de VU o EX en cualquiera de los catálogos de aplicación.

Determinación del grado de sinergia/acumulación actual en relación con el trazado de PFV

Partiendo de la premisa anterior, se procede a explicar el método a través del cual se calcula la calidad ambiental y la densidad de usos (infraestructuras).

Para el cálculo de la densidad de usos sinérgicos/acumulativos existentes, los usos que se han considerado como de posibles efectos sinérgicos y acumulativos con las plantas solares fotovoltaicas parten de la premisa de que en ellos debe primar el carácter extensivo frente al lineal (éste último más asociado a los efectos sinérgicos de las líneas eléctricas). De este modo, partiendo de la información aportada por las capas vectoriales del SIOSE, los usos considerados como de posibles efectos sinérgicos han sido los siguientes:

- Otras instalaciones fotovoltaicas y/o eólicas.
- Instalaciones agroindustriales y agroganaderas.
- Invernaderos.
- Instalaciones de depuración y potabilización de aguas.
- Uso industrial aislado.
- Polígonos industriales ordenados y sin ordenar.
- Instalaciones de telecomunicaciones.
- Aparcamientos de vialidad.
- Usos mineros / extractivos.
- Zonas de extracción o vertido.
- Vertederos y escombreras.

Para el cálculo de la densidad de usos sinérgicos/acumulativos, valorada a partir de la mayor o menor presencia del listado de usos anteriores, se construye una nube de puntos (centroídes de los polígonos) ponderados con un factor de extensión en el que se tiene en cuenta su superficie en Ha, de modo que el cálculo de la densidad sea mayor en aquellas localizaciones en las que los usos sinérgicos puedan tener mayores dimensiones, incluso que los propios clústeres de implantación de PFV. En cualquier caso, la expresión que pondera el cálculo de la densidad es la siguiente:

\[\text{Extensión relativa} = \frac{\text{Superficie del uso considerado (m}^2\text{)}}{50.000 (m}^2/\text{Ha)} \]

Una vez definida la densidad ponderada en la situación actual y, partiendo del mapa de calidad ambiental expuesto al comienzo del capítulo, se puede calcular el grado de sinergia actual que sobre la fauna producen los usos masivos existentes.
Figura 17. Resultado de la valoración del grado de sinergia/acumulación sobre el ámbito de estudio, en la situación actual, para usos masivos existentes. Fuente: elaboración propia

Determinación del grado de sinergia/acumulación actual en relación con el trazado de LEATs

Según el mapa de calidad de fauna (calidad) y la densidad ponderada por presencia de infraestructuras de carácter lineal existentes en la situación actual, se calcula el grado de sinergia actual que sobre la fauna producen dichas infraestructuras de carácter lineal.
4.3 PROPUESTA Y ANÁLISIS DE ZONAS, PASILLOS Y UBICACIONES AMBIENTALMENTE VIABLES. IDENTIFICACIÓN DE ALTERNATIVAS.

Una vez obtenido el resultado de la aplicación de los modelos de capacidad de acogida del territorio para plantas solares fotovoltaicas, subestaciones transformadoras y líneas eléctricas de evacuación, se definen a continuación los emplazamientos para dichas infraestructuras.

La información que ofrece el resultado de los modelos, cumple objetivos específicos para determinar las zonas potenciales donde podrán desarrollarse las futuras implantaciones de las infraestructuras, los indicadores ambientales y los criterios de aptitud técnica.

4.3.1 Selección de zonas ambientalmente viables para las PFV

Como se ha visto anteriormente, el resultado de la aplicación del MCA para PFV ofrece, por una parte, zonas inviables para albergar este tipo de infraestructuras, y por otro, la clasificación de las zonas viables según su grado de capacidad de acogida, en un rango que comprende desde alta hasta baja capacidad de acogida.

Según el modelo aplicado, aproximadamente el 60% del territorio estudiado quedó descartado para albergar PFV. Las alternativas presentadas son áreas de implantación que quedarán definidas excluyendo las áreas inviables en el layout del proyecto.
4.3.2 Selección de pasillos viables para las LEAT

Una vez obtenido el mapa de capacidad de acogida del territorio para albergar líneas eléctricas, se ha procedido a la definición de pasillos.

Para la definición de pasillos se han analizado las conexiones lineales entre los emplazamientos propuestos para las subestaciones transformadoras y las conexiones de éstas con las subestaciones de evacuación de la energía eléctrica existentes en el territorio evitando las zonas excluidas y optando por las zonas con capacidad de acogida alta y muy alta frente al resto, cuando se han presentado varias opciones. Como resultado, los emplazamientos propuestos para la localización de pasillos viables para líneas eléctricas son los siguientes:

Tal y como se observa en la imagen, algunos tramos de los pasillos diseñados discurren por zonas que el modelo de capacidad de acogida inicialmente excluye, por su carácter conservador. No obstante la totalidad de los pasillos se diseñan sobre áreas viables pero que están sujetas a estudios específicos o de detalle que lo certifiquen. A este respecto destacaría la conexión SE de REE La Cereal localizada sobre espacios protegidos o la presencia de áreas de servidumbres aeronáuticas.

4.3.3 Selección de ubicaciones viables para las ST

Una vez obtenido el mapa resultante de la aplicación del modelo de capacidad de acogida para subestaciones transformadoras, y definida la alternativa de implantación de la planta solar fotovoltaica\(^2\), los emplazamientos propuestos como alternativas para la localización de subestaciones transformadoras (ST) son los siguientes:

\(^2\) No tiene sentido plantear alternativas de ubicación de subestaciones antes de conocer la implantación definitiva de la planta, pues normalmente, las subestaciones transformadoras se localizan dentro o en el perímetro cercano a la instalación; por ello, a pesar de que aún no ha sido expuesto el método de selección de alternativas para la PFV, en la identificación de alternativas de STs se debe partir de la seleccionada.
ST COLIMBO

Figura 32. Localización de las posibles ubicaciones de las ST Colimbo. Fuente: elaboración propia.
4.4 ANÁLISIS Y SELECCIÓN DE ALTERNATIVAS

4.4.1 Alternativa cero

El marco de la política energética y climática en España está determinado por la Unión Europea (UE) que, a su vez, responde a los requerimientos del Acuerdo de París alcanzado en 2015 para dar una respuesta internacional y coordinada al reto de la crisis climática.

En concreto, la UE demanda a cada Estado miembro la elaboración de un Plan Nacional Integrado de Energía y Clima 2021-2030 (PNIEC). Según el borrador más actualizado del Estudio Ambiental Estratégico del Plan Nacional Integrado de Energía y Clima (PNIEC) 2021-2030, España identifica los retos y oportunidades a lo largo de las cinco dimensiones de la Unión de la Energía: la descarbonización, incluidas las energías renovables; la eficiencia energética; la seguridad energética; el mercado interior de la energía y la investigación, innovación y competitividad.

Según el estudio realizado, las medidas contempladas en el PNIEC permitirán alcanzar los siguientes resultados en 2030:

- 23% de reducción de emisiones de gases de efecto invernadero (GEI) respecto a 1990.
42% de renovables sobre el uso final de la energía.

- 39,5% de mejora de la eficiencia energética.
- 74% de energía renovable en la generación eléctrica.

El proyecto que se evalúa en el presente estudio se encuadra dentro de este contexto sociopolítico, compartiendo los objetivos planteados por el PNIEC y, por tanto, haciendo una apuesta firme por el desarrollo de las energías renovables.

En ese sentido, la no realización del mismo, conllevaría la pérdida de una oportunidad para la inversión económica en este tipo de energías en nuestro país, alejando la posibilidad de cumplimiento, entre otros, del objetivo vinculante para la UE de generación del 32% (42% en el caso español) de energías renovables sobre el consumo total de energía final bruta para el 2030.

Una vez identificadas las diferentes alternativas para el emplazamiento de las subestaciones transformadoras (ST COLIMBO Y ST COLECTORA LA CEREAL), así como las alternativas de trazado de las líneas eléctricas que las interconectan con la SEE RE La Cereal (existente), y las alternativas para la PFV GR Colimbo, se procede a continuación a realizar una comparativa/álisis de las mismas para obtener la alternativa de proyecto más favorable.

4.4.2 Comparativa entre las alternativas viables para plantas solares fotovoltaicas

Para la planta solar fotovoltaica contemplada en el proyecto, se han propuesto tres alternativas viables teniendo en cuenta el MCA para plantas solares fotovoltaicas y el análisis de las sinergias con la avifauna y el paisaje.

Una vez generadas las alternativas, la comparativa se ha basado en los impactos significativos que pudieran generar cada una de ellas, en especial sobre el patrimonio natural y cultural y en el mapa de sinergias actual elaborado. Las variables ambientales consideradas y los indicadores ambientales han sido los siguientes:

Tabla 6. Variables e Indicadores ambientales utilizados en el análisis comparativo de las alternativas de PFV

<table>
<thead>
<tr>
<th>VARIABLES AMBIENTALES</th>
<th>INDICADORES AMBIENTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia a SE existente de destino</td>
<td>Distancia euclídea entre centroide a la subestación de evacuación [Km]</td>
</tr>
<tr>
<td>Planeamiento urbano</td>
<td>Clasificación del suelo afectado [Ha ponderada]</td>
</tr>
<tr>
<td>Afección a cauces</td>
<td>Longitud de cauces situados en el buffer de 100 metros [Km]</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>Intervalos de pendientes presentes en el área de afección de la PFV [Ha ponderados]</td>
</tr>
<tr>
<td>VARIABLES AMBIENTALES</td>
<td>INDICADORES AMBIENTALES</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>Vegetación presente en un buffer de 100 m. [Ha ponderada]</td>
</tr>
<tr>
<td>Fauna</td>
<td>Áreas de sensibilidad por presencia de avifauna en el buffer de 500 metros [Ha ponderados]</td>
</tr>
<tr>
<td>HICs</td>
<td>HICs Prioritarios y no Prioritarios presentes en un buffer de 100 m [Ha]</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Intervisibilidad de la parcela y Calidad paisajística en buffer de 500 m [Ha ponderada/Ha]</td>
</tr>
<tr>
<td>Espacios protegidos</td>
<td>Espacios protegidos en un buffer de 500 m [Ha ponderada]</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>Elementos de patrimonio cultural y sus zonas de protección [Ha]</td>
</tr>
</tbody>
</table>

Comparativa de los indicadores ambientales

El análisis comparativo de cada uno los indicadores ambientales/territoriales diseñados se realiza mediante la medición en Sistema de Información Geográfica (GIS) de los parámetros que conforman, en su caso, el indicador (longitud, superficie y unidades discretas).

En ocasiones puede ocurrir que el indicador pondere la calidad del parámetro medido en función del tipo que presente la variable de modo análogo a la cuantificación realizada en el modelo de capacidad de acogida realizado para PFV. (Baste como ejemplo entender que no pueden ser valorados del mismo modo los metros cuadrados de una superficie con una pendiente de entre el 20 y 30% y una que tenga el 5% y que, por tanto, se precisa de una ponderación de dicha área en función de la pendiente).

Finalmente, en aquellos indicadores donde puede influir la extensión de cada una de las alternativas, se han duplicado los valores del indicador para ofrecer una medida absoluta y otra relativa a su extensión, debido a las diferentes longitudes de los trazados comparados.

DISTANCIAS A SET DE DESTINO

Distancia a la subestación de destino (SE REE La Cereal)

Unidad de medida: metros

Ponderado por categorías: No

Valoración: Absoluta

Este indicador mide la longitud que separa el centroide de las PFV al centroide de la ST proyectada de destino
En el caso de que existan varias agrupaciones de polígonos por cada alternativa, la distancia se medirá sobre el centroide de dicha agrupación.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto [Km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>31,40</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>30,58</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>30,98</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

PLANEAMIENTO URBANO

Clasificación de Suelo afectado

Unidad de medida: Ha

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo no urbanizable afectado por la superficie ocupada por cada PFV, ponderado según los siguientes coeficientes por categorías:

<table>
<thead>
<tr>
<th>CATEGORÍAS SNU</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo no urbanizable común</td>
<td>1</td>
</tr>
<tr>
<td>Suelo sin información urbanística</td>
<td>3</td>
</tr>
<tr>
<td>Suelo no urbanizable protegido</td>
<td>4</td>
</tr>
<tr>
<td>Suelo apto para urbanizar sin programar</td>
<td>5</td>
</tr>
</tbody>
</table>

Así mismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie de la PFV en cada alternativa.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) [Ha]</th>
<th>Valor Relativo (Ponderado) [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>150,54</td>
<td>3,23</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>125,89</td>
<td>3,06</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>122,90</td>
<td>3,99</td>
</tr>
</tbody>
</table>

Fuente: Centro Nacional de Información Geográfica

AFECCIÓN A CAUCES

Longitud de cauces situados en el buffer de 100 metros
Unidad de medida: Kilómetros
Ponderado por categorías: No
Valoración: Absoluta

Este indicador ofrece el valor de la longitud de cauces incluida dentro del buffer de 100 metros de cada alternativa como medida de la mayor o menor afección que podría ocurrir sobre el dominio público hidráulico y la zona de policía.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>LONGITUD DE CAUCES EN BUFFER 100 m (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>0,36</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Confederación Hidrográfica del Tajo

AFECCIÓN A GEOMORFOLOGÍA

Intervalos de pendientes presentes en la superficie de ocupación de las PFV

Unidad de medida: Hectáreas/Hectáreas
Ponderado por categorías: Sí
Valoración: Relativa

En este indicador se mide la superficie de suelo presente en cada uno de los intervalos definidos en la siguiente tabla, ponderados por el coeficiente que se asigna en la misma tabla y relativizado al tamaño de cada alternativa:

<table>
<thead>
<tr>
<th>PENDIENTE</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor o igual al 3%</td>
<td>1</td>
</tr>
<tr>
<td>Entre el 3% y el 7%</td>
<td>2</td>
</tr>
<tr>
<td>Entre el 7% y el 15%</td>
<td>3</td>
</tr>
<tr>
<td>Entre el 15% y el 30%</td>
<td>4</td>
</tr>
<tr>
<td>Mayor del 30%</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) [Ha]</th>
<th>Valor Relativo (Ponderado) [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>87,11</td>
<td>1,87</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>86,52</td>
<td>2,10</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>54,31</td>
<td>1,76</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del MDT-05 (CNIG)
AFECCIÓN A VEGETACIÓN Y USOS DEL SUELO

Vegetación y usos del suelo presentes en buffer 100 m (Ha)

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo presente en cada uno de los intervalos definidos en la siguiente tabla, ponderados por el coeficiente que se asigna en la misma tabla y relativizado al tamaño de cada alternativa:

<table>
<thead>
<tr>
<th>VEGETACIÓN Y USOS DEL SUELO</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosques autóctonos (encinares, quejigares, coscojares, pinares, fresnedas y choperas) y cualquier tipo de vegetación de ribera</td>
<td>5</td>
</tr>
<tr>
<td>Dehesas y bosques degradados, y matorrales</td>
<td>4</td>
</tr>
<tr>
<td>Pastizales-eriales, prados y cultivos forestales</td>
<td>3</td>
</tr>
<tr>
<td>Cultivos</td>
<td>2</td>
</tr>
<tr>
<td>Urbano y zonas degradadas</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) [Ha]</th>
<th>Valor Relativo (Ponderado) [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>189,89</td>
<td>2,10</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>174,99</td>
<td>2,15</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>171,09</td>
<td>2,08</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del Mapa Forestal de España (CNIG)

AFECCIÓN A FAUNA

Área de sensibilidad por presencia de avifauna sobre el buffer de 100 metros

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

Los valores de jerarquización del territorio utilizados para cuantificar la presencia de fauna en el ámbito de estudio se han basado en:

- Datos de campo obtenidos de especies sensibles
- Áreas de protección de avifauna, Áreas de Planes de conservación de especies e IBAs.
Una vez completado el inventario de especies presentes de avifauna, se ha llevado a cabo la cuantificación de los datos obtenidos.

Para la cuantificación de las observaciones y la información de datos históricos y documentales, se han considerado los siguientes criterios de cuantificación:

- Valor 5: especies catalogadas como vulnerables (VU) o en peligro de extinción (EX) en cualquiera de los catálogos de aplicación y sensibles a la colisión (especies focales).
- Valor 4: especies catalogadas en la categoría de VU o EX en cualquiera de los catálogos de aplicación.
- Valor 3: resto de especies catalogadas.

Además, se ha establecido un buffer en función del valor de la especie, y otro buffer dependiendo del comportamiento registrado por la especie (nidificación, campeo, etc.). El buffer resultante de la observación es la suma de ambos.

BUFFER ESPECIE:

- Valor 5: buffer 200 m
- Valor 4: buffer 100 m
- Valor 3: buffer 50 m

BUFFER COMPORTAMIENTO:

- Nido: 300 m
- Ejemplares recién volados del nido: 300 m
- Dormideros: 300 m
- Aportes de material o presas a nido: 150 m
- Vuelos a baja altura en posibles áreas de cría: 100 m
- Vuelos de cortejo: 100 m
- Defensa territorial: 100 m
- Canto/Exhibición: 100 m

Asimismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (500 metros) en cada alternativa.

Los resultados obtenidos en las diferentes alternativas se muestran en la siguiente tabla:
<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) [Ha]</th>
<th>Valor Relativo (Ponderado) [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>1112,74</td>
<td>3,513</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>1314,80</td>
<td>4,478</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>1562,52</td>
<td>4,778</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia por seguimiento en campo y fuentes documentales.

HÁBITATS DE INTERÉS COMUNITARIO

HICs Prioritarios presentes en buffer de 100 m.

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de HIC Prioritario presente en un buffer de 100 metros. Se trata de un indicador de tipo absoluto:

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir de la cartografía de HICs (MITERD)

HICs No Prioritarios presentes en buffer de 100 m.

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de HIC No Prioritario presente en un buffer de 100 metros. Se trata de un indicador de tipo absoluto:

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir de la cartografía de HICs (MITERD)
PAISAJE

Grado de intervisibilidad de la parcela

Unidad de medida: Hectáreas ponderadas / Hectáreas

Ponderado por categorías: Sí

Valoración: Relativa

Indicador se mide la superficie de suelo presente en cada uno de los intervalos definidos en la siguiente tabla, ponderados por el coeficiente que se asigna en la misma tabla y relativizado al tamaño de cada alternativa:

<table>
<thead>
<tr>
<th>INTERVISIBILIDAD GENERAL</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy baja</td>
<td>1</td>
</tr>
<tr>
<td>Baja</td>
<td>2</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td>Alta</td>
<td>4</td>
</tr>
<tr>
<td>Muy alta</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (ponderado) [Ha/Ha]</th>
<th>Valor Relativo [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>181,975</td>
<td>3,91</td>
</tr>
<tr>
<td>Colimbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternativa B</td>
<td>174,052</td>
<td>4,23</td>
</tr>
<tr>
<td>Colimbo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternativa C</td>
<td>108,225</td>
<td>3,52</td>
</tr>
<tr>
<td>Colimbo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del MDT05 (CNIG)

Calidad paisajística de la parcela y su entorno (Buffer de 500 metros)

Unidad de medida: Hectáreas ponderadas / Hectáreas

Ponderado por categorías: Sí

Valoración: Relativa

Indicador se mide la superficie de suelo presente en cada uno de los intervalos definidos en la siguiente tabla, ponderados por el coeficiente que se asigna en la misma tabla y relativizado al tamaño del buffer de 500 metros de cada alternativa:
CALIDAD PAISAJÍSTICA

<table>
<thead>
<tr>
<th>CALIDAD PAISAJÍSTICA</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>1</td>
</tr>
<tr>
<td>Baja-Media</td>
<td>2</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td>Media-Alta</td>
<td>4</td>
</tr>
<tr>
<td>Muy alta</td>
<td>5</td>
</tr>
</tbody>
</table>

ALTERNATIVA

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (ponderado) [Ha]</th>
<th>Valor Relativo [Ha/ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>780,195</td>
<td>2,46</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>801,822</td>
<td>2,73</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>868,815</td>
<td>2,66</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del MDT05 (CNIG)

ESPACIOS PROTEGIDOS

Espacios Naturales Protegidos a menos de 500 metros

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de Espacios Protegidos presente en un buffer de 500 metros. Se trata de un indicador de tipo absoluto:

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>0,00</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del MITERD

PATRIMONIO CULTURAL

Espacios clasificados como bienes de patrimonio cultural a menos de 100 metros

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de Bienes del Patrimonio Cultural y de su zona de protección presente en la parcela. En el caso que nos ocupa, los bienes afectados están en relación con los
canales de Isabel II y de Cabarrús que tienen grapiada un área de protección de unos 40 metros aprox., por lo que no resulta necesario generar un buffer de amortiguamiento. Se trata de un indicador de tipo absoluto:

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A PFV GR Colimbo</td>
<td>0,30</td>
</tr>
<tr>
<td>Alternativa B PFV GR Colimbo</td>
<td>0,53</td>
</tr>
<tr>
<td>Alternativa C PFV GR Colimbo</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del MITERD
Tabla resumen de los resultados obtenidos

Tabla 7. Tabla resumen de los valores obtenidos por cada una de las alternativas sobre los indicadores diseñados y coeficientes de ponderación considerados

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia a SE</td>
<td>Distancia euclidéa entre centroides (Km)</td>
<td>5</td>
<td>Absoluto</td>
<td>31,40</td>
<td>30,58</td>
<td>30,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo</td>
<td>150,54</td>
<td>125,69</td>
<td>122,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3,23</td>
<td>3,06</td>
<td>3,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planeamiento</td>
<td>Clasificación de Suelo afectado</td>
<td>1</td>
<td>Absoluto</td>
<td>0,36</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>87,11</td>
<td>68,52</td>
<td>54,31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1,87</td>
<td>2,10</td>
<td>1,76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauce</td>
<td>Longitud de cauces en buffer 100 metros (Km)</td>
<td>2</td>
<td>Absoluto</td>
<td>189,89</td>
<td>174,99</td>
<td>171,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Relativo</td>
<td>2,10</td>
<td>2,15</td>
<td>2,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>Vegetación presente en buffer 100 m (Ha)</td>
<td>4</td>
<td>Absoluto</td>
<td>1112,74</td>
<td>1314,80</td>
<td>1562,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Relativo</td>
<td>3,513</td>
<td>4,478</td>
<td>4,778</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fauna</td>
<td>Área de sensibilidad por presencia de avifauna (buffer 500 m)(Ha)</td>
<td>5</td>
<td>Absoluto</td>
<td>3,91</td>
<td>4,23</td>
<td>3,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Relativo</td>
<td>2,46</td>
<td>2,73</td>
<td>2,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HICs</td>
<td>HICs Prioritarios presentes en buffer 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paisaje</td>
<td>Intervisibilidad General de la parcela (Ha)</td>
<td>2</td>
<td>Relativo</td>
<td>3,91</td>
<td>4,23</td>
<td>3,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Relativo</td>
<td>2,46</td>
<td>2,73</td>
<td>2,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENP</td>
<td>Espacios protegidos en el buffer de 500 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patrimonio Cultural</td>
<td>Superficie de Bienes Culturales en buffer 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,30</td>
<td>0,53</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identificación de la mejor alternativa según los indicadores ambientales

A partir de los resultados obtenidos en cada uno de los indicadores ambientales/territoriales se implementa a continuación un método de selección de la mejor alternativa basado en el orden que cada opción presenta por indicador ambiental; es decir, para un indicador en concreto, las alternativas toman valores de entre 0 y 1 representando una escala inversa de mejor a peor. De esta manera, se le asigna el valor 1 al peor de los resultados y el resto de valores se ponderan en relación a este valor.

Así mismo, cada indicador se verá afectado por un coeficiente de ponderación que tendrá en cuenta la mayor o menor magnitud del posible impacto de la infraestructura en cuestión. Los coeficientes de ponderación adoptarán valores discretos entre el 1 y el 5.

Diseñado de este modo el método, los valores obtenidos por cada alternativa son los siguientes:

Tabla 8. Tabla de normalización y ponderación de los valores obtenidos para la selección de alternativas

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia a SE</td>
<td>Distancia euclidéa entre centroides (Km)</td>
<td>5</td>
<td>Absoluto 1,00</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>Planeamiento</td>
<td>Clasificación de Suelo afectado</td>
<td>1</td>
<td>Absoluto 1,00</td>
<td>0,84</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo 0,81</td>
<td>0,77</td>
<td>1,00</td>
</tr>
<tr>
<td>Cauces</td>
<td>Longitud de cauces en buffer 100 metros (Km)</td>
<td>2</td>
<td>Absoluto 1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>Intervalos de pendientes (Ha)</td>
<td></td>
<td>Relativo -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>Vegetación presente en el área de afección de la LEAT (Ha)</td>
<td>4</td>
<td>Absoluto 0,89</td>
<td>1,00</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo 1,00</td>
<td>0,92</td>
<td>0,90</td>
</tr>
<tr>
<td>Fauna</td>
<td>Área de sensibilidad por presencia de avifauna (buffer 500 m)(Ha)</td>
<td>5</td>
<td>Absoluto 0,98</td>
<td>1,00</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo 0,71</td>
<td>0,84</td>
<td>1,00</td>
</tr>
<tr>
<td>HICs</td>
<td>HICs Prioritarios presentes en el área de afección (Ha)</td>
<td>3</td>
<td>Absoluto 0,74</td>
<td>0,94</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>HICs No Prioritarios presentes en el área de afección (Ha)</td>
<td>1</td>
<td>Absoluto 0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Intervisibilidad General de la parcela (Ha)</td>
<td>2</td>
<td>Relativo 0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Calidad paisajística en entorno (buffer 500) (Ha)</td>
<td></td>
<td>Relativo 0,92</td>
<td>1,00</td>
<td>0,83</td>
</tr>
<tr>
<td>ENP</td>
<td>Espacios protegidos en el buffer de 500 m (Ha)</td>
<td>3</td>
<td>Absoluto 0,90</td>
<td>1,00</td>
<td>0,97</td>
</tr>
<tr>
<td>Patrimonio Cultural</td>
<td>Superficie de Bienes Culturales (Ha)</td>
<td>3</td>
<td>Absoluto 0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Finalmente, la valoración final de cada alternativa se obtiene ponderando los valores anteriores y sumándolos entre sí, para obtener el siguiente resultado:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia a SE</td>
<td>5,00</td>
<td>4,87</td>
<td>4,93</td>
</tr>
<tr>
<td>Planeamiento urbano</td>
<td>1,81</td>
<td>1,60</td>
<td>1,82</td>
</tr>
<tr>
<td>Cauces</td>
<td>2,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>2,67</td>
<td>3,00</td>
<td>2,52</td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>7,91</td>
<td>7,69</td>
<td>7,49</td>
</tr>
<tr>
<td>Fauna</td>
<td>7,24</td>
<td>8,89</td>
<td>10,00</td>
</tr>
<tr>
<td>Hábitats de Interés Comunitario</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Paisaje</td>
<td>5,48</td>
<td>6,00</td>
<td>5,41</td>
</tr>
<tr>
<td>ENP</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>1,72</td>
<td>3,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RESULTADO PONDERADO</td>
<td>33,83</td>
<td>35,05</td>
<td>32,17</td>
</tr>
</tbody>
</table>

Atendiendo a los resultados, la mejor alternativa desde el punto de vista de los indicadores ambientales para la PFV GR Colimbo sería la alternativa C.
Identificación de la mejor alternativa de PFVs según el estudio de sinergias sobre paisaje

Tal y como se muestra en el Capítulo 4.3 “Análisis de sinergias”, se ha realizado un análisis del grado de sinergia/acumulación que presenta el territorio en relación con la presencia de usos masivos que puedan incidir de forma sinérgica o acumulativa sobre el paisaje y la avifauna.

Como fruto de este análisis se obtiene el siguiente mapa que expresa el grado de sinergia que presenta el territorio en relación con los usos masivos, y sobre el que se han localizado las alternativas a comparar:

Figura 34. Resultado de la valoración de grado de sinergia/acumulación sobre el paisaje y localización de las alternativas de PFVs. Fuente: elaboración propia.

Al objeto de cuantificar la comparativa de las alternativas de PFVs consideradas, se ha optado por valorar de forma ponderada la superficie interior a los polígonos que las enmarcan, de tal modo que se puntúa de 1 a 5 la escala de valores cualitativos del siguiente modo:

Muy desfavorable: 5 / Desfavorable: 4 / Moderado: 3 / Favorable: 2 / Muy favorable: 1

El siguiente paso consiste en contar el número de celdas presentes en cada categoría y multiplicar por 25 (metros cuadrados que tiene cada celda) y dividir por 10.000 (metros cuadrados por hectárea), relativizando, finalmente, mediante el cociente con la superficie de cada alternativa, al objeto de que la superficie de ésta no influya en el resultado total (que será adimensional).

Procediendo de esta manera, se obtiene la siguiente comparación:
Alternativa A: 3,86
Alternativa B: 4,06
Alternativa C: 3,53

De tal forma que se puede concluir que desde el grado de sinergia sobre el paisaje, la Alternativa C es la que presenta un mejor comportamiento frente a las sinergias sobre el paisaje.

Identificación de la mejor alternativa de PFVs según el estudio de sinergias sobre avifauna

Tal y como se muestra en el Capítulo 4.3 “Análisis de sinergias”, se ha realizado un análisis del grado de sinergia/acumulación que presenta el territorio en relación con la presencia de usos masivos que puedan incidir de forma sinérgica o acumulativa sobre el paisaje y la avifauna.

Como fruto de este análisis se obtiene el siguiente mapa que expresa el grado de sinergia que presenta el territorio en sobre la avifauna en relación con los usos masivos, y sobre el que se han localizado las alternativas a comparar:

![Mapa de sinergias y avifauna](image)

Figura 35. Resultado de la valoración de grado de sinergia/acumulación sobre la avifauna y localización de las alternativas de PFVs. Fuente: elaboración propia.

Al objeto de cuantificar la comparativa de las alternativas de PFVs consideradas, se ha optado por valorar de forma ponderada la superficie interior a los polígonos que las enmarcan, de tal modo que se puntúa de 1 a 5 la escala de valores cualitativos del siguiente modo:

- Muy desfavorable: 5
- Desfavorable: 4
- Moderado: 3
- Favorable: 2
- Muy favorable: 1
El siguiente paso consiste en contar el número de celdas presentes en cada categoría y multiplicar por 25 (metros cuadrados que tiene cada celda) y dividir por 10.000 (metros cuadrados por hectárea), relativizando, finalmente, mediante el cociente con la superficie de cada alternativa, al objeto de que la superficie de ésta no influya en el resultado total (que será adimensional).

Procediendo de esta manera, se obtiene la siguiente comparación:

Alternativa A: 3,48
Alternativa B: 3,93
Alternativa C: 3,59

De tal forma que se puede concluir que, desde el grado de sinergia sobre la avifauna, la Alternativa A es la mejor de todas ellas.

Valoración global de las alternativas de PFVs

Teniendo en cuenta estos factores, la alternativa seleccionada es la Alternativa C, que presenta la mejor valoración conjunta en dos de los tres factores considerados y en el resultado conjunto, tal y como se aprecia en las siguientes tablas, donde se aportan los valores obtenidos en cada una de las valoraciones y una normalización entre 0 y 1 (siendo 1 la opción más desfavorable) para permitir la suma de los factores, ponderados según tabla:

Tabla 9. Tabla de valores obtenidos en los factores de comparación

<table>
<thead>
<tr>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
<th>Resultado conjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>33,83</td>
<td>3,86</td>
<td>3,48</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>35,05</td>
<td>4,06</td>
<td>3,93</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>32,17</td>
<td>3,53</td>
<td>3,59</td>
</tr>
</tbody>
</table>

Tabla 10. Tabla de valores normalizados, ponderación de los factores y resultado conjunto

<table>
<thead>
<tr>
<th>Ponderación</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
<th>Resultado conjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x 5,00)</td>
<td>(x 1,00)</td>
<td>(x 1,00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternativa A</td>
<td>0,965</td>
<td>0,949</td>
<td>0,885</td>
<td>6,660</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0,918</td>
<td>0,869</td>
<td>0,912</td>
<td>6,370</td>
</tr>
</tbody>
</table>

La alternativa seleccionada por su valor conjunto es la C, aunque, en cualquier caso, las diferencias no son demasiado significativas como consecuencia de la alta viabilidad de las localizaciones al haber sido localizadas a partir de los modelos de capacidad de acogida y mapas de sinergias.
4.4.3 Comparativa entre las alternativas de emplazamientos viables para subestaciones transformadoras

Para las dos subestaciones transformadoras que se precisan en el proyecto, ST Colimbo y ST Colectora La Cereal, se han propuesto tres emplazamientos viables teniendo en cuenta el MCA para subestaciones eléctricas y el análisis de las sinergias con la avifauna y el paisaje. Todas las localizaciones propuestas se corresponden con parcelas dedicadas al cultivo agrícola, están ubicadas en un área de un radio de 500 metros de longitud de las plantas solares fotovoltaicas (en el caso de GR Colimbo) y presentan valores parecidos de pendiente.

Para la correcta comparativa de las alternativas de emplazamientos para ambas subestaciones es preciso seleccionar en primer lugar la ST Colectora La Cereal ya que resulta la subestación de destino de la ST Colimbo, lo cual influye en la comparación por distancia; por ello, se comienza seleccionando el emplazamiento de la ST COLECTORA LA CEREAL.

COMPARATIVA DE ALTERNATIVAS PARA LA ST COLECTORA LA CEREAL

Análisis de distancia a la subestación de destino

La primera valoración realizada sobre las alternativas propuestas es la distancia euclidéa a la SET de destino, que en el caso de la ST Colectora – La Cereal es la SE REE de La Cereal.

Este factor fundamenta su importancia en que la localización de la ST Colectora – La Cereal, conllevará en gran medida la longitud de la línea de transporte hasta la SE REE La Cereal. Una mayor longitud de línea conllevará asociada asimismo una mayor probabilidad de generación de impactos ambientales, por lo que se valorará de forma positiva las parcelas que se encuentren más cerca de aquella.

En el caso que nos ocupa, las mejores condiciones, en relación con la distancia, son para la Alternativa C con 3.061 m, mientras que la Alternativa B tiene una distancia de con 3.804 m, por lo que resultará la peor valorada. La alternativa C presenta la valoración intermedia con 3.306 m.

Análisis de indicadores ambientales sobre la cuantificación obtenida en el MCA

En relación con el MCA para SET, el análisis realizado tiene en cuenta el valor ponderado (Muy alta = 1; Alta = 2; Moderada = 3; Baja = 4; Muy baja = 5) de cada uno de los emplazamientos en relación con su capacidad de acogida, a partir de la siguiente expresión:

\[\text{Valor ponderado para una alternativa} = \frac{(N^x \text{ de píxeles de la alternativa por categoría x valor de cada categoría})}{\text{Superficie total de la alternativa}} \]
Figura 36. Localización de las posibles ubicaciones de las ST Colectora La Cereal en relación con el modelo de capacidad de acogida. Fuente: elaboración propia.

De manera que la mejor alternativa desde la óptica de la cuantificación del MCA resulta la Alternativa A con 3,000, siendo la peor la Alternativa B con 4,000 y como valor intermedio, la Alternativa C con 3,433
Identificación de la mejor alternativa de subestación transformadora según el estudio de sinergias sobre paisaje

Figura 37. Resultado de la valoración de grado de sinergia/ acumulación sobre el paisaje y localización de las alternativas de STs. Fuente: elaboración propia.

Para el análisis de sinergias de las alternativas de subestaciones se utiliza el mapa confeccionado para las plantas solares fotovoltaicas ya que una subestación tiene un carácter más masivo que lineal.

Al objeto de cuantificar la comparativa de las tres alternativas de STs consideradas, se procede de igual manera que en el caso de las PFVs, valorando de forma ponderada la superficie interior a los polígonos que delimitan las STs, de tal modo que se puntúa de 1 a 5 la escala de valores cualitativos del siguiente modo:

Muy desfavorable: 5 / Desfavorable: 4 / Moderado: 3 / Favorable: 2 / Muy favorable: 1

El siguiente paso consiste en contar el número de celdas presentes en cada categoría y multiplicar por 25 (metros cuadrados que tiene cada celda) y dividir por 10.000 (metros cuadrados por hectárea), relativizando, finalmente, mediante el cociente con la superficie de cada alternativa, al objeto de que la superficie de ésta no influya en el resultado total (que será adimensional).
Procediendo de esta manera, se obtiene la siguiente comparación:

Alternativa A: 3,000

Alternativa B: 3,286

Alternativa C: 3,876

De tal forma que se puede concluir que, desde el grado de sinergia sobre el paisaje, la Alternativa A es ligeramente mejor que las otras dos alternativas.

Identificación de la mejor alternativa de subestación transformadora según el estudio de sinergias sobre avifauna

Procediendo de forma análoga, pero en este caso sobre el mapa que expresa el grado de sinergia sobre avifauna para los usos masivos existentes:

![Figura 38. Resultado de la valoración de grado de sinergia/acumulación sobre la avifauna y localización de las alternativas de STs. Fuente: elaboración propia.](image-url)
Se obtiene el siguiente resultado:

Alternativa A: 3,000

Alternativa B: 3,000

Alternativa C: 3,000

De tal forma que se puede concluir que, desde el grado de sinergia sobre la avifauna, todas las alternativas presentan el mismo valor.

Valoración global de las alternativas de subestaciones transformadoras

Teniendo en cuenta estos factores, la alternativa seleccionada es la Alternativa A, que presenta la mejor valoración conjunta en tres de los cuatro factores considerados y en el resultado conjunto, tal y como se aprecia en las siguientes tablas, donde se aportan los valores obtenidos en cada una de las valoraciones y una normalización entre 0 y 1 (siendo 1 la opción más desfavorable) para permitir la suma de los factores, ponderados según tabla:

Tabla 11. Tabla de valores obtenidos en los factores de comparación

<table>
<thead>
<tr>
<th>Distancia SET destino</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>3.306</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>3.804</td>
<td>4</td>
<td>3,286</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>3.061</td>
<td>3,433</td>
<td>3,876</td>
</tr>
</tbody>
</table>

Tabla 12. Tabla de valores normalizados y resultado conjunto

<table>
<thead>
<tr>
<th>Distancia SET destino</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
<th>Resultado conjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponderación</td>
<td>(x 2,00)</td>
<td>(x 5,00)</td>
<td>(x 1,00)</td>
<td>(x 1,00)</td>
</tr>
<tr>
<td>Alternativa A</td>
<td>0,869</td>
<td>0,750</td>
<td>0,774</td>
<td>1,000</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1,000</td>
<td>1,000</td>
<td>0,848</td>
<td>1,000</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0,805</td>
<td>0,858</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Según la valoración conjunta, la Alternativa más viable corresponde a la alternativa A
COMPARATIVA DE ALTERNATIVA PARA LA ST COLIMBO

Análisis de distancia a la subestación de destino

Una vez establecida la alternativa seleccionada ST Colectora La Cereal, podemos comenzar el cálculo de la selección de alternativas de la ST Colimbo puesto que la primera resulta la ST de destino de la segunda.

En el caso que nos ocupa, las mejores condiciones, en relación con la distancia, son para la Alternativa C con 29.976 m, mientras que la Alternativa A tiene una distancia de con 30.399 m, por lo que resultará la peor valorada. La alternativa B presenta la valoración intermedia con 30.051 m.

Análisis de indicadores ambientales sobre la cuantificación obtenida en el MCA

En relación con el MCA para SET, el análisis realizado tiene en cuenta el valor ponderado (Muy alta = 1; Alta = 2; Moderada = 3; Baja = 4; Muy baja = 5) de cada uno de los emplazamientos en relación con su capacidad de acogida, a partir de la siguiente expresión:

\[
\text{Valor ponderado para una alternativa} = \frac{N^c \text{ de píxeles de la alternativa por categoría} \times \text{valor de cada categoría}}{\text{Superficie total de la alternativa}}
\]

De manera que la mejor alternativa desde la óptica de la cuantificación del MCA resulta la Alternativa C con 2,000, siendo la peor la Alternativa A con 2,713 y como valor intermedio, la Alternativa B con 2,644.

Figura 39. Localización de las posibles ubicaciones de las ST Colimbo en relación con el modelo de capacidad de acogida. Fuente: elaboración propia.
Identificación de la mejor alternativa de subestación transformadora según el estudio de sinergias sobre paisaje

Figura 40. Resultado de la valoración de grado de sinergia/accumulación sobre el paisaje y localización de las alternativas de STs. Fuente: elaboración propia.

Para el análisis de sinergias de las alternativas de subestaciones se utiliza el mapa confeccionado para las plantas solares fotovoltaicas ya que una subestación tiene un carácter más masivo que lineal.

Al objeto de cuantificar la comparativa de las tres alternativas de STs consideradas, se procede de igual manera que en el caso de las PFVs, valorando de forma ponderada la superficie interior a los polígonos que delimitan las STs, de tal modo que se puntúa de 1 a 5 la escala de valores cualitativos del siguiente modo:

Muy desfavorable: 5 / Desfavorable: 4 / Moderado: 3 / Favorable: 2 / Muy favorable: 1

El siguiente paso consiste en contar el número de celdas presentes en cada categoría y multiplicar por 25 (metros cuadrados que tiene cada celda) y dividir por 10.000 (metros cuadrados por hectárea), relativizando, finalmente, mediante el cociente con la superficie de cada alternativa, al objeto de que la superficie de ésta no influya en el resultado total (que será adimensional).
Procediendo de esta manera, se obtiene la siguiente comparación:

Alternativa A: 3,000

Alternativa B: 3,000

Alternativa C: 3,000

Es decir, todas las alternativas se ubican en zona moderada con respecto a las sinergias de paisaje y, por tanto, comparten valor.

Identificación de la mejor alternativa de subestación transformadora según el estudio de sinergias sobre avifauna

Procediendo de forma análoga, pero en este caso sobre el mapa que expresa el grado de sinergia sobre avifauna para los usos masivos existentes:

![Mapa de sinergias sobre avifauna](image)

Figura 41. Resultado de la valoración de grado de sinergia/accumulación sobre la avifauna y localización de las alternativas de STs. Fuente: elaboración propia.

Se obtiene el siguiente resultado:

Alternativa A: 4,000

Alternativa B: 4,000

Alternativa C: 4,000
Es decir, todas las alternativas se ubican en zona desfavorable con respecto a las sinergias de paisaje y, por tanto, comparten valor.

Valoración global de las alternativas de subestaciones transformadoras

Teniendo en cuenta estos factores, la alternativa seleccionada es la Alternativa C, que presenta la mejor valoración conjunta en dos de los tres factores considerados y en el resultado conjunto, tal y como se aprecia en las siguientes tablas, donde se aportan los valores obtenidos en cada una de las valoraciones y una normalización entre 0 y 1 (siendo 1 la opción más desfavorable) para permitir la suma de los factores, ponderados según tabla:

Tabla 13. Tabla de valores obtenidos en los factores de comparación

<table>
<thead>
<tr>
<th>Distancia SET destino</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>30.399</td>
<td>2,713</td>
<td>3,000</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>30.051</td>
<td>2,644</td>
<td>3,000</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>29.976</td>
<td>2,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Tabla 14. Tabla de valores normalizados y resultado conjunto

<table>
<thead>
<tr>
<th>Distancia SET destino</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
<th>Resultado conjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x 2,00)</td>
<td>(x 5,00)</td>
<td>(x 1,00)</td>
<td>(x 1,00)</td>
</tr>
<tr>
<td>Alternativa A</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0,989</td>
<td>0,975</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0,986</td>
<td>0,737</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Según la valoración conjunta, la alternativa más viable corresponde a la Alternativa C.
4.4.4 Comparativa entre las alternativas viables para líneas eléctricas

Se procede a continuación a la selección de las alternativas que presenten unos valores más favorables para los dos tramos de línea considerados:

- Tramo LEAT 132 kV GR Colimbo – Colectora Tres Cantos
- Tramo LEAT 132 kV Colectora Tres Cantos – Colectora La Cereal + Tramo LEAT 400 kV Colectora Tres Cantos – SE REE La Cereal.

La comparativa entre las tres alternativas viables definidas en el apartado 4.5.3 “Definición de las alternativas de LEAT viables sobre el pasillo propuesto” se realiza por un lado, a partir de la evaluación de 18 indicadores ambientales/territoriales diseñados específicamente sobre 12 variables ambientales, de tal manera que nos permita medir, comparativamente, el grado de afección de las infraestructuras eléctricas evaluadas; y por otro lado, a partir de los resultados obtenidos por el estudio de las sinergias con el paisaje y la avifauna de interés presente en el ámbito de estudio.

En la tabla siguiente se resumen las variables e indicadores ambientales utilizados en el análisis comparativo de las alternativas de trazado.

Tabla 15. Variables e indicadores ambientales utilizados en el análisis comparativo de las alternativas de trazado.

<table>
<thead>
<tr>
<th>VARIABLES AMBIENTALES</th>
<th>INDICADORES AMBIENTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afección a infraestructuras</td>
<td>- Nº de cruces con vía interurbano (Uds)</td>
</tr>
<tr>
<td>existentes</td>
<td>- Nº de apoyos de LEAT existentes situados en el buffer de 100 m de la traza (Uds)</td>
</tr>
<tr>
<td></td>
<td>- Nº de cruces con LEAT existentes (Uds)</td>
</tr>
<tr>
<td></td>
<td>- Densidad de caminos existentes situados dentro del buffer de 500 m (ml/Ha)</td>
</tr>
<tr>
<td>Planeamiento urbano</td>
<td>- Clasificación del suelo afectado en el buffer de 100 m de la LE (Ha ponderada)</td>
</tr>
<tr>
<td>Afección a cauces</td>
<td>- Nº de cruces con cauces según capa de información de CHT (Uds)</td>
</tr>
<tr>
<td></td>
<td>- Zona de Policía de cauces incluida en el buffer de 100 m de la LE (Ha)</td>
</tr>
<tr>
<td>Vías Pecuarias</td>
<td>- Nº de cruces con vías pecuarias (Uds)</td>
</tr>
<tr>
<td>Monte público</td>
<td>- Monte público incluido en el buffer de 100 metros de la LE (Ha)</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>- Intervalos de pendientes presentes en el buffer de 100 m de la LE (Ha ponderadas)</td>
</tr>
<tr>
<td>Vegetación</td>
<td>- Vegetación presente en el buffer de 100 m de la LE (Ha y Ha ponderadas)</td>
</tr>
<tr>
<td>Fauna</td>
<td>- Áreas de sensibilidad por presencia de avifauna en el buffer de 500 m de la LE (Ha y Ha ponderadas)</td>
</tr>
<tr>
<td>Hábitats de Interés Comunitario</td>
<td>- HiCs prioritarios presentes en el buffer de 100 m de la línea eléctrica (Ha)</td>
</tr>
<tr>
<td></td>
<td>- HiCs no prioritarios presentes en el buffer de 100 m de la línea eléctrica (Ha)</td>
</tr>
</tbody>
</table>
VARIABLES AMBIENTALES

<table>
<thead>
<tr>
<th>INDICADORES AMBIENTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paisaje</td>
</tr>
<tr>
<td>- Intervisibilidad en el buffer de 100 m de la LE (Ha ponderadas)</td>
</tr>
<tr>
<td>- Calidad paisajística en el buffer de 100 m de la LE (Ha ponderadas)</td>
</tr>
<tr>
<td>Espacios Naturales Protegidos</td>
</tr>
<tr>
<td>- Superficie de espacios naturales protegidos en el buffer de 500 m (Ha)</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
</tr>
<tr>
<td>- Elementos de patrimonio cultural incluidos en el buffer de 100 metros (Ha)</td>
</tr>
</tbody>
</table>

ANÁLISIS COMPARATIVO DE LOS INDICADORES AMBIENTALES: TRAMO LEAT 132 KV GR COLIMBO – COLECTORA TRES CANTOS

El análisis comparativo de cada uno de los indicadores ambientales/territoriales diseñados se realiza mediante la medición en Sistema de Información Geográfica (GIS) de los parámetros que conforman, en su caso, el indicador (longitud, superficie y unidades discretas).

Figura 42. Identificación de alternativas para el tramo de LEAT GR Colimbo – Colectora Tres Cantos. Fuente: elaboración propia.

Como anteriormente se expuso las trazas/pasillos se han diseñado por zonas inicialmente excluidas condicionadas a estudios específicos o de detalle que podrían certificar su viabilidad. Concretamente, la alternativa A y C se proyectan sobre un área condicionada a autorización de servidumbres aeronáuticas, cruza un espacio Red Natura 2000 y zona urbana; y la alternativa B recorre zonas sujetas a trámite de viabilidad urbanística.
En ocasiones puede ocurrir que el indicador ponderé la calidad del parámetro medido en función del tipo que presente la variable de modo análogo a la cuantificación realizada en el modelo de capacidad de acogida realizado para pasillos y subestaciones (baste como ejemplo que no pueden ser valorados del mismo modo los m² de una formación arbolada densa y los de un área de cultivo y que, por tanto, se precisa de una ponderación de dicha área en función de la tipología de vegetación afectada).

Finalmente, en aquellos indicadores donde puede influir la extensión de cada una de las alternativas, se han duplicado los valores del indicador para ofrecer una medida absoluta y otra relativa a su extensión, debido a las diferentes longitudes de los trazados comparados.

AFOCCIÓN A INFRAESTRUCTURAS EXISTENTES

Nº de cruces con viario

Unidad de medida: Unidades
Ponderado por categorías: No
Valoración: Absoluta

En este indicador se mide el número de intersecciones previstas con elementos lineales del viario interurbano (autopías, autopistas y carreteras interurbanas) y ferroviario, de tal manera que se penaliza aquellos trazados que presentan un mayor número de cruces.

Tabla 16. Fuente: Centro Nacional de Información Geográfica (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON VIARIO (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>6</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>8</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>4</td>
</tr>
</tbody>
</table>

Nº de apoyos de LEAT existentes situados en un buffer de 100 metros de la traza

Unidad de medida: Unidades
Ponderado por categorías: No
Valoración: Absoluta

En este indicador se contabiliza el número de apoyos de Líneas Eléctricas de Alta Tensión (LEAT) existentes que se ubican dentro del buffer de 100 metros del trazado, penalizándose aquellos trazados que presentan un mayor número de apoyos.

Tabla 17. Fuente: Localización mediante ortoimagen PNOA (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE APOYOS DE LEAT EXISTENTES (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>3</td>
</tr>
</tbody>
</table>
Nº de cruces con LEAT existentes

Unidad de medida: Unidades

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide el número de cruces con Líneas Eléctricas de Alta Tensión (LEAT) existentes, penalizándose aquellos trazados que presentan un mayor número de cruces por sus efectos sinérgicos sobre la avifauna, como en el caso anterior.

Tabla 18. Fuente: CNIG.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON LEAT EXISTENTES (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>4</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>2</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>2</td>
</tr>
</tbody>
</table>

Densidad de caminos existentes situados dentro del buffer de 500 m (ml/Ha)

Unidad de medida: metros lineales de caminos por hectárea

Ponderado por categorías: No

Valoración: Relativa

Este indicador tiene por objeto ofrecer un valor aproximado de la densidad de la red de caminos rurales y sendas presentes en un entorno de 500 metros de la traza de la LE, en la medida en la que ésta pueda proporcionar accesos existentes a los apoyos proyectados minimizando, de este modo, los impactos por apertura de nuevos accesos; es decir, en este indicador se penaliza las menores densidades.

Tabla 19. Fuente: CNIG.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>DENSIDAD CAMINOS EXISTENTES (ml/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>30,13</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>36,43</td>
</tr>
</tbody>
</table>
PLANEAMIENTO URBANO

Clasificación de Suelo

Unidad de medida: Ha

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo no urbanizable incluido en el buffer de 100 metros de cada trazado, ponderado según los siguientes coeficientes por categorías:

<table>
<thead>
<tr>
<th>CATEGORÍAS SNU</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo no urbanizable común</td>
<td>1</td>
</tr>
<tr>
<td>Suelo sin información urbanística</td>
<td>3</td>
</tr>
<tr>
<td>Suelo no urbanizable protegido</td>
<td>4</td>
</tr>
<tr>
<td>Suelo apto para urbanizar sin programar</td>
<td>5</td>
</tr>
</tbody>
</table>

Así mismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (100 metros) en cada alternativa.

Tabla 20. Fuente: CNIG.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) (Ha)</th>
<th>Valor Relativo (Ponderado) (Ha/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1.287,86</td>
<td>2,35</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1.422,38</td>
<td>2,41</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1.502,69</td>
<td>2,85</td>
</tr>
</tbody>
</table>

AFECCIÓN A CAUCES

Nº de cruces con cauces según capa de información de la Confederación Hidrográfica del Tajo (CHT)

Unidad de medida: Unidades

Ponderado por categorías: No
Valoración: Absoluta

En este indicador se mide el número de intersecciones previstas con los cauces de la red hidrográfica incluida en la capa de información vectorial de la Confederación Hidrográfica del Tajo, de tal manera que se penaliza aquellos trazados que presentan un mayor número de cruces.

Tabla 21. Fuente: Confederación Hidrográfica del Tajo (CHT).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON CAUCES (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>19</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>27</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>13</td>
</tr>
</tbody>
</table>

Zona de policía de cauces incluida en el buffer de 100 metros de la traza

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

Este indicador tiene como objetivo la comparación cuantificada de la posible afectación a los entornos de los cauces mediante la medición de la superficie de zona de policía incluida en el buffer de 100 metros de cada una de las alternativas.

Tabla 22. Fuente: Confederación Hidrográfica del Tajo (CHT).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>SUPERFICIE DE ZONA DE POLICÍA (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>281,56</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>299,33</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>172,59</td>
</tr>
</tbody>
</table>

AFECCIÓN A VÍAS PECUARIAS

Nº de cruces con Vías Pecuarias

Unidad de medida: Unidades

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide el número de intersecciones previstas con las vías pecuarias (VVPP) según la información contenida en la capa de información vectorial de la Comunidad de Madrid y de la
provincia de Guadalajara, de tal manera que se penaliza aquellos trazados que presentan un mayor número de cruces.

Tabla 23. Fuente: Infraestructura de Datos Espaciales de la Comunidad de Madrid (IDEM).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON VVPP (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>11</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>9</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>12</td>
</tr>
</tbody>
</table>

AFECCIÓN A MONTE PÚBLICO

Superficie de Montes Públicos y/o Montes preservados incluida en el buffer de 100 metros de la traza

Unidad de medida: Hectáreas
Ponderado por categorías: No
Valoración: Absoluta

En este indicador se ofrece una valoración de las posibles afecciones a Monte Público mediante la cuantificación de la superficie de éstos incluida en el buffer de 100 metros de cada alternativa.

Tabla 24. Fuente: Infraestructura de Datos Espaciales de la Comunidad de Madrid (IDEM).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>SUPERFICIE DE MONTE PÚBLICO EN BUFFER 100 m (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>114,92</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0</td>
</tr>
</tbody>
</table>

AFECCIÓN A GEOMORFOLOGÍA

Intervalos de pendientes presentes en el buffer de 100 metros de la traza

Unidad de medida: Hectáreas
Ponderado por categorías: Sí
Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo presente en cada uno de los intervalos definidos en la siguiente tabla, ponderados por el coeficiente que se asigna en la misma tabla:
Así mismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (100 metros) en cada alternativa.

Tabla 25. Fuente: Elaboración propia a partir del MDT-05 (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) (Ha)</th>
<th>Valor Relativo (Ponderado) (Ha/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1.813,42</td>
<td>3,31</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1.853,79</td>
<td>3,6</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1.666,60</td>
<td>3,16</td>
</tr>
</tbody>
</table>

AFECCIÓN A VEGETACIÓN Y USOS DEL SUELO

Vegetación natural presente en el área de afección de la LEAT (buffer 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo presente en aquellas unidades de vegetación de ponderación 3, 4 y 5 (que representan a las unidades naturales) definidas en la siguiente tabla, y ponderadas por el coeficiente que corresponda a cada caso:
Asimismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (100 metros) en cada alternativa, resultando lo siguiente:

Tabla 26. Fuente: Mapa Forestal de España (MITECO).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) [Ha]</th>
<th>Valor Relativo (Ponderado) [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1.200,07</td>
<td>2,19</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1.333,91</td>
<td>2,59</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>777,43</td>
<td>1,47</td>
</tr>
</tbody>
</table>
AFECIÓN A FAUNA

Área de sensibilidad por presencia de avifauna sobre el buffer de 500 metros

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

Datos de campo obtenidos de especies sensibles de interés presentes dentro del ámbito de estudio.

- Datos bibliográficos y cartografía digital oficial de especies protegidas.
- Planes de Conservación y Recuperación de Especies de la Comunidad de Madrid.
- Espacios Naturales Protegidos.
- Important Bird Areas.
- Zonas de Especial Protección para las Aves.
- Corredores de esteparias.
- Corredores principales.
- Embalses.
- Vertederos.

Para la cuantificación de las observaciones y la información de datos históricos y documentales, se han considerado los siguientes criterios de cuantificación:

Valor 5: especies catalogadas como vulnerables (VU) o en peligro de extinción (EX) en cualquiera de los catálogos de aplicación y sensibles a la colisión (especies focales).

Valor 4: especies catalogadas en la categoría de VU o EX en cualquiera de los catálogos de aplicación.

Valor 3: resto de especies catalogadas.

Además, se ha establecido un buffer en función del valor de la especie, y otro buffer dependiendo del comportamiento registrado por la especie (nidificación, campeo, etc.). El buffer resultante de la observación es la suma de ambos.

BUFFER ESPECIE:

- Valor 5: buffer 200 m
- Valor 4: buffer 100 m
- Valor 3: buffer 50 m
BUFFER COMPORTAMIENTO:

- Nido: 500 m
- Ejemplares recién volados del nido: 500 m
- Dormideros: 500 m
- Aportes de material o presas a nido: 500 m
- Vuelos a baja altura en posibles áreas de cría: 100 m
- Vuelos de cortejo: 100 m
- Defensa territorial: 100 m
- Canto/Exhibición: 100 m

Asimismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (500 metros) en cada alternativa.

Los resultados obtenidos en las diferentes alternativas se muestran en la siguiente tabla:

Tabla 27. Fuente: elaboración propia por seguimiento en campo y fuentes documentales.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) (Ha)</th>
<th>Valor Relativo (Ponderado) (Ha/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1.397,95</td>
<td>0,50</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>655,30</td>
<td>0,25</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1.951,95</td>
<td>0,72</td>
</tr>
</tbody>
</table>

AFECCIÓN A HÁBITATS DE INTERÉS COMUNITARIO (HICs)

HICs Prioritarios presentes en el área de afección de la LE (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de suelo clasificada como Hábitat de Interés Comunitario Prioritario incluido en el buffer de 100 metros de la traza.
Tabla 28. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie HICs Prioritario [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>133,38</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>106,64</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>94,00</td>
</tr>
</tbody>
</table>

HICs No Prioritarios presentes en el área de afección de la línea eléctrica (buffer de 100 metros)

Unidad de medida: Hectáreas
Ponderado por categorías: No
Valoración: Absoluta

En este indicador se mide la superficie de suelo clasificada como Hábitat de Interés Comunitario No Prioritario incluido en el buffer de 100 metros de la traza.

Tabla 29. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie HICs No Prioritario (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>68,02</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>127,48</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>60,58</td>
</tr>
</tbody>
</table>

AFECCIÓN AL PAISAJE

Intervisibilidad de la zona de afección de la línea eléctrica (buffer de 100 metros)

Unidad de medida: Hectáreas
Ponderado por categorías: Sí
Valoración: Absoluta y Relativa

<table>
<thead>
<tr>
<th>VISIBILIDAD</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy baja</td>
<td>1</td>
</tr>
<tr>
<td>Baja</td>
<td>2</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td>Alta</td>
<td>4</td>
</tr>
<tr>
<td>Muy Alta</td>
<td>5</td>
</tr>
</tbody>
</table>
Tabla 30. Fuente: Elaboración propia a partir del MDT-05 (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor relativo (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>2,88</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>2,39</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>3,46</td>
</tr>
</tbody>
</table>

Calidad paisajística de la zona de afección de las LEAT (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Relativa

En este indicador se mide la superficie de suelo presente en los intervalos cualitativos con los que se ha definido la mayor calidad paisajística del ámbito, ponderados por el coeficiente que se asigna en la columna de la derecha:

<table>
<thead>
<tr>
<th>CALIDAD</th>
<th>PONDERACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>1</td>
</tr>
<tr>
<td>Baja - Media</td>
<td>2</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td>Media - Alta</td>
<td>4</td>
</tr>
<tr>
<td>Alta</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 31. Fuente: Elaboración propia a partir del MDT-05 (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor relativo (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>2,28</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>2,38</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>2,52</td>
</tr>
</tbody>
</table>
AFECCIÓN A ESPACIOS NATURALES PROTEGIDOS

Superficie de ENP y/o espacios Red Natura 2000 presentes en el área de afección de la línea eléctrica (buffer de 500 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de espacios naturales protegidos y/o espacios Red Natura 2000 incluidos en el buffer de 500 metros de la traza.

Tabla 32. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie ENP y RN2000 (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>19,38</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>123,2</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>71,54</td>
</tr>
</tbody>
</table>

AFECCIÓN AL PATRIMONIO CULTURAL

Elementos de patrimonio cultural presentes en el área de afección de la línea eléctrica (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de elementos de patrimonio cultural incluidos en el buffer de 100 metros de la traza.

Tabla 33. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie Patrimonio cultural (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>3,37</td>
</tr>
</tbody>
</table>
TABLA RESUMEN DE LOS RESULTADOS OBTENIDOS

Tabla 34. Tabla resumen de los valores obtenidos para cada una de las alternativas de las líneas eléctricas, sobre los indicadores diseñados.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N° de cruces con viario</td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>N° de apoyos de LEAT existentes</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N° de cruces con LEAT existentes</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Densidad de caminos existentes en el buffer de 500 m (m/Ha)</td>
<td></td>
<td></td>
<td>30,13</td>
<td>36,43</td>
<td>28,68</td>
</tr>
<tr>
<td>Clasificación de Suelo</td>
<td>1</td>
<td>Absoluto</td>
<td>1287,86</td>
<td>1422,38</td>
<td>1502,69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>2,35</td>
<td>2,41</td>
<td>2,85</td>
</tr>
<tr>
<td>Nº de cruces con cauces</td>
<td>2</td>
<td>Absoluto</td>
<td>19,00</td>
<td>27,00</td>
<td>13,00</td>
</tr>
<tr>
<td>Zona de policía de cauces incluida en el buffer de 100 m (Ha)</td>
<td></td>
<td></td>
<td>281,56</td>
<td>299,33</td>
<td>172,59</td>
</tr>
<tr>
<td>Nº de cruces con Vías pecuarias</td>
<td>1</td>
<td>Absoluto</td>
<td>11,00</td>
<td>9,00</td>
<td>12,00</td>
</tr>
<tr>
<td>Superficie de Montes públicos en el buffer de 100 m</td>
<td>2</td>
<td>Absoluto</td>
<td>0,00</td>
<td>114,92</td>
<td>0,00</td>
</tr>
<tr>
<td>Intervalos de pendientes en el buffer de 100 m (Ha)</td>
<td>2</td>
<td>Absoluto</td>
<td>1813,42</td>
<td>1853,79</td>
<td>1666,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>3,31</td>
<td>3,60</td>
<td>3,16</td>
</tr>
<tr>
<td>Vegetación presente en el área de afección de la LEAT en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>1200,07</td>
<td>1333,91</td>
<td>777,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>2,19</td>
<td>2,59</td>
<td>1,47</td>
</tr>
<tr>
<td>Área de sensibilidad por presencia de avifauna en el buffer 500 m (Ha)</td>
<td>5</td>
<td>Absoluto</td>
<td>1397,95</td>
<td>655,30</td>
<td>1951,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>0,500</td>
<td>0,250</td>
<td>0,720</td>
</tr>
<tr>
<td>HICs Prioritarios presentes en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>133,38</td>
<td>106,64</td>
<td>94,00</td>
</tr>
<tr>
<td>HICs No Prioritarios presentes en el buffer de 100 m (Ha)</td>
<td>1</td>
<td>Absoluto</td>
<td>68,02</td>
<td>127,48</td>
<td>60,58</td>
</tr>
<tr>
<td>Intervisibilidad</td>
<td>2</td>
<td>Relativo</td>
<td>2,88</td>
<td>2,39</td>
<td>3,46</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td></td>
<td>Relativo</td>
<td>2,28</td>
<td>2,38</td>
<td>2,52</td>
</tr>
<tr>
<td>Espacios protegidos en el buffer de 500 m</td>
<td>3</td>
<td>Absoluto</td>
<td>19,38</td>
<td>123,20</td>
<td>71,54</td>
</tr>
<tr>
<td>Elementos del patrimonio cultural incluidos en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,00</td>
<td>0,00</td>
<td>3,37</td>
</tr>
</tbody>
</table>
IDENTIFICACIÓN DE LA MEJOR ALTERNATIVA PARA LÍNEAS ELÉCTRICAS SEGÚN LOS INDICADORES AMBIENTALES DEL TRAMO LEAT 132 KV GR COLIMBO – COLECTORA TRES CANTOS

A partir de los resultados obtenidos en cada uno de los indicadores ambientales/territoriales se implementa a continuación un método de selección de la mejor alternativa basado en el orden que cada opción presenta por indicador ambiental; es decir, para un indicador en concreto, las alternativas toman valores de entre 0 y 1 representando una escala inversa de mejor a peor. De esta manera, se le asigna el valor 1 al peor de los resultados y el resto de valores se ponderan en relación a este valor.
Tabla 35. Tabla de normalización y ponderación de los valores obtenidos para la selección de alternativas de líneas eléctricas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructuras</td>
<td>Nº de cruces con viario</td>
<td>1</td>
<td>Absoluto</td>
<td>0.75</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Nº de apoyos de LEAT existentes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nº de cruces con LEAT existentes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Densidad de caminos existentes (m²/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planeamiento</td>
<td>Clasificación de Suelo afectado</td>
<td>1</td>
<td>Absoluto</td>
<td>0.86</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo</td>
<td>0.82</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>Cauces</td>
<td>Nº de cruces con cauces</td>
<td>2</td>
<td>Absoluto</td>
<td>0.70</td>
<td>1.00</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Zona de policia de cauces incluida en el buffer de 100 m (Ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías Pecuarias</td>
<td>Nº de cruces con Vías Pecuarias</td>
<td>1</td>
<td>Absoluto</td>
<td>0.92</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>Monte público</td>
<td>Superficie de Montes de uso Público (Ha)</td>
<td>2</td>
<td>Absoluto</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>Intervalos de pendientes (Ha)</td>
<td>2</td>
<td>Absoluto</td>
<td>0.92</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo</td>
<td>0.92</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>Vegetación presente en el área de afección de la LEAT (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0.90</td>
<td>1.00</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo</td>
<td>0.85</td>
<td>1.00</td>
<td>0.67</td>
</tr>
<tr>
<td>Fauna</td>
<td>Área de sensibilidad por presencia de avifauna (buffer 500 m (Ha)</td>
<td>5</td>
<td>Absoluto</td>
<td>0.72</td>
<td>0.34</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relativo</td>
<td>0.69</td>
<td>0.35</td>
<td>1.00</td>
</tr>
<tr>
<td>HICs</td>
<td>HICs Prioritarios presentes en el área de afección (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>1.00</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>HICs No Prioritarios presentes en el área de afección (Ha)</td>
<td>1</td>
<td>Absoluto</td>
<td>0.53</td>
<td>1.00</td>
<td>0.48</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Infravisibilidad</td>
<td>2</td>
<td>Absoluto</td>
<td>0.83</td>
<td>0.69</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Calidad paisajística</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENP</td>
<td>Espacios protegidos en el buffer de 500 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0.16</td>
<td>1.00</td>
<td>0.58</td>
</tr>
<tr>
<td>Patrimonio Cultural</td>
<td>Elementos de patrimonio en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Finalmente, la valoración final de cada alternativa se obtiene ponderando los valores anteriores y sumándolos entre sí, para obtener el siguiente resultado:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Afección a infraestructuras</td>
<td>3,70</td>
<td>2,90</td>
<td>2,67</td>
</tr>
<tr>
<td>Planeamiento urbano</td>
<td>1,68</td>
<td>1,79</td>
<td>2,00</td>
</tr>
<tr>
<td>Afección a cauces</td>
<td>3,29</td>
<td>4,00</td>
<td>2,12</td>
</tr>
<tr>
<td>Vías Pecuarias</td>
<td>0,92</td>
<td>0,75</td>
<td>1,00</td>
</tr>
<tr>
<td>Montes públicos</td>
<td>0,00</td>
<td>2,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>1,84</td>
<td>2,00</td>
<td>1,76</td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>5,24</td>
<td>6,00</td>
<td>3,45</td>
</tr>
<tr>
<td>Fauna</td>
<td>7,05</td>
<td>3,41</td>
<td>10,00</td>
</tr>
<tr>
<td>Hábitats de Interés Comunitario</td>
<td>3,53</td>
<td>3,40</td>
<td>2,59</td>
</tr>
<tr>
<td>Paisaje</td>
<td>3,47</td>
<td>3,27</td>
<td>4,00</td>
</tr>
<tr>
<td>ENP</td>
<td>0,47</td>
<td>3,00</td>
<td>1,74</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>0,00</td>
<td>0,00</td>
<td>3,00</td>
</tr>
<tr>
<td>RESULTADO PONDERADO</td>
<td>31,19</td>
<td>32,52</td>
<td>34,32</td>
</tr>
</tbody>
</table>

Atendiendo a los resultados anteriores, la mejor alternativa desde el punto de vista ambiental/territorial para el tramo de línea eléctrica “GR Colimbo – Colectora Tres Cantos” resulta la Alternativa A.
TRAMO LEAT 132 KV COLECTORA TRES CANTOS – COLECTORA LA CEREAL +TRAMO LEAT 400 KV COLECTORA TRES LA CEREAL – SE REE LA CEREAL

Análogamente al caso anterior, se procede a continuación al análisis comparativo de los indicadores ambientales ya referidos para el tramo de Tramo LEAT 132 kV Colectora Tres Cantos – Colectora La Cereal +Tramo LEAT 400 kV Colectora Tres Cantos – SE REE La Cereal.

Como anteriormente se comentó, las alternativas se localizan sobre zonas sujetas a estudios específicos (espacios protegidos, IBA y zona urbana).

![Diagrama de identificación de alternativas](image)

Figura 43. Identificación de alternativas para el Tramo LEAT 132 kV Colectora Tres Cantos – Colectora La Cereal +Tramo LEAT 400 kV Colectora La Cereal – SE REE La Cereal. Fuente: elaboración propia.

AFECCIÓN A INFRAESTRUCTURAS EXISTENTES

Nº de cruces con viario

- **Unidad de medida:** Unidades
- **Ponderado por categorías:** No
- **Valoración:** Absoluta

En este indicador se mide el número de intersecciones previstas con elementos lineales del viario interurbano (autopistas, carreteras interurbanas) y ferroviario, de tal manera que se penaliza aquellos trazados que presentan un mayor número de cruces.
Tabla 36. Fuente: Centro Nacional de Información Geográfica (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON VIARIO (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>3</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>3</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>3</td>
</tr>
</tbody>
</table>

Nº de apoyos de LEAT existentes situados en un buffer de 100 metros de la traza

Unidad de medida: Unidades

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se contabiliza el número de apoyos de Líneas Eléctricas de Alta Tensión (LEAT) existentes que se ubican dentro del buffer de 100 metros del trazado, penalizándose aquellos trazados que presentan un mayor número de apoyos.

Tabla 37. Fuente: Localización mediante ortoimagen PNOA (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE APOYOS DE LEAT EXISTENTES (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0</td>
</tr>
</tbody>
</table>

Nº de cruces con LEAT existentes

Unidad de medida: Unidades

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide el número de cruces con Líneas Eléctricas de Alta Tensión (LEAT) existentes, penalizándose aquellos trazados que presentan un mayor número de cruces por sus efectos sinérgicos sobre la avifauna, como en el caso anterior.
Tabla 38. Fuente: CNIG.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON LEAT EXISTENTES (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0</td>
</tr>
</tbody>
</table>

Densidad de caminos existentes situados dentro del buffer de 500 m (ml/Ha)

Unidad de medida: metros lineales de caminos por hectárea

Ponderado por categorías: No

Valoración: Relativa

Este indicador tiene por objeto ofrecer un valor aproximado de la densidad de la red de caminos rurales y sendas presentes en un entorno de 500 metros de la traza de la LE, en la medida en la que ésta pueda proporcionar accesos existentes a los apoyos proyectados minimizando, de este modo, los impactos por apertura de nuevos accesos; es decir, en este indicador se penaliza las menores densidades.

Tabla 39. Fuente: CNIG.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>DENSIDAD CAMINOS EXISTENTES (ml/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>35,82</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>34,62</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>30,48</td>
</tr>
</tbody>
</table>

PLANEAMIENTO URBANO

Clasificación de Suelo

Unidad de medida: Ha

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo no urbanizable incluido en el buffer de 100 metros de cada trazado, ponderado según los siguientes coeficientes por categorías:
CATEGORÍAS SNU

<table>
<thead>
<tr>
<th>CATEGORÍA</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo no urbanizable común</td>
<td>1</td>
</tr>
<tr>
<td>Suelo sin información urbanística</td>
<td>3</td>
</tr>
<tr>
<td>Suelo no urbanizable protegido</td>
<td>4</td>
</tr>
<tr>
<td>Suelo apto para urbanizar sin programar</td>
<td>5</td>
</tr>
</tbody>
</table>

Así mismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (100 metros) en cada alternativa.

Tabla 40. Fuente: CNIG.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) (Ha)</th>
<th>Valor Relativo (Ponderado) (Ha/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>612,26</td>
<td>2,23</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>725,39</td>
<td>2,78</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>607,78</td>
<td>2,15</td>
</tr>
</tbody>
</table>

AFECCIÓN A CAUCES

Nº de cruces con cauces según capa de información de la Confederación Hidrográfica del Tajo

<table>
<thead>
<tr>
<th>Unidad de medida: Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponderado por categorías: No</td>
</tr>
<tr>
<td>Valoración: Absoluta</td>
</tr>
</tbody>
</table>

En este indicador se mide el número de intersecciones previstas con los cauces de la red hidrográfica incluida en la capa de información vectorial de la Confederación Hidrográfica del Tajo, de tal manera que se penaliza aquellos trazados que presentan un mayor número de cruces.

Tabla 41. Fuente: Confederación Hidrográfica del Tajo (CHT).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON CAUCES (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>12</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>15</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>13</td>
</tr>
</tbody>
</table>
Zona de policía de cauces incluida en el buffer de 100 metros de la traza

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

Este indicador tiene como objetivo la comparación cuantificada de la posible afección a los entornos de los cauces mediante la medición de la superficie de zona de policía incluida en el buffer de 100 metros de cada una de las alternativas.

Tabla 42. Fuente: Confederación Hidrográfica del Tajo (CHT).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>SUPERFICIE DE ZONA DE POLICÍA (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>175,75</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>176,12</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>176,74</td>
</tr>
</tbody>
</table>

AFECCIÓN A VÍAS PECUARIAS

Nº de cruces con Vías Pecuarias

Unidad de medida: Unidades

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide el número de intersecciones previstas con las vías pecuarias (VVPP) según la información contenida en la capa de información vectorial de la Comunidad de Madrid y de la provincia de Guadalajara, de tal manera que se penaliza aquellos trazados que presentan un mayor número de cruces.

Tabla 43. Fuente: Infraestructura de Datos Espaciales de la Comunidad de Madrid (IDEM).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Nº DE CRUCES CON VVPP (Ud)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>3</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>3</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>3</td>
</tr>
</tbody>
</table>
AFECCIÓN A MONTE PÚBLICO

Superficie de Montes Públicos y/o Montes preservados incluida en el buffer de 100 metros de la traza

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se ofrece una valoración de las posibles afecciones a Monte Público mediante la cuantificación de la superficie de éstos incluida en el buffer de 100 metros de cada alternativa.

Tabla 44. Fuente: Infraestructura de Datos Espaciales de la Comunidad de Madrid (IDEM).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>SUPERFICIE DE MONTE PÚBLICO EN BUFFER 100 m (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0,09</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>7,28</td>
</tr>
</tbody>
</table>

AFECCIÓN A GEOMORFOLOGÍA

Intervalos de pendientes presentes en el buffer de 100 metros de la traza

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo presente en cada uno de los intervalos definidos en la siguiente tabla, ponderados por el coeficiente que se asigna en la misma tabla:

<table>
<thead>
<tr>
<th>PENDIENTE</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor o igual al 3%</td>
<td>1</td>
</tr>
<tr>
<td>Entre el 3% y el 7%</td>
<td>2</td>
</tr>
<tr>
<td>Entre el 7% y el 15%</td>
<td>3</td>
</tr>
<tr>
<td>Entre el 15% y el 30%</td>
<td>4</td>
</tr>
<tr>
<td>Mayor del 30%</td>
<td>5</td>
</tr>
</tbody>
</table>
Así mismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (100 metros) en cada alternativa.

Tabla 45. Fuente: Elaboración propia a partir del MDT-05 (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) (Ha)</th>
<th>Valor Relativo (Ponderado) (Ha/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>877,22</td>
<td>3,2</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>841,33</td>
<td>3,22</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>931,41</td>
<td>3,30</td>
</tr>
</tbody>
</table>

AFECCIÓN A VEGETACIÓN Y USOS DEL SUELO

Vegetación natural presente en el área de afección de la LEAT (buffer 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo presente en aquellas unidades de vegetación de ponderación 3, 4 y 5 (que representan a las unidades naturales) definidas en la siguiente tabla, y ponderadas por el coeficiente que corresponda a cada caso:
<table>
<thead>
<tr>
<th>UNIDAD</th>
<th>PONDERACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos</td>
<td>1</td>
</tr>
<tr>
<td>Urbano continuo</td>
<td></td>
</tr>
<tr>
<td>Mosaico agrícola con artificial</td>
<td></td>
</tr>
<tr>
<td>Otras zonas erosionadas</td>
<td></td>
</tr>
<tr>
<td>Pinar de pino carrasco de repoblación</td>
<td>2</td>
</tr>
<tr>
<td>Repoblaciones con especies desconocidas</td>
<td></td>
</tr>
<tr>
<td>Cultivos con arbolado disperso</td>
<td></td>
</tr>
<tr>
<td>Herbazal – Pastizal</td>
<td></td>
</tr>
<tr>
<td>Pastizal sobre cultivo y/o prado</td>
<td></td>
</tr>
<tr>
<td>Matorral/cultivo y/o prado</td>
<td></td>
</tr>
<tr>
<td>Pastizal – matorral</td>
<td>3</td>
</tr>
<tr>
<td>Superficie forestal residual</td>
<td></td>
</tr>
<tr>
<td>Arbustados</td>
<td>4</td>
</tr>
<tr>
<td>Pinar de pino carrasco (no repoblación)</td>
<td></td>
</tr>
<tr>
<td>Galería de herbáceas</td>
<td></td>
</tr>
<tr>
<td>Matorrales calizos o de tránsito calizo-gipsícola</td>
<td></td>
</tr>
<tr>
<td>Galerías arbustivas</td>
<td></td>
</tr>
<tr>
<td>Encinares (Quercus ilex)</td>
<td>5</td>
</tr>
<tr>
<td>Bosques ribereños</td>
<td></td>
</tr>
<tr>
<td>Mezcla de coníferas y frondosas autóctonas en región biogeográfica mediterránea</td>
<td></td>
</tr>
<tr>
<td>Bosques mixtos de frondosas autóctonas en región biogeográfica mediterránea</td>
<td></td>
</tr>
<tr>
<td>Cursos de agua</td>
<td></td>
</tr>
<tr>
<td>Quejigares</td>
<td></td>
</tr>
<tr>
<td>Matorrales gipsícolas</td>
<td></td>
</tr>
</tbody>
</table>

Asimismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (100 metros) en cada alternativa, resultando lo siguiente:

Tabla 46. Fuente: Mapa Forestal de España (MITECO).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) [Ha]</th>
<th>Valor Relativo (Ponderado) [Ha/Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>877,22</td>
<td>3,01</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>719,99</td>
<td>2,76</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>903,90</td>
<td>3,20</td>
</tr>
</tbody>
</table>
AFECCIÓN A FAUNA

Área de sensibilidad por presencia de avifauna sobre el buffer de 500 metros

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

Datos de campo obtenidos de especies sensibles de interés presentes dentro del ámbito de estudio.

- Datos bibliográficos y cartografía digital oficial de especies protegidas.
- Planes de Conservación y Recuperación de Especies de la Comunidad de Madrid.
- Espacios Naturales Protegidos.
- Important Bird Areas.
- Zonas de Especial Protección para las Aves.
- Corredores de esteparias.
- Corredores principales.
- Embalses.
- Vertederos.

Para la cuantificación de las observaciones y la información de datos históricos y documentales, se han considerado los siguientes criterios de cuantificación:

Valor 5: especies catalogadas como vulnerables (VU) o en peligro de extinción (EX) en cualquiera de los catálogos de aplicación y sensibles a la colisión (especies focales).

Valor 4: especies catalogadas en la categoría de VU o EX en cualquiera de los catálogos de aplicación.

Valor 3: resto de especies catalogadas.

Además, se ha establecido un buffer en función del valor de la especie, y otro buffer dependiendo del comportamiento registrado por la especie (nidificación, campeo, etc.). El buffer resultante de la observación es la suma de ambos.

BUFFER ESPECIE:

- **Valor 5:** buffer 200 m
- **Valor 4:** buffer 100 m
- **Valor 3:** buffer 50 m
BUFFER COMPORTAMIENTO:

- Nido: 500 m
- Ejemplares recién volados del nido: 500 m
- Dormideros: 500 m
- Aportes de material o presas a nido: 500 m
- Vuelos a baja altura en posibles áreas de cría: 100 m
- Vuelos de cortejo: 100 m
- Defensa territorial: 100 m
- Canto/Exhibición: 100 m

Asimismo, el indicador presenta una segunda medida del valor relativo del mismo ponderado con los mismos coeficientes, al objeto de valorar, al mismo tiempo, la mayor o menor superficie del buffer de referencia (500 metros) en cada alternativa.

Los resultados obtenidos en las diferentes alternativas se muestran en la siguiente tabla:

Tabla 47. Fuente: elaboración propia por seguimiento en campo y fuentes documentales.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor Absoluto (Ponderado) (Ha)</th>
<th>Valor Relativo (Ponderado) (Ha/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1.911,94</td>
<td>1,33</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1.934,04</td>
<td>1,42</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>2.075,19</td>
<td>1,41</td>
</tr>
</tbody>
</table>

AFECCIÓN A HÁBITATS DE INTERÉS COMUNITARIO (HICs)

HICs Prioritarios presentes en el área de afección de la LE (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de suelo clasificada como Hábitat de Interés Comunitario Prioritario incluido en el buffer de 100 metros de la traza.
Tabla 48. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie HICs Prioritario [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>165,3</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>156,3</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>172,72</td>
</tr>
</tbody>
</table>

HICs No Prioritarios presentes en el área de afección de la línea eléctrica (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de suelo clasificada como Hábitat de Interés Comunitario No Prioritario incluido en el buffer de 100 metros de la traza.

Tabla 49. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie HICs No Prioritario (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0,23</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>4,49</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>7,18</td>
</tr>
</tbody>
</table>

AFECCIÓN AL PAISAJE

Intervisibilidad de la zona de afección de la línea eléctrica (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Absoluta y Relativa

En este indicador se mide la superficie de suelo presente en los intervalos cualitativos con los que se ha definido la mayor Intervisibilidad del ámbito, es decir de “moderadamente visible” a “Muy visible”, ponderados por el coeficiente que se asigna en la columna de la derecha:
Tabla 50. Fuente: Elaboración propia a partir del MDT-05 (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor relativo (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>2,09</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>2,29</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1,92</td>
</tr>
</tbody>
</table>

Calidad paisajística de la zona de afección de las LEAT (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: Sí

Valoración: Relativa

En este indicador se mide la superficie de suelo presente en los intervalos cualitativos con los que se ha definido la mayor calidad paisajística del ámbito, ponderados por el coeficiente que se asigna en la columna de la derecha:

<table>
<thead>
<tr>
<th>CALIDAD</th>
<th>PONDERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>1</td>
</tr>
<tr>
<td>Baja - Media</td>
<td>2</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td>Media - Alta</td>
<td>4</td>
</tr>
<tr>
<td>Alta</td>
<td>5</td>
</tr>
</tbody>
</table>
Tabla 51. Fuente: Elaboración propia a partir del MDT-05 (CNIG).

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Valor relativo (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>2,07</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1,81</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>2,31</td>
</tr>
</tbody>
</table>

AFECCIÓN A ESPACIOS NATURALES PROTEGIDOS

Superficie de ENP y/o espacios Red Natura presentes en el área de afección de la línea eléctrica (buffer de 500 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de espacios naturales protegidos y/o espacios Red Natura 2000 incluidos en el buffer de 500 metros de la traza.

Tabla 52. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie ENP y RN2000 (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>370,08</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>343,6</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>343,6</td>
</tr>
</tbody>
</table>

AFECCIÓN AL PATRIMONIO CULTURAL

Elementos de patrimonio cultural presentes en el área de afección de la línea eléctrica (buffer de 100 metros)

Unidad de medida: Hectáreas

Ponderado por categorías: No

Valoración: Absoluta

En este indicador se mide la superficie de elementos de patrimonio cultural incluidos en el buffer de 100 metros de la traza.
Tabla 53. Fuente: IDEM.

<table>
<thead>
<tr>
<th>ALTERNATIVA</th>
<th>Superficie Patrimonio cultural (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLA RESUMEN DE LOS RESULTADOS OBTENIDOS

Tabla 54. Tabla resumen de los valores obtenidos para cada una de las alternativas de las líneas eléctricas, sobre los indicadores diseñados.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de cruces con viario</td>
<td>1</td>
<td>Absoluto</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nº de apoyos de LEAT existentes</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nº de cruces con LEAT existentes</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Densidad de caminos existentes en el buffer de 500 m (m/Ha)</td>
<td></td>
<td></td>
<td>35,82</td>
<td>34,62</td>
<td>30,48</td>
</tr>
<tr>
<td>Clasificación de Suelo</td>
<td>1</td>
<td>Absoluto</td>
<td>612,26</td>
<td>725,39</td>
<td>607,78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>2,23</td>
<td>2,78</td>
<td>2,15</td>
</tr>
<tr>
<td>Nº de cruces con cauces</td>
<td>2</td>
<td>Absoluto</td>
<td>12,00</td>
<td>15,00</td>
<td>13,00</td>
</tr>
<tr>
<td>Zona de policía de cauces incluida en el buffer de 100 m (Ha)</td>
<td></td>
<td></td>
<td>175,75</td>
<td>176,12</td>
<td>176,74</td>
</tr>
<tr>
<td>Nº de cruces con Vías Pecurias</td>
<td>1</td>
<td>Absoluto</td>
<td>3,00</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Intervalos de pendientes en el buffer de 100 m (Ha)</td>
<td>2</td>
<td>Absoluto</td>
<td>0,09</td>
<td>0</td>
<td>7,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>877,22</td>
<td>841,33</td>
<td>931,41</td>
</tr>
<tr>
<td>Vegetación presente en el área de afección de la LEAT en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>3,20</td>
<td>3,22</td>
<td>3,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>825,62</td>
<td>719,99</td>
<td>903,90</td>
</tr>
<tr>
<td>Área de sensibilidad por presencia de avifauna en el buffer 500 m (Ha)</td>
<td>5</td>
<td>Absoluto</td>
<td>3,01</td>
<td>2,76</td>
<td>3,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relativo</td>
<td>1911,94</td>
<td>1934,04</td>
<td>2075,19</td>
</tr>
<tr>
<td>HICs Prioritarios presentes en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>1,330</td>
<td>1,420</td>
<td>1,410</td>
</tr>
<tr>
<td>HICs No Prioritarios presentes en el buffer de 100 m (Ha)</td>
<td>1</td>
<td>Absoluto</td>
<td>165,30</td>
<td>156,33</td>
<td>172,72</td>
</tr>
<tr>
<td>Intervisibilidad</td>
<td>2</td>
<td>Relativo</td>
<td>0,23</td>
<td>4,49</td>
<td>7,18</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td></td>
<td>Relativo</td>
<td>2,09</td>
<td>2,29</td>
<td>1,92</td>
</tr>
<tr>
<td>Espacios protegidos en el buffer de 500 m</td>
<td>3</td>
<td>Absoluto</td>
<td>2,07</td>
<td>1,81</td>
<td>2,31</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Elementos del patrimonio cultural incluidos en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>370,08</td>
<td>343,60</td>
<td>343,60</td>
</tr>
</tbody>
</table>

IDENTIFICACIÓN DE LA MEJOR ALTERNATIVA PARA LÍNEAS ELÉCTRICAS SEGÚN LOS INDICADORES AMBIENTALES

A partir de los resultados obtenidos en cada uno de los indicadores ambientales/territoriales se implementa a continuación un método de selección de la mejor alternativa basado en el orden que cada opción presenta por indicador ambiental; es decir, para un indicador en particular, las alternativas toman valores de entre 0 y 1 representando una escala inversa de mejor a peor. De esta manera, se le asigna el valor 1 al peor de los resultados y el resto de valores se ponderan en relación a este valor.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructuras</td>
<td>Nº de cruces con viario</td>
<td>1</td>
<td>Absoluto</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Nº de apoyos de LEAT existentes</td>
<td></td>
<td>Absoluto</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Nº de cruces con LEAT existentes</td>
<td></td>
<td>Absoluto</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Densidad de caminos existentes (m/Ha)</td>
<td></td>
<td></td>
<td>0,82</td>
<td>0,86</td>
<td>1,00</td>
</tr>
<tr>
<td>Planeamiento</td>
<td>Clasificación de Suelo afectado</td>
<td>1</td>
<td>Absoluto</td>
<td>0,84</td>
<td>1,00</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>Relativo</td>
<td></td>
<td></td>
<td>0,80</td>
<td>1,00</td>
<td>0,77</td>
</tr>
<tr>
<td>Cauce</td>
<td>Nº de cruces con cauces</td>
<td>2</td>
<td>Absoluto</td>
<td>0,80</td>
<td>1,00</td>
<td>0,87</td>
</tr>
<tr>
<td></td>
<td>Zona de policía de cauces incluida en el buffer de 100 m (Ha)</td>
<td></td>
<td></td>
<td>0,99</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Vías Pecuarias</td>
<td>Nº de cruces con Vías Pecuarias</td>
<td>1</td>
<td>Absoluto</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Monte público</td>
<td>Superficie de Montes de uso Público (Ha)</td>
<td>2</td>
<td>Absoluto</td>
<td>0,01</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>Intervalos de pendientes (Ha)</td>
<td>2</td>
<td>Relativo</td>
<td>0,97</td>
<td>0,98</td>
<td>1,00</td>
</tr>
<tr>
<td>Vegetación y usos del suelo</td>
<td>Vegetación presente en el área de afectación de la LEAT (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,91</td>
<td>0,80</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Relativo</td>
<td></td>
<td></td>
<td>0,94</td>
<td>0,86</td>
<td>1,00</td>
</tr>
<tr>
<td>Fauna</td>
<td>Área de sensibilidad por presencia de avifauna (buffer 500 m) (Ha)</td>
<td>5</td>
<td>Absoluto</td>
<td>0,92</td>
<td>0,93</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Relativo</td>
<td></td>
<td></td>
<td>0,94</td>
<td>1,00</td>
<td>0,99</td>
</tr>
<tr>
<td>HICs</td>
<td>HICs Prioritarios presentes en el área de afectación (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,96</td>
<td>0,91</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>HICs No Prioritarios presentes en el área de afectación (Ha)</td>
<td>1</td>
<td>Absoluto</td>
<td>0,03</td>
<td>0,63</td>
<td>1,00</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Intervisibilidad</td>
<td>2</td>
<td>Relativo</td>
<td>0,91</td>
<td>1,00</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>Calidad paisajística</td>
<td></td>
<td></td>
<td>0,90</td>
<td>0,78</td>
<td>1,00</td>
</tr>
<tr>
<td>ENP</td>
<td>Espacios protegidos en el buffer de 500 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>1,00</td>
<td>0,93</td>
<td>0,93</td>
</tr>
<tr>
<td>Patrimonio Cultural</td>
<td>Elementos de patrimonio en el buffer de 100 m (Ha)</td>
<td>3</td>
<td>Absoluto</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Atendiendo a los resultados anteriores, la mejor alternativa desde el punto de vista ambiental/territorial para el tramo de Tramo LEAT 132 kV Colectora Tres Cantos – Colectora La Cereal + Tramo LEAT 400 kV Colectora Tres Cantos – SE REE La Cereal resulta la Alternativa A.

Valoración de las alternativas de líneas eléctricas según el estudio de sinergias sobre el paisaje

A partir de los resultados obtenidos del análisis de las sinergias sobre la avifauna y el paisaje desarrollado en el capítulo anterior, es posible establecer cuáles de las alternativas planteadas para la línea eléctrica es la que tendría un mejor comportamiento en relación con este factor:

Para el cálculo de las sinergias con el paisaje, una vez obtenido el resultado del análisis sobre el ámbito ampliado, se ha calculado el valor que obtendría cada alternativa de línea eléctrica planteadas.

Para ello, se ha aplicado un buffer de 100 m a las alternativas y todas las superficies se han multiplicado por el valor (1 a 5) que se le ha asignado dependiendo del grado de sinergia que
presenta el territorio en cada pixel. Luego se han sumado estas superficies, obteniéndose así el valor absoluto ponderado de cada alternativa. Una vez obtenido este valor, se ha dividido este resultado entre la superficie de buffer de 100 m, obteniéndose de este modo la media ponderada de cada alternativa:

Figura 44. Localización de las alternativas del tramo GR Colimbo – Colectora Tres Cantos en relación con el grado de sinergia con el paisaje.
Figura 45. Localización de las alternativas del tramo Colectora Tres Cantos – SE REE La Cereal en relación con el grado de sinergia con el paisaje.

<table>
<thead>
<tr>
<th>Tramo GR Colimbo – Colectora Tres Cantos</th>
<th>Valor absoluto ponderado</th>
<th>Superficie (Ha)</th>
<th>Media del buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1089,98</td>
<td>546,72</td>
<td>1,99</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1286,99</td>
<td>514,46</td>
<td>2,50</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1052,02</td>
<td>526,85</td>
<td>2,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo Colectora Tres Cantos – SE REE La Cereal</th>
<th>Valor absoluto ponderado</th>
<th>Superficie (Ha)</th>
<th>Media del buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>634,45</td>
<td>274,04</td>
<td>2,32</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>572,36</td>
<td>260,73</td>
<td>2,20</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>701,75</td>
<td>282,09</td>
<td>2,49</td>
</tr>
</tbody>
</table>

Según los resultados obtenidos, y habida cuenta de que no existe unanimidad en la selección de la alternativa según el tramo de que se trate, pues para el tramo GR Colimbo – Colectora Tres Cantos la alternativa A sería la más favorable, mientras que para el tramo Colectora Tres Cantos – SE REE La Cereal, lo sería la alternativa B, se ha optado por hacer una media ponderada, según la longitud del cada tramo, de la siguiente forma:
Valor Alternativa X

\[\frac{\text{Media buffer (Tr1) \cdot Longitud (Tr1) + Media buffer (Tr2) \cdot Longitud (Tr2)}}{\text{Longitud (Tr1 + Tr2)}} \]

<table>
<thead>
<tr>
<th>Línea eléctrica de 132 kV</th>
<th>Media Buffer (Tramo 1)</th>
<th>Longitud (Tramo 1)</th>
<th>Media Buffer (Tramo 2)</th>
<th>Longitud (Tramo 2)</th>
<th>Valor Alternativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1,99</td>
<td>27,200</td>
<td>2,32</td>
<td>13,501</td>
<td>2,099</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>2,50</td>
<td>25,581</td>
<td>2,20</td>
<td>12,894</td>
<td>2,405</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>2,00</td>
<td>26,211</td>
<td>2,49</td>
<td>13,960</td>
<td>2,170</td>
</tr>
</tbody>
</table>

De tal modo que la Alternativa A se considera la más favorable para el total de los tramos, desde el punto de vista de la sinergia sobre el paisaje.

Valoración de las alternativas de líneas eléctricas según el estudio de sinergias sobre la avifauna

A partir de los resultados obtenidos del análisis de las sinergias sobre la avifauna y el paisaje desarrollado en el capítulo anterior, es posible establecer cuáles de las alternativas planteadas para la línea eléctrica es la que tendría un mejor comportamiento en relación con este factor:

Para el cálculo de las sinergias con el paisaje, una vez obtenido el resultado del análisis sobre el ámbito ampliado, se ha calculado el valor que obtendría cada alternativa de línea eléctrica plantead

Para ello, se ha aplicado un buffer de 100 m a las alternativas y todas las superficies se han multiplicado por el valor (1 a 5) que se le ha asignado dependiendo del grado de sinergia que presenta el territorio en cada pixel. Luego se han sumado estas superficies, obteniéndose así el valor absoluto ponderado de cada alternativa.
Figura 46. Localización de las alternativas del tramo GR Colimbo – Colectora Tres Cantos en relación con el grado de sinergia con la avifauna.

Figura 47. Localización de las alternativas del tramo Colectora Tres Cantos – SE REE La Cereal en relación con el grado de sinergia con la avifauna.
Una vez obtenido este valor, se ha dividido este resultado entre la superficie de buffer de 100 m, obteniéndose de este modo la media ponderada de cada alternativa:

Tramo GR Colimbo – Colectora Tres Cantos

<table>
<thead>
<tr>
<th>Línea eléctrica de 132 kV</th>
<th>Valor absoluto ponderado</th>
<th>Superficie (Ha)</th>
<th>Media del buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>1595,29</td>
<td>546,72</td>
<td>2,92</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>1195,16</td>
<td>514,46</td>
<td>2,32</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1556,76</td>
<td>526,85</td>
<td>2,95</td>
</tr>
</tbody>
</table>

Tramo Colectora Tres Cantos – SE REE La Cereal

<table>
<thead>
<tr>
<th>Línea eléctrica de 132 kV</th>
<th>Valor absoluto ponderado</th>
<th>Superficie (Ha)</th>
<th>Media del buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>886,22</td>
<td>274,04</td>
<td>3,23</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>837,81</td>
<td>260,73</td>
<td>3,21</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>883,96</td>
<td>282,09</td>
<td>3,13</td>
</tr>
</tbody>
</table>

Según los resultados obtenidos, y habida cuenta de que no existe unanimidad en la selección de la alternativa según el tramo de que se trate, pues para el tramo GR Colimbo – Colectora Tres Cantos la alternativa B sería la más favorable, mientras que para el tramo Colectora Tres Cantos – SE REE La Cereal, lo sería la alternativa B, se ha optado por hacer una media ponderada, según la longitud del cada tramo, de la siguiente forma:

\[
\text{Valor Alternativa } X = \frac{\text{Media buffer (T1)} \cdot \text{Longitud (T1)} + \text{Media buffer (T2)} \cdot \text{Longitud (T2)}}{\text{Longitud (T1) + Longitud (T2)}}
\]

Tramo GR Colimbo – SE REE La Cereal

<table>
<thead>
<tr>
<th>Línea eléctrica de 132 kV</th>
<th>Media Buffer (T1)</th>
<th>Longitud (T1)</th>
<th>Media Buffer (T2)</th>
<th>Longitud (T2)</th>
<th>Valor Alternativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>2,92</td>
<td>27,200</td>
<td>3,23</td>
<td>13,501</td>
<td>3,022</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>2,32</td>
<td>25,581</td>
<td>3,21</td>
<td>12,894</td>
<td>2,618</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>2,95</td>
<td>26,211</td>
<td>3,13</td>
<td>13,960</td>
<td>3,013</td>
</tr>
</tbody>
</table>

De tal modo que la Alternativa B se considera la más favorable para el total de los tramos, desde el punto de vista de la sinergia sobre la avifauna.
VALORACIÓN GLOBAL DE LAS ALTERNATIVAS DEL TRAMO LEAT 132 kV “GR COLIMBO – COLECTORA TRES CANTOS”

Para la valoración conjunta de los factores se ha realizado una normalización de los valores obtenidos entre 0 y 1 (siendo 1 la opción más desfavorable) de tal modo que se pueda permitir la suma conjunta y ponderada de todos ellos, tal y como se aprecia en las siguientes tablas:

Tabla 56. Tabla de valores obtenidos en los factores de comparación

<table>
<thead>
<tr>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>31,19</td>
<td>1,99</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>32,52</td>
<td>2,50</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>34,32</td>
<td>2,00</td>
</tr>
</tbody>
</table>

Tabla 57. Tabla de valores normalizados, coeficientes de ponderación y resultado conjunto

<table>
<thead>
<tr>
<th>Ponderación</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
<th>Resultado conjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x 5,00)</td>
<td>(x 1,00)</td>
<td>(x 1,00)</td>
<td></td>
</tr>
<tr>
<td>Alternativa A</td>
<td>0,909</td>
<td>0,797</td>
<td>0,988</td>
<td>6,329</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0,948</td>
<td>1,000</td>
<td>0,786</td>
<td>6,524</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1,000</td>
<td>0,798</td>
<td>1,000</td>
<td>6,798</td>
</tr>
</tbody>
</table>

Según el resultado conjunto obtenido para el tramo de LEAT 132 kV “GR Colimbo – Colectora Tres Cantos”, la alternativa que resulta más favorable es la A.

Si analizamos con mayor detalle el comportamiento de las variables ambientales analizadas, podemos concluir lo siguiente:

1. En relación a la longitud, la alternativa A resulta la de menor recorrido con diferencias importantes con respecto a las demás

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Longitud (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27+200</td>
</tr>
<tr>
<td>B</td>
<td>25+581</td>
</tr>
<tr>
<td>C</td>
<td>26+211</td>
</tr>
</tbody>
</table>

2. En relación con las afecciones a infraestructuras existentes, la que mejor posición presenta es la alternativa C ya que presenta:
El menor número de cruces con viario (cuatro).

La menor afección a LEAT existentes

Aunque, en relación con la densidad de caminos existente, la alternativa B presenta el mejor valor, lo cual minimiza la necesidad de abrir nuevos accesos (36,43 ml/Ha).

3. En relación al planeamiento urbanístico, la mejor alternativa es, sin duda, la alternativa A, debido a su menor interacción con suelo no urbanizable protegido.

4. Respecto a los cauces, la alternativa C presenta los mejores valores ya que posee el menor número de cruzamientos (13) y la menor longitud de cauces incluidos en el buffer de 100 m.

5. En relación con las vías pecuarias la mejor alternativa resulta la B que presenta al menos un cruce menos.

6. Con respecto a los montes públicos, la menor afección la producen las alternativas A y C, que no tienen afección alguna.

7. Respecto a las pendientes, la alternativa C presenta mejores valores, aunque muy similares al resto.

8. En el caso de la vegetación natural, la alternativa que presenta mejores valores es la C.

9. En relación con la fauna, la alternativa que presenta un mejor comportamiento es la Alternativa B.

10. Sobre los Hábitat de Interés Comunitarios la mejor alternativa es la C, tanto en prioritarios como en no prioritarios.

11. En relación con el paisaje el trazado de menor visibilidad es el de la alternativa B, mientras que la alternativa A atraviesa espacios con menor calidad paisajística.

12. La menor afección a espacios de patrimonio cultural corresponde a las Alternativas A y B que no incluyen ningún bien protegido en su franja de 100 metros.

13. Respecto a las sinergias sobre el paisaje, la alternativa B presenta el peor dato, siendo la Alternativa A la más favorable.

14. Finalmente, respecto a las sinergias sobre avifauna, la mejor alternativa resulta la B.
VALORACIÓN GLOBAL DE LAS ALTERNATIVAS DEL TRAMO LEAT 132 KV
COLECTORA TRES CANTOS – COLECTORA LA CEREAL + TRAMO LEAT 400 KV
COLECTORA LA CEREAL – SE REE LA CEREAL

Para la valoración conjunta de los factores se ha realizado una normalización de los valores obtenidos entre 0 y 1 (siendo 1 la opción más favorable) de tal modo que se pueda permitir la suma conjunta y ponderada de todos ellos, tal y como se aprecia en las siguientes tablas:

Tabla 58. Tabla de valores obtenidos en los factores de comparación

<table>
<thead>
<tr>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa A</td>
<td>34,40</td>
<td>2,32</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>35,14</td>
<td>2,20</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>38,77</td>
<td>2,49</td>
</tr>
</tbody>
</table>

Tabla 59. Tabla de valores normalizados, coeficientes de ponderación y resultado conjunto

<table>
<thead>
<tr>
<th>Ponderación</th>
<th>Indicadores ambientales</th>
<th>Sinergia con el paisaje</th>
<th>Sinergia con la avifauna</th>
<th>Resultado conjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x 5,00)</td>
<td>(x 1,00)</td>
<td>(x 1,00)</td>
<td></td>
</tr>
<tr>
<td>Alternativa A</td>
<td>0,887</td>
<td>0,931</td>
<td>1,00</td>
<td>6,366</td>
</tr>
<tr>
<td>Alternativa B</td>
<td>0,906</td>
<td>0,882</td>
<td>0,994</td>
<td>6,408</td>
</tr>
<tr>
<td>Alternativa C</td>
<td>1,000</td>
<td>1,000</td>
<td>0,969</td>
<td>6,969</td>
</tr>
</tbody>
</table>

Según el resultado conjunto obtenido para el tramo de LEAT 132 kV “Colectora Tres Cantos – Colectora La Cereal” + LEAT 400 kV “Colectora La Cereal – SE REE LA CEREAL”, la alternativa que resulta más favorable es la A.

Si analizamos con mayor detalle el comportamiento de las variables ambientales analizadas, podemos concluir lo siguiente:

1. En relación a la longitud, la alternativa B resulta la de menor recorrido con diferencias importantes con respecto a las demás.

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Longitud (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13+501</td>
</tr>
<tr>
<td>B</td>
<td>12+894</td>
</tr>
<tr>
<td>C</td>
<td>13+960</td>
</tr>
</tbody>
</table>

2. En relación con las afecciones a infraestructuras existentes, ninguna de las alternativas estudiadas presenta diferencias importantes con respecto a las otras:
El número de cruces con viarios existentes es el mismo (tres)
- No hay afección sobre LEATs existentes
- La alternativa A, por el contrario, presenta la mejor densidad de caminos existentes, lo cual minimiza la necesidad de abrir nuevos accesos (35,82 ml/Ha).

3. En relación al planeamiento urbanístico, la mejor alternativa es, sin duda, la alternativa C, debido a su menor interacción con suelo no urbanizable protegido.

4. Respecto a los cauces, la alternativa A, presenta los mejores valores ya que posee el menor número de cruzamientos (12) y la menor longitud de cauces incluidos en el buffer de 100 m.

5. La afección a vías pecuarias es la misma para las tres alternativas con tres cruzamientos

6. La alternativa B no presenta afección alguna sobre Monte Público

7. Respecto a las pendientes, la alternativa A presenta mejores valores, aunque muy similares al resto.

8. En el caso de la vegetación natural, la alternativa que presenta mejores valores es la B.

9. En relación con la fauna, la alternativa que presenta un mejor comportamiento es la Alternativa A.

10. Sobre los Hábitat de Interés Comunitario Prioritarios, la alternativa B resulta la mejor, mientras que, sobre los no Prioritarios, es la alternativa A la que presenta la menor superficie afectada.

11. En relación con el paisaje, el trazado de menor visibilidad es el de la alternativa C, al tiempo que la alternativa B resulta ser la que atraviesa espacios con menor calidad paisajística.

12. No hay afecciones sobre bienes pertenecientes al patrimonio cultural.

13. Respecto a las sinergias sobre el paisaje, la alternativa C presenta el peor dato, siendo la Alternativa B la más favorable.

Finalmente, respecto a las sinergias sobre avifauna, la mejor alternativa resulta la C.
4.5 ÍNDICE DE SENSIBILIDAD AMBIENTAL (MITERD)

El desarrollo de energías renovables en España, impulsado por los objetivos de transición del sistema energético hacia uno climáticamente neutro, de acuerdo con lo previsto en el Plan Nacional Integrado de Energía y Clima y la Estrategia a Largo Plazo para una Economía Española Moderna, Competitiva y Climáticamente Neutra en 2050, ha contribuido a incrementar considerablemente las solicitudes para la instalación de nuevos parques eólicos y plantas fotovoltaicas, desplegados por todo el territorio español. Por otro lado, la implantación de este tipo de instalaciones tiene una repercusión sobre el medio ambiente, cuya evaluación es necesaria en el marco de la legislación comunitaria, estatal y autonómica de evaluación ambiental.

Este nuevo escenario ha puesto de manifiesto la necesidad de disponer de un recurso que ayude a tomar decisiones estratégicas sobre la ubicación de estas infraestructuras energéticas, que implican un importante uso de territorio y pueden generar impactos ambientales significativos. Por ello, el Ministerio para la Transición Ecológica y el Reto Demográfico, a través de la Subdirección General de Evaluación Ambiental de la Dirección General de Calidad y Evaluación Ambiental, ha elaborado una herramienta que permite identificar las áreas del territorio nacional que presentan mayores condicionantes ambientales para la implantación de estos proyectos, mediante un modelo territorial que agrupe los principales factores ambientales, cuyo resultado es una zonificación de la sensibilidad ambiental del territorio.

El ámbito de la zonificación se restringe al medio terrestre español y está enfocado para proyectos de grandes instalaciones de generación de energía renovable, eólica y fotovoltaica (no incluye pequeñas instalaciones de autoconsumo, infraestructuras aisladas de poca potencia o que se ubiquen en cubiertas o tejados de edificios o suelos urbanos, pequeñas instalaciones de I+D+i, etc.).

En lo que a las instalaciones fotovoltaicas se refiere, el modelo utilizado busca integrar la importancia relativa en el territorio de los principales factores ambientales considerados en la evaluación ambiental de proyectos, los cuales se encuentran principalmente recogidos en el artículo 35 de la Ley 21/2013, de 9 de diciembre, de evaluación ambiental: “la población, la salud humana, la flora, la fauna, la biodiversidad, la geodiversidad, el suelo, el subsuelo, el aire, el agua, el medio marino, el clima, el cambio climático, el paisaje, los bienes materiales, el patrimonio cultural, y la interacción entre todos los factores”, con el fin de proceder a establecer indicadores específicos que sean representativos de dichos factores ambientales, de manera que se obtenga una aproximación cuantitativa de las características representadas. El objetivo final es obtener un índice que represente el nivel de sensibilidad ambiental, de tal manera que el valor cero represente la sensibilidad ambiental máxima, y al
sumatorio de capas por su peso se le resta a la unidad para dar coherencia ordinal a los valores numéricos, de forma que la escala de valores obtenida (entre 0 y 10.000) es inversa en relación al grado de sensibilidad: los valores bajos del índice representan sensibilidades elevadas y viceversa, siendo la sensibilidad máxima la correspondiente al valor absoluto 0.

De este modo, superponiendo la información gráfica proporcionada por el MITERD a través de un enlace WMS:

(https://wmts.mapama.gob.es/sig/evaluacionambiental/ea_energia_fotovoltaica/wms?)

Los resultados obtenidos para la ubicación de la planta de GR Colimbo son los siguientes:

Figura 49. Zonificación del Índice de Sensibilidad Ambiental (MITERD) en relación con la localización de la PFV GR Colimbo. Fuente: MITERD y elaboración propia.

Según los datos contenidos en dicho mapa, los valores del índice de sensibilidad ambiental en los que se localiza la PFV GR Colimbo son:

Valor máximo = 10.000
- No afecta a ningún indicador

Valor mínimo = 9.550
- El único indicador ponderado es la alta visibilidad
4.6 CARACTERÍSTICAS TÉCNICAS DE LAS ALTERNATIVAS SELECCIONadas

El presente estudio de impacto ambiental se acompaña de los Proyectos Básicos de la PFV y sus infraestructuras de evacuación, en los que se detallan los aspectos técnicos de estas instalaciones.

4.6.1 Planta Fotovoltaica GR Colimbo

La Planta Solar Fotovoltaica GR Colimbo contará con una potencia pico de 24,98 MWp y evacuará la energía generada a través de líneas subterráneas en media tensión a 30 kV que conectarán cada uno de los centros de transformación que conforman la planta con la futura Subestación Elevadora ST Colimbo 132/30 kV, propiedad del promotor.

El proyecto básico contempla la instalación de una parte generadora formada por 38,136 paneles fotovoltaicos de 655 Wp bifaciales (o configuración similar dependiendo de la disponibilidad y la tecnología) dispuestos en estructuras, y centros de transformación que se conectan mediante tendido eléctrico de 30 kV soterrado en zanja a la subestación situada en la planta fotovoltaica.

Emplazamiento

La PFV GR Colimbo y la línea de evacuación en media tensión 30 kV se implantará en el término municipal de Torremocha del Jarama (Madrid).

La instalación se implantará en unas parcelas que cuentan con una superficie total de 44,97 ha mientras que la superficie vallada de la planta es de 30,78 ha. Concretamente, el área ocupada por los paneles fotovoltaicos es de 118,464 m2, medida sobre la proyección del panel en posición horizontal; mientras que las 9 estaciones de potencia existentes en la planta ocuparán un área de 245,12 m2.

La longitud total de vallado en todo el perímetro de la planta es de 5.969 m.

Características generales

La planta fotovoltaica GR Colimbo convierte la energía de la radiación solar en energía eléctrica a través de una serie de módulos solares fotovoltaicos instalados en un sistema de estructuras. La energía eléctrica de corriente continua (CC) producida en el generador fotovoltaico se convierte en corriente alterna (CA) a través de los inversores, y luego el transformador adecua el nivel de voltaje para inyectar la energía en la red de distribución.

Los componentes principales que forman el núcleo tecnológico de la planta son (la descripción detallada de estos componentes puede consultarse en el Proyecto Básico de la instalación):

- Generador fotovoltaico.
• Seguidor de eje horizontal monofila.
• Cajas de string.
• Inversores.
• Centro de transformación (CT).
• Sistema conexiones eléctricas.
• Protecciones eléctricas.
• Infraestructura evacuación.

Además de los componentes principales, la planta contará con una serie de componentes estándar (sistema de monitorización, sistema de seguridad, sistema anti-incendios, etc.) que serán definidos en una fase posterior del proyecto.

Configuración eléctrica

La configuración eléctrica de la instalación fotovoltaica será la siguiente:

• Quince (15) inversores Ingeteam (1637 kVA@30°C) o similar, repartidos en:
 o Cinco (5) centros de transformación con 2 inversores modelo INGECON SUN 1640TL B630 con 90 strings conectados a cada inversor y un transformador de 3,280 MVA.
 o Un (1) centro de transformación con 2 inversores modelo INGECON SUN 1640TL B630 con 94 strings conectados a cada inversor y un transformador de 3,280 MVA.
 o Un (1) centro de transformación con 1 inversor modelo INGECON SUN 1640TL B630 con 94 strings conectados al inversor y un transformador de 1,640 MVA.
 o Dos (2) centros de transformación con 1 inversor modelo INGECON SUN 1640TL B630 con 90 strings conectados al inversor y un transformador de 1,640 MVA.

En total se implantarán 38.136 módulos de 655 Wp para un total de 24,98 MWp, es decir, una ratio DC/AC del 1,017 sobre la potencia nominal en inversores a 30°C. La potencia del conjunto de los inversores de la planta estará limitada a la potencia máxima admisible en el punto de conexión, 20 MW.

La configuración eléctrica de baja tensión de la planta fotovoltaica será la siguiente:

• Strings de 28 módulos de 655 Wp conectados en serie.
- 12 inversores INGECON SUN 1640TL B630 (1637 kVA@30°C) con 1.080 strings conectadas en paralelo.
 - A cada inversor se conectarán 90 strings.
- 3 inversores INGECON SUN 1640TL B630 (1637 kVA@30°C) con 282 strings conectadas en paralelo.
 - A cada inversor se conectarán 94 strings.

Cada centro de transformación estará conectado a la Subestación elevadora situada en el interior del área vallada de la planta fotovoltaica, por líneas de media tensión en forma de antena en 30 kV.

Layout

La siguiente imagen muestra el layout propuesto para la PFV:

![Figura 50. Layout de la PFV GR Colimbo. Fuente: Grenergy.](image-url)
Generador fotovoltaico

El generador fotovoltaico estará compuesto por un total de 38.136 módulos fotovoltaicos interconectados entre sí en grupos denominados cadenas o “strings” de 28 módulos en serie.

Se han seleccionado módulos fotovoltaicos basados en la tecnología de silicio monocristalino, ampliamente probada en numerosas instalaciones a lo largo del mundo.

Los módulos seleccionados tendrán unas dimensiones de 2.384 x 1.303 x 35 mm, capaces de entregar una potencia de 655 Wp en condiciones estándar.

![Figura 51. Módulo FV 655 Wp. Fuente: Grenergy.](image)

El fabricante del módulo será Canadian Solar o similar y tendrá las siguientes características principales:

<table>
<thead>
<tr>
<th>Características eléctricas</th>
<th>Módulo</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia</td>
<td>655 Wp</td>
<td>Wp</td>
</tr>
<tr>
<td>Tolerancia de salida Pmax</td>
<td>±10 Wp</td>
<td>Wp</td>
</tr>
<tr>
<td>Corriente máxima potencia (Impp)</td>
<td>18,52* A</td>
<td>A</td>
</tr>
<tr>
<td>Tensión de máxima potencia (Vmpp)</td>
<td>37,50 V</td>
<td>V</td>
</tr>
<tr>
<td>Corriente de cortocircuito (Icc)</td>
<td>19,54* A</td>
<td>A</td>
</tr>
<tr>
<td>Tensión de circuito abierto (Voc)</td>
<td>45,20 V</td>
<td>V</td>
</tr>
<tr>
<td>Eficiencia del módulo</td>
<td>21,1 %</td>
<td>%</td>
</tr>
<tr>
<td>NOCT (800 W/m², 20°C, AM 1,5, 1 m/s)</td>
<td>41±3 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Tensión máxima del Sistema (Vdc)</td>
<td>1.500 V</td>
<td>V</td>
</tr>
</tbody>
</table>

*Incluida ganancia del 6% por bifacialidad.

Inversor fotovoltaico

El inversor fotovoltaico será el equipo encargado de la conversión de la corriente continua en baja tensión generada por los módulos fotovoltaicos en corriente alterna en baja tensión a la misma frecuencia de la red general. A la salida del inversor, la energía se derivará al
transformador que será el encargado de elevar a la tensión establecida en el sistema interno de media tensión de la planta.

![Inversor Ingeteam Ingecon SUN 1640 TL B630](image)

Figura 52. Inversor Ingeteam Ingecon SUN 1640 TL B630. Fuente: Grenergy.

Los inversores de conexión a red disponen de un sistema de control que permite un funcionamiento completamente automatizado.

Los inversores proyectados para la planta son del fabricante Ingeteam, modelos Ingecon Sun 1640 TL B630 Outdoor o similar. Las principales características son las indicadas a continuación:

<table>
<thead>
<tr>
<th>Características eléctricas</th>
<th>Inversor</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rango de tensión en MPP</td>
<td>911-1300</td>
<td>Vdc</td>
</tr>
<tr>
<td>Tensión máxima</td>
<td>1.500</td>
<td>Vdc</td>
</tr>
<tr>
<td>Corriente máxima</td>
<td>1.850</td>
<td>A</td>
</tr>
<tr>
<td>Nº entradas en DC</td>
<td>Hasta 15</td>
<td>Ud</td>
</tr>
<tr>
<td>Salida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>1.473</td>
<td>kVA (@50°C)</td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>1.637</td>
<td>kVA (@30°C)</td>
</tr>
<tr>
<td>Tensión nominal</td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Frecuencia nominal</td>
<td>50</td>
<td>Hz</td>
</tr>
<tr>
<td>Rendimiento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>98,9</td>
<td>η</td>
</tr>
</tbody>
</table>

Estructura soporte de módulos (seguidor solar)
Los módulos FV se instalarán sobre estructuras denominadas seguidores, que se mueven sobre un eje horizontal orientado de Norte a Sur y realizan un seguimiento automático de la posición del Sol en sentido Este-Oeste a lo largo del día, maximizando así la producción de los módulos en cada momento.

La estructura donde se sitúan los módulos está fijada al terreno y constituida por diferentes perfiles y soportes, con un sistema de accionamiento para el seguimiento solar y un autómata que permita optimizar el seguimiento del sol todos los días del año. Además, disponen de un sistema de control frente a ráfagas de viento superiores a 60 km/h que colocan los paneles fotovoltaicos en posición horizontal para minimizar los esfuerzos debidos al viento excesivo sobre la estructura.

Los principales elementos de los que se compone la estructura son los siguientes:

- Cimentaciones: perfiles hincados con perforación o sin perforación previa.
- Estructura de sustentación: formada por diferentes tipos de perfiles de acero galvanizado y/o aluminio.
- Elementos de sujeción y tornillería.
- Elementos de refuerzo.
- Equipo de accionamiento para el seguimiento solar el cual contará con un cuadro de Baja Tensión.
- Autómata astronómico de seguimiento con sistema de retroseguimiento integrado.
- Sistema de comunicación interna mediante PLC.

Figura 53. Seguidor monofila tipo 2V. Fuente: Grenergy.
- En total se instalarán 681 estructuras de 2 strings. Las principales características de la estructura solar son las indicadas a continuación o similares, en función de la tecnología y la disponibilidad:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Estructura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº módulos por estructura</td>
<td>56</td>
</tr>
<tr>
<td>Ángulo de rotación</td>
<td>± 55°</td>
</tr>
<tr>
<td>Longitud de la fila</td>
<td>37,863 m</td>
</tr>
<tr>
<td>Paso entre filas (pitch)</td>
<td>8 m</td>
</tr>
</tbody>
</table>

La fijación al terreno se realizará siguiendo las recomendaciones establecidas en el estudio geotécnico. Para un terreno medio, la estructura irá fijada mediante el hincado de perfiles directamente al terreno. La cimentación de la estructura ha de resistir los esfuerzos derivados de:

- Sobrecargas del viento en cualquier dirección.
- Peso propio de la estructura y módulos soportados.
- Sobrecargas de nieve sobre la superficie de los módulos (en el caso que aplique).
- Solicitaciones por sismo según la normativa de aplicación.

Transformador de potencia

Con el fin de elevar la tensión alterna en la salida del inversor hasta la red de MT, la planta fotovoltaica tendrá un total de 6 transformadores de 3.280 kVA (@30°C) y 3 transformadores de 1.640 kVA (@30°C) con un devanado de BT y un devanado de MT y relación de transformación 30/0,63 kV.

Celdas de Media Tensión (MT)

Cada estación transformadora albergará celdas de MT que incorporarán la aparentation necesaria de maniobra y protección.

Instalaciones secundarias: alumbrado y protección contra incendios

Alumbrado

Se dispondrá de un punto de luz de emergencia de carácter autónomo que señalizará el centro de transformación de acuerdo a la prescripción dictada en el apartado 6.2 Alumbrado de socorro, recogido en la ITC-RAT 14 Instalaciones eléctricas de exterior que forma parte del Reglamento de Alta Tensión aprobado por el Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en
instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.

Protección contra incendios

El Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, en su ITC-RAT 14 Instalaciones eléctricas de exterior, en concreto, en el subpunto 6.1, sistemas contra incendios, establece la obligatoriedad en la instalación de sistemas contra incendios en los centros de transformación que serán de cumplimiento en el proyecto.

Sistema de conexiones eléctricas

Según la naturaleza de la corriente, la instalación fotovoltaica está dividida eléctricamente en dos tramos: tramo de corriente continua (hasta el inversor) y tramo de corriente alterna (tras realizar el conveniente acondicionamiento de potencia en el inversor).

Sistema de corriente continua (CC)

El sistema de CC incluye el siguiente equipamiento:

- Cableado.
- Inversor.

El diseño y dimensionado del sistema de CC para la planta FV cumplirá todo lo establecido en la normativa vigente.

Sistema de corriente alterna (CA)

El sistema de CA incluirá el siguiente equipamiento principal:

- Centro transformador.
- Aparamenta de BT.
- Transformador.
- Cables de media tensión (MT).
- Celdas de MT.

El sistema de CA de la planta cumplirá con lo establecido en la normativa nacional de Instalaciones Eléctricas, la cual establece las especificaciones técnicas que deben cumplir con el fin de garantizar la seguridad tanto en el uso de la energía eléctrica, como de las personas; maximizando la eficiencia del complejo.
En cada estación de inversores o anexa a las mismas, se localizará una estación transformadora de MT, que adaptará la tensión de salida del inversor al nivel de tensión de evacuación de la red de MT de la planta.

El sistema de AC de la planta cumplirá con lo establecido en códigos vigentes, normativa y leyes.

Puesta a tierra

La instalación de puesta tierra cumplirá con lo dispuesto en el artículo 15 del R.D. 1699/2011 sobre las condiciones de puesta a tierra en instalaciones fotovoltaicas conectadas a la red de baja tensión.

Todas las masas de la instalación fotovoltaica estarán conectadas a una red de tierras independiente de la del neutro de la empresa distribuidora, de acuerdo con el RBT, así como de las masas del resto del suministro.

La instalación deberá disponer de una separación galvánica entre la subestación y la instalación fotovoltaica, es decir, la red de tierra de la subestación y la red de tierra de la instalación fotovoltaica serán independientes y no estarán conectadas entre sí.

Seguridad y vigilancia

Se instalará un sistema de videovigilancia (CCTV) en tiempo real distribuido por la planta.

Descripción de la infraestructura eléctrica de evacuación

La energía generada se evacuará a través de líneas subterráneas en media tensión a 30 kV que conectarán cada uno de los centros de transformación que conforman la planta con la futura Subestación elevadora compartida ST Colimbo 132/30 kV que se construirá en las proximidades de la planta fotovoltaica.

A su vez, es necesario indicar que la subestación elevadora ST Colimbo 132/30 kV estará conectada mediante línea aérea en 132 kV con la subestación compartida ST Colectora La Cereal 400/132 kV y ésta, a su vez, se conectará en tramo aéreo y subterráneo con la ST LA CEREAL 400 kV propiedad de REE.

4.6.2 Subestaciones Eléctricas de Transformación

Para la evacuación de la energía generada en la planta se prevé la construcción de la subestación elevadora ST Colimbo 132/30 kV de la que partirá la línea, con nivel de tensión 132 kV, que conectará con las subestaciones mencionadas con anterioridad.
La ST Colimbo 132/30 kV se localizará en el término municipal de Torremocha del Jarama (Madrid). En el proyecto básico se puede consultar la descripción detallada de los elementos de la instalación.

1. Características eléctricas generales: será de cumplimiento el reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión, ITC-RAT 12.

2. Transformadores de potencia: Para la transformación de 132/30 kV se ha previsto el montaje de un (1) transformador de potencia, trifásico, de columnas, en baño de aceite, tipo intemperie, con regulación en carga.

3. Interruptor automático de 132 kV: Para la apertura y cierre la posición línea-transformador, se ha previsto la instalación de un interruptor automático tripolar de SF₆ para intemperie.

4. Seccionadores: seccionadores de 132 kV y seccionadores de 30 kV

5. Transformadores de intensidad: Montados junto a cada interruptor de 132 kV se instalará un juego de tres (3) transformadores de intensidad, que alimentarán los circuitos de medida y protección.

6. Transformadores de tensión: Montados junto a cada interruptor de 132 kV se instalará un juego de tres (3) transformadores de intensidad, que alimentarán los circuitos de medida y protección.

7. Celdas de 30 kV: Las características constructivas de estas celdas son de tipo encapsulado metálico, aislamiento en SF₆, para instalación en interior. Las celdas están fabricadas de acuerdo con la norma IEC 62271-200 y cumplen con la denominación de “aparajenta blindada”.

8. Reactancia de puesta a tierra: Con el fin de limitar la corriente de defecto a tierra en el sistema de 30 kV, se instalará una reactancia trifásica, en aislamiento seco, conectada al lado de MT del secundario del transformador de potencia asociado y equipada con tres transformadores de intensidad de 300/5A 15VA 5P20.

9. Batería de condensadores (opcional): La batería de condensadores (opcional) que se monta tiene una potencia de 5.000 kVAR y estará conectada a la tensión de 30 kV.

10. Autoválvulas: Para proteger la instalación contra las sobretensiones de origen atmosférico, o las que por cualquier otra causa pudieran producirse, se ha proyectado el montaje de cuatro (4) juegos de tres pararrayos (3) tipo autoválvula, conectados tres (3) de ellos en derivación del sistema de 132 y el restante en 30 kV.
11. Embarrados: Los embarrados auxiliares serán elegidos de forma que las temperaturas máximas previstas no provoquen calentamientos por encima de 40 °C sobre la temperatura ambiente. Asimismo, soportarán los esfuerzos electrodinámicos y térmicos de las corrientes de cortocircuito previstas, sin que se produzcan deformaciones permanentes.

12. Estructura metálica: Todo el aparellaje de la instalación eléctrica de intemperie irá sobre soportes metálicos.

13. Servicios auxiliares: Los servicios auxiliares de la ST estarán atendidos por los dos sistemas de tensión (c.a. y c.c.).

14. Cuadros de protecciones y control: El mando y control de la ST, así como los equipos de protección y automatismo, se instalarán en armarios constituidos por paneles de chapa de acero y un chasis formado con perfiles y angulares metálicos del mismo material.

15. Medida

16. Telecontrol y comunicaciones: La instalación se explotará en régimen abandonado, por lo que la ST estará dotada de un sistema de telecontrol, el cual se encarga de recoger las señales, alarmas y medidas de la instalación para su transmisión a los centros remotos de operación.

17. Alumbrado: La construcción de la ST se integrará con un sistema de alumbrado exterior y otro interior en el edificio con un nivel lumínico, en ambos casos, suficiente para poder efectuar las maniobras precisas con el máximo de seguridad, además de un sistema de alumbrado de emergencia. Se instalará un sistema de alumbrado de emergencia, compuesto por lámparas y alimentado en corriente continua con posibilidad de doble ciclo de 15 minutos (uno automático y otro manual).

18. Sistemas complementarios en los edificios: se instalará un edificio de control.

19. Instalación de puesta a tierra: red de tierras inferiores y red de tierra aérea.

ST COLECTORA LA CEREAL 400/132 KV

La ST Colectora La Cereal 400/132 kV se localizará en el término municipal de Colmenar Viejo (Madrid). Al igual que para la ST Colimbo, la descripción detallada estos elementos puede consultarse en el Proyecto Básico de la instalación:

2. Autotransformadores de potencia: para la transformación de 400/132 kV se ha previsto el montaje de un (1) transformador de potencia, trifásico, de columnas, en baño de aceite, tipo interperie, con regulación en carga.

3. Sistema de 400 kV: interruptores automáticos, seccionadores, transformadores de intensidad, transformadores de tensión, pararrayos tipo autoválvula.

4. Sistema de 132 kV: interruptor automático, seccionadores, transformadores de intensidad, transformadores de tensión de barras, transformadores de tensión, transformadores de tensión para alimentación de servicios auxiliares, pararrayos tipo autoválvula.

5. Embarrados: Los embarrados auxiliares serán elegidos de forma que las temperaturas máximas previstas no provoquen calentamientos por encima de 40 ºC sobre la temperatura ambiente. Asimismo, soportarán los esfuerzos electrodinámicos y térmicos de las corrientes de cortocircuito previstas, sin que se produzcan deformaciones permanentes.

6. Estructura metálica: Todo el aparellaje de la instalación eléctrica de interperie irá sobre soportes metálicos.

7. Servicios auxiliares: Los servicios auxiliares de la ST estarán atendidos por los dos sistemas de tensión (c.a. y c.c.). Para la adecuada explotación del centro, se instalarán sistemas de alimentación de corriente altera y de corriente continua, según necesidades, para los distintos componentes de control, protección y medida.

8. Cuadros de protección y control: El mando y control de la ST, así como los equipos de protección y automatismo, se instalarán en armarios constituidos por paneles de chapa de acero y un chasis formado con perfiles y angulares metálicos del mismo material.

9. Medida

10. Telecontrol y comunicaciones: La instalación se explotará en régimen abandonado, por lo que la ST estará dotada de un sistema de telecontrol, el cual se encarga de recoger las señales, alarmas y medidas de la instalación para su transmisión a los centros remotos de operación.

11. Alumbrado: La construcción de la ST se integrará con un sistema de alumbrado exterior y otro interior en el edificio con un nivel lumínico, en ambos casos, suficiente para poder efectuar las maniobras precisas con el máximo de seguridad, además de un sistema de alumbrado de emergencia.

12. Sistemas complementarios en los edificios: se instalará un edificio de control.
13. Instalación de puesta a tierra: red de tierras inferiores y red de tierra aérea

4.6.3 Líneas eléctricas de evacuación

LÍNEA DE EVACUACIÓN 132 KV ST COLIMBO 132/30 KV - ST COLECTORA LA CEREAL 400/132 KV

Esta línea tendrá una longitud total de 36.721 m de los cuales 27.199 m serán en doble circuito y los otros 9.522 m en simple circuito. Dentro del primer tramo, en doble circuito, existe un tramo subterráneo de 573,20 m de longitud.

El circuito de la línea objeto de estudio comenzará en la ST Colimbo 132kV y finalizará en la ST Colectora La Cereal 400/132kV.

La línea discurrirá por los términos municipales de Torremocha del Jarama, Torrelaguna, El Vellón, El Molar, San Agustín de Guadalix y Colmenar Viejo, todos ellos situados dentro de la Comunidad de Madrid.

Las características principales de esta línea eléctrica son las siguientes:

<table>
<thead>
<tr>
<th>Características generales</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión (kV)</td>
<td>132</td>
</tr>
<tr>
<td>Tensión más elevada de la red (kV)</td>
<td>145</td>
</tr>
<tr>
<td>Categoría de la línea</td>
<td>1ª</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
<td>50</td>
</tr>
<tr>
<td>Potencia a transportar (MVA)</td>
<td>202,39 MVA</td>
</tr>
<tr>
<td>Tipología de la línea</td>
<td>Mixta</td>
</tr>
</tbody>
</table>

| Origen | 1º CTO SET COLIMBO 132/30 kV
| | 2º CTO SET EL CUBILLO 132/30 kV - 132/66 kV |
| Final | 1º CTO SET COLECTORA LA CEREAL 400/132 kV
| | 2º CTO SET COLECTORA TRES CANTOS 220/132 kV |

<table>
<thead>
<tr>
<th>Característica de la línea tramo aéreo</th>
<th>Concepto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
<td>Corriente Alterna Trifásica</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Tensión nominal y tensión más elevada de la red</td>
<td>132/145 kV</td>
</tr>
<tr>
<td>Nº de circuitos</td>
<td>1, 2</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
<td>2</td>
</tr>
</tbody>
</table>
Características de la línea tramo aéreo

<table>
<thead>
<tr>
<th>Característica</th>
<th>Concepto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de conductor aéreo</td>
<td>LA 510 - RAIL (483-AL1/33-ST1A)</td>
</tr>
<tr>
<td>Tipo de cable de tierra</td>
<td>OPGW 64K78</td>
</tr>
<tr>
<td>Nº de cables de tierra</td>
<td>1</td>
</tr>
<tr>
<td>Potencia máxima de transporte en aéreo (MVA)</td>
<td>202,39</td>
</tr>
<tr>
<td>Longitud (Km)</td>
<td>36.148,450</td>
</tr>
<tr>
<td>Tipo de aislamiento</td>
<td>Polimérico</td>
</tr>
<tr>
<td>Apoyos</td>
<td>Se definirán en fase de proyecto</td>
</tr>
<tr>
<td>Cimentaciones</td>
<td>Se definirán en fase de proyecto</td>
</tr>
<tr>
<td>Puesta a tierra</td>
<td>Picas / Picas + Anillo</td>
</tr>
<tr>
<td>Excedentes de excavación (m3)</td>
<td>462,00</td>
</tr>
</tbody>
</table>

Características de la línea tramo soterrado

<table>
<thead>
<tr>
<th>Característica</th>
<th>Concepto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
<td>Corriente Alterna Trifásica</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Tensión nominal y tensión más elevada de la red</td>
<td>132/145 kV</td>
</tr>
<tr>
<td>Nº de circuitos</td>
<td>2</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
<td>2</td>
</tr>
<tr>
<td>Tipo de conductor soterrada</td>
<td>RHZ1-2OL (AS) 76/132 kV</td>
</tr>
<tr>
<td></td>
<td>1x1600mm2 K Cu+H95</td>
</tr>
<tr>
<td>Tipo de cable de tierra</td>
<td>185mm2 Cu con aislamiento XLPE</td>
</tr>
<tr>
<td>Nº de cables de tierra</td>
<td>4 (uno por terna)</td>
</tr>
<tr>
<td>Potencia máxima de transporte en soterrado (MVA)</td>
<td>202,39</td>
</tr>
<tr>
<td>Longitud (Km)</td>
<td>573,200</td>
</tr>
<tr>
<td>Tipo de aislamiento</td>
<td>XLPE</td>
</tr>
<tr>
<td>Apoyos</td>
<td>-</td>
</tr>
<tr>
<td>Cimentaciones</td>
<td>-</td>
</tr>
<tr>
<td>Puesta a tierra</td>
<td>Single Point</td>
</tr>
<tr>
<td>Excedentes de excavación (m3)</td>
<td>3.110,70</td>
</tr>
</tbody>
</table>

A continuación, se describen, de manera sucinta, los principales componentes de la línea, tanto para el tramo aéreo como para el tramo subterráneo (la descripción completa de estos componentes puede consultarse en el Proyecto Básico de la infraestructura):

Tramo aéreo

Conductores

La línea, llevará instalados conductores de aluminio – acero (AL-Ac), cuya designación es LA 5100 (483-AL1/33-ST1A) en configuración dúplex.
Cable de tierra

Para la protección de la línea contra las descargas se instalará un cable compuesto tierra-óptico del tipo OPGW, denominado OPGW 64K78. Este cable de tierra incorpora fibras ópticas en su interior, para así cumplir con la doble función de proteger la línea contra sobretensiones, y crear un canal de comunicaciones.

Apojos

Los conductores de la línea se fijarán mediante aisladores. Estas estructuras que en lo que sigue se denominarán simplemente “apoyos” podrán ser metálicas, de hormigón, madera u otros materiales apropiados, bien de material homogéneo o combinación de varios.

Los apoyos a utilizar en la construcción de la línea aérea serán del tipo metálicos de celosía.

Los apoyos contarán con instalaciones de puesta a tierra. El dimensionado de estas seguirá las recomendaciones del apartado 7 de la ITC-LAT 07 del Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión, de forma que en cualquier circunstancia se garanticen valores adecuados de la tensión de contacto y de paso en el apoyo.

Cimentaciones

Las cimentaciones de los apoyos metálicos serán monobloque o de macizos independientes, o bien mediante hormigón en masa, bien mediante el vertido directo en la excavación realizada al efecto, quedando la parte superior rematada mediante una bancada, o bien para el caso de anclaje en roca mediante pernos embebidos y sujetos a la misma por mortero de cemento, complementándose en su parte superior por medio de un macizo de hormigón en masa unido a la bancada correspondiente, o bien para cimentación mixta, en el que a partir de una cierta profundidad (1-2 m), se encuentra roca consistente, de tal forma que se sustituye una parte de la excavación en roca por la armadura (pernos embebidos en la roca).

Sus dimensiones serán las facilitadas por el fabricante según el tipo de terreno, definido por el coeficiente de compresibilidad.

Tomas de tierra

Se puede emplear como conductor de conexión a tierra cualquier material metálico que reúna las características exigidas a un conductor según el apartado 7.2.2 de la ITC07 del R.L.A.T.

Tramo subterráneo

Características del cable
El cable de 132 kV proyectado cumple con lo especificado en la norma IEC 60840: Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV) - Test methods and requirements.

La composición general es la que se muestra a continuación:

Las características principales del cable aislado subterráneo son las siguientes:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>1 x 1,600 mm² XLPE 127/220 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material del conductor</td>
<td>Cobre</td>
</tr>
<tr>
<td>Material de la pantalla</td>
<td>Cobre</td>
</tr>
<tr>
<td>Material del aislamiento</td>
<td>XLPE</td>
</tr>
<tr>
<td>Sección del conductor</td>
<td>1,600 mm²</td>
</tr>
<tr>
<td>Sección de la pantalla</td>
<td>95 mm²</td>
</tr>
<tr>
<td>Diámetro del conductor</td>
<td>49,8 mm</td>
</tr>
<tr>
<td>Diámetro exterior del cable</td>
<td>101,1 mm</td>
</tr>
<tr>
<td>Peso aproximado</td>
<td>10,300 kg/km</td>
</tr>
</tbody>
</table>

Figura 54. Cable 76/132 kV. Fuente: Grennergy
Las características eléctricas del cable son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal simple, U_0</td>
<td>76 kV</td>
</tr>
<tr>
<td>Tensión nominal entre fases, U</td>
<td>132 kV</td>
</tr>
<tr>
<td>Tensión máxima entre fases, U_m</td>
<td>145 kV</td>
</tr>
<tr>
<td>Tensión a impulsos maniobra</td>
<td>320 kV</td>
</tr>
<tr>
<td>Tensión a impulsos rayo</td>
<td>650 kV</td>
</tr>
<tr>
<td>Temperatura máxima admisible en el conductor en servicio permanente</td>
<td>90ºC</td>
</tr>
<tr>
<td>Temperatura máxima admisible en el conductor en régimen de cortocircuito</td>
<td>250ºC</td>
</tr>
</tbody>
</table>

Cable de comunicaciones

Como cable de comunicaciones subterráneo se empleará un cable de fibra óptica dieléctrico, cuyas principales características son las siguientes:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>OSGZ1</td>
</tr>
<tr>
<td>Nº de fibras</td>
<td>48</td>
</tr>
<tr>
<td>Diámetro del cable</td>
<td><16 mm</td>
</tr>
<tr>
<td>Peso</td>
<td><280 kg/km</td>
</tr>
<tr>
<td>Tensión máxima de tiro</td>
<td>>250 kg</td>
</tr>
<tr>
<td>Resistencia a la compresión</td>
<td>>30 kg/cm</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>-20 a +70ºC</td>
</tr>
</tbody>
</table>

El cable de comunicaciones irá instalado a lo largo de todo su recorrido en el interior de un tubo de PVC o PEAD correspondiente a los cuatritubos de 40 mm de diámetro en el interior de la misma zanja que los cables de 132 kV. En el caso de esta línea, se instalarán 2 cables de FO.

Terminales

La conexión del cable subterráneo con el tramo de línea aérea se realizará en apoyos de paso aéreo-subterráneo (PAS) mediante terminales tipo premoldeados de exterior, garantizando la unión eléctrica del conductor y manteniendo el aislamiento hasta el punto de conexión.

En este tipo de terminales de exterior, el aislamiento externo es un aislador de composite.

Los terminales cumplen con los ensayos y requerimientos fijados por la norma IEC 60840: Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV) - Test methods and requirements.

Empalmes

Los empalmes serán premoldeados. Los empalmes serán probados en fábrica previamente al montaje para cada instalación en particular. Proporcionarán al menos las mismas características eléctricas y mecánicas que los cables que unen, teniendo al menos la misma
capacidad de transporte, mismo nivel de aislamiento, corriente de cortocircuito, protección contra entrada de agua, protección contra degradación, etc.

Puesta a tierra

El sistema Single – Point consiste en conectar las pantallas rígidamente a tierra en un extremo, mientras que en el otro extremo se deja la pantalla en circuito abierto.

LÍNEA DE EVACUACIÓN 132 KV ST COLECTORA LA CEREAL 400/132 KV – ST LA CEREAL REE 220 KV

Esta línea aérea-subterránea conectará la Subestación Colectora La Cereal 400/220 kV con la Subestación La Cereal 400 kV (REE). La línea tendrá una longitud total de 3.970,12 m. Comenzará y finalizará en los respectivos sistemas de celdas o intemperie de las infraestructuras a las que se conecta.

La línea consta de tres tramos, el primero aéreo de 2.549,40 m, el segundo, subterráneo de 1.102,82 m y el tercero, también en aéreo, de 317,90 m.

La línea discorrerá por los términos municipales de Colmenar Viejo y Tres Cantos (Madrid).

Las características principales de esta línea eléctrica son las siguientes:

<table>
<thead>
<tr>
<th>Características generales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión (kV)</td>
</tr>
<tr>
<td>Tensión más elevada de la red (kV)</td>
</tr>
<tr>
<td>Categoría de la línea</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
</tr>
<tr>
<td>Potencia a transportar (MVA)</td>
</tr>
<tr>
<td>Tipología de la línea</td>
</tr>
<tr>
<td>Origen</td>
</tr>
<tr>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Característica de la línea tramo aéreo</th>
<th>Concepto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
<td>Corriente Alterna Trifásica</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Tensión nominal y tensión más elevada de la red</td>
<td>400/420 kV</td>
</tr>
<tr>
<td>Nº de circuitos</td>
<td>1</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
<td>2</td>
</tr>
<tr>
<td>Tipo de conductor aéreo</td>
<td>LA 510 - RAIL (483-AL1/33-ST1A)</td>
</tr>
<tr>
<td>Tipo de cable de tierra</td>
<td>OPGW 64K78</td>
</tr>
<tr>
<td>Nº de cables de tierra</td>
<td>2</td>
</tr>
<tr>
<td>Potencia máxima de transporte en aéreo (MVA)</td>
<td>224,77</td>
</tr>
</tbody>
</table>
Característica de la línea tramo aéreo

<table>
<thead>
<tr>
<th>Concepto</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (Km)</td>
<td>2.867,300</td>
</tr>
<tr>
<td>Tipo de aislamiento</td>
<td>Vidrio Templado</td>
</tr>
<tr>
<td>Apoyos</td>
<td>Se definirán en fase de proyecto</td>
</tr>
<tr>
<td>Cimentaciones</td>
<td>Se definirán en fase de proyecto</td>
</tr>
<tr>
<td>Puesta a tierra</td>
<td>Picas / Picas + Anillo</td>
</tr>
<tr>
<td>Excedentes de excavación (m3)</td>
<td>321,75</td>
</tr>
</tbody>
</table>

Característica de la línea tramo soterrado

<table>
<thead>
<tr>
<th>Concepto</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
<td>Corriente Alterna Trifásica</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Tensión nominal y tensión más elevada de la red</td>
<td>400/420 kV</td>
</tr>
<tr>
<td>Nº de circuitos</td>
<td>1</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
<td>1</td>
</tr>
<tr>
<td>Tipo de conductor soterrada</td>
<td>RHZ1-2OL (AS) 220/400 kV 1x630mm2 K AL+H185</td>
</tr>
<tr>
<td>Tipo de cable de tierra</td>
<td>185mm2 Cu con aislamiento XLPE</td>
</tr>
<tr>
<td>Nº de cables de tierra</td>
<td>2</td>
</tr>
<tr>
<td>Potencia máxima de transporte en soterrado (MVA)</td>
<td>224,77</td>
</tr>
<tr>
<td>Longitud (Km)</td>
<td>1.102,820</td>
</tr>
<tr>
<td>Tipo de aislamiento</td>
<td>XLPE</td>
</tr>
<tr>
<td>Apoyos</td>
<td>-</td>
</tr>
<tr>
<td>Cimentaciones</td>
<td>-</td>
</tr>
<tr>
<td>Puesta a tierra</td>
<td>Mid Point</td>
</tr>
<tr>
<td>Excedentes de excavación (m3)</td>
<td>1.520,47</td>
</tr>
</tbody>
</table>

A continuación, se describen, de manera sucinta, los principales componentes de la línea, tanto para el tramo aéreo como para el tramo subterráneo (la descripción completa de estos componentes puede consultarse en el Proyecto Básico de la infraestructura):

Tramo aéreo

Conductores

La línea, llevará instalados conductores de aluminio – acero (AL-Ac), cuya designación es 483-AL1/33-ST1A.

Cable de tierra

Para la protección de la línea contra las descargas se instalará un cable compuesto tierra-óptico del tipo OPGW con 48 FO, denominado OPGW 71L86z. Este cable de tierra incorpora fibras ópticas en su interior, para así cumplir con la doble función de proteger la línea contra sobretensiones, y crear un canal de comunicaciones.
Apoyos

Al igual que para la línea de evacuación 132 kV ST Colimbo 132/30 kV - ST Colectora La Cereal 400/132 kV, los apoyos a utilizar en la construcción de la línea aérea serán del tipo metálicos de celosía.

Cimentaciones

Las cimentaciones de los apoyos metálicos serán del tipo patas separadas, de hormigón en masa mediante el vertido directo en la excavación realizada al efecto, quedando la parte superior rematada mediante una bancada, o bien para el caso de anclaje en roca mediante pernos embebidos y sujetos a la misma por mortero de cemento, complementándose en su parte superior por medio de un macizo de hormigón en masa unido a la bancada correspondiente, o bien para cimentación mixta, en el que a partir de una cierta profundidad (1-2 m), se encuentra roca consistente, de tal forma que se sustituye una parte de la excavación en roca por la armadura (pernos embebidos en la roca).

Sus dimensiones serán las facilitadas por el fabricante según el tipo de terreno, definido por el coeficiente de compresibilidad.

Tomadas de tierra

Se puede emplear como conductor de conexión a tierra cualquier material metálico que reúna las características exigidas a un conductor según el apartado 7.2.2 de la ITC07 del R.L.A.T.

Tramo subterráneo

Características del cable

El cable de 400 kV proyectado cumple con lo especificado en la norma IEC 62067: Power cables with extruded insulation and their accessories for rated voltages above 150 kV (Um = 170 kV) up to 500 kV (Um = 550 kV) - Test methods and requirements.

La composición general es la que se muestra a continuación:

![Figura 55. Cable 220/400 kV. Fuente: Grenergy](image)

Las características principales del cable aislado subterráneo son las siguientes:
<table>
<thead>
<tr>
<th>Tipo</th>
<th>1 x 630 mm² XLPE 220/400 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material del conductor</td>
<td>Aluminio</td>
</tr>
<tr>
<td>Material de la pantalla</td>
<td>Cobre</td>
</tr>
<tr>
<td>Material del aislamiento</td>
<td>XLPE</td>
</tr>
<tr>
<td>Sección del conductor</td>
<td>6300 mm²</td>
</tr>
<tr>
<td>Sección de la pantalla</td>
<td>185 mm²</td>
</tr>
<tr>
<td>Diámetro del conductor</td>
<td>29,8 mm</td>
</tr>
<tr>
<td>Diámetro exterior del cable</td>
<td>116 mm</td>
</tr>
<tr>
<td>Peso aproximado</td>
<td>11.700 kg/km</td>
</tr>
</tbody>
</table>

Las características eléctricas del cable son:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal simple, U₀</td>
<td>220 kV</td>
</tr>
<tr>
<td>Tensión nominal entre fases, U</td>
<td>400 kV</td>
</tr>
<tr>
<td>Tensión máxima entre fases, Uₘ</td>
<td>420 kV</td>
</tr>
<tr>
<td>Tensión a impulsos maniobra</td>
<td>1050 kV</td>
</tr>
<tr>
<td>Tensión a impulsos rayo</td>
<td>1425 kV</td>
</tr>
<tr>
<td>Temperatura máxima admisible en el conductor en servicio permanente</td>
<td>90°C</td>
</tr>
<tr>
<td>Temperatura máxima admisible en el conductor en régimen de cortocircuito</td>
<td>250°C</td>
</tr>
</tbody>
</table>

Cable de comunicaciones

Como cable de comunicaciones subterráneo se empleará un cable de fibra óptica dieléctrico, cuyas principales características son las siguientes:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>OSGZ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de fibras</td>
<td>48</td>
</tr>
<tr>
<td>Diámetro del cable</td>
<td><16 mm</td>
</tr>
<tr>
<td>Peso</td>
<td><280 kg/km</td>
</tr>
<tr>
<td>Tensión máxima de tiro</td>
<td>>250 kg</td>
</tr>
<tr>
<td>Resistencia a la compresión</td>
<td>>30 kg/cm</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>-20 a +70ºC</td>
</tr>
</tbody>
</table>

El cable de comunicaciones irá instalado a lo largo de todo su recorrido en el interior de un tubo de PVC o PEAD correspondiente a los cuatrítubos de 40 mm de diámetro en el interior de la misma zanja que los cables de 400 kV. En el caso de esta línea, se instalarán 2 cables de FO.

Terminales

La conexión del cable subterráneo con el tramo de línea aérea se realizará en apoyos de paso aéreo-subterráneo (PAS) mediante terminales tipo premoldeados de exterior, garantizando la unión eléctrica del conductor y manteniendo el aislamiento hasta el punto de conexión.

En este tipo de terminales de exterior, el aislamiento externo es un aislador de composite.
Los terminales cumplen con los ensayos y requerimientos fijados por la norma IEC 62067: Power cables with extruded insulation and their accessories for rated voltages above 150 kV (Um = 170 kV) up to 500 kV (Um = 550 kV) - Test methods and requirements.

Empalmes

Los empalmes serán premoldeados. Los empalmes serán probados en fábrica previamente al montaje para cada instalación en particular. Proporcionarán al menos las mismas características eléctricas y mecánicas que los cables que unen, teniendo al menos la misma capacidad de transporte, mismo nivel de aislamiento, corriente de cortocircuito, protección contra entrada de agua, protección contra degradación, etc.

Puesta a tierra

El sistema Mid-Point consiste en conectar las pantallas mediante descargadores a tierra en los extremos, mientras que en el centro se conectarán rígidamente a tierra.

Ensayahs

Los cables de potencia y accesorios utilizados deberán cumplir todos los ensayos de rutina, ensayos tipo y ensayos de precalificación indicados en la norma: IEC 62067: Power cables with extruded insulation and their accessories for rated voltages above 150 kV (Um = 170 kV) up to 500 kV (Um = 550 kV) - Test methods and requirements.

ACCIÓNES DEL PROYECTO DE CONSTRUCCIÓN

PFV GR COLIMBO

Los trabajos de ejecución de la PFV se pueden clasificar principalmente en:

- Obra civil.
- Montaje mecánico.
- Montaje eléctrico.

Obra civil

Instalaciones provisionales

Incluye los trabajos de preparación y adecuación de las instalaciones provisionales necesarias para la construcción de la PFV, que serán removidas una vez finalizada:

- Oficinas de obra: Se habilitarán contenedores metálicos prefabricados o similar de diferentes dimensiones de acuerdo con las necesidades de los contratistas.
- Comedores: Se habilitarán en contenedores metálicos prefabricados o similar de diferentes dimensiones en función del número de trabajadores y las exigencias de la normativa nacional.
- Servicios higiénicos temporales: Incluyen aseos para el personal de obra habilitados en contenedores metálicos prefabricados o similar.

- Zonas de acopio y almacenamiento: Se dimensionarán varias zonas de almacenamiento y acopio de materiales al aire libre. Para los materiales que lo necesiten se diseñarán zonas de almacenamientos con contenedores metálicos prefabricados. Además, quedará prevista una zona de almacenamiento de residuos y otra para el aparcamiento de vehículos y maquinaria de obra.

- Suministro de agua y energía: Incluye los trabajos necesarios para dotar de una red de abastecimiento de agua y energía eléctrica temporal a la zona instalaciones temporales.

Topografía

Los trabajos de topografía comprenden el replanteo inicial de la instalación sobre el terreno para delimitar los límites de la planta, los viales de acceso, vallado y ubicación de las cimentaciones de la estructura.

Preparación del terreno

Estos trabajos serán los mínimos posibles y los suficientes para la correcta construcción de la instalación. La ejecución de esta operación incluye las operaciones siguientes:

- Remoción de los materiales objeto de desbroce.
- Retirado y extendido de los mismos en su emplazamiento definitivo.

Se estará, en todo caso, a lo dispuesto en la legislación vigente en materia medioambiental, de seguridad y salud, y de almacenamiento y transporte de productos de construcción.

Viales de acceso e internos

Esta fase contempla la adecuación de los caminos de acceso a la planta para permitir la llegada de tráfico rodado hasta el interior de la planta. En la medida de lo posible, se utilizarán los accesos existentes a la parcela que deberán ser acondicionados mediante la aportación de tierra o zahorra artificial y su posterior compactación.

Los viales interiores se destinarán a la conexión de los centros de transformación entre sí y el acceso a todas las estructuras solares FV y edificios que conforman la planta.

La disposición del vial de acceso está condicionada por los caminos existentes, mientras que la disposición de los viales interiores en la planta solar fotovoltaica se ha realizado considerando la disposición de los inversores fotovoltaicos y las estructuras solares asociados, así como la topografía del terreno.
Los viales interiores de la planta y de acceso a la planta y a la subestación serán de 4 y 6 metros de ancho, respectivamente. La sección de los viales estará compuesta por una base de 40 cm de zahorra artificial.

Figura 56. Sección tipo vial interno de 4 m. Fuente: Grenergy.

Figura 57. Sección tipo vial interno de 6 m. Fuente: Grenergy.

Movimiento de tierras

Los movimientos de tierras para la adecuación del terreno tienen el objetivo de crear una superficie firme y homogénea, con compactación y resistencia mecánica adecuada que permita la ejecución de fundaciones y canalizaciones.

Las obras necesarias para la instalación, operación y mantenimiento de los equipos que constituyen la planta solar fotovoltaica, consisten en:

- Plataforma de área de instalaciones provisionales.
- Adecuación de áreas de estructuras solares con pendientes superiores al 14%.
- Adecuación menor de movimiento de tierras en áreas de estructuras solares con irregularidades puntuales en el terreno.
Drenaje

La planta fotovoltaica contará con un sistema de drenaje para la evacuación de aguas pluviales.

El sistema de drenaje preliminar constará de cunetas en la zona perimetral y en los viales de la planta fotovoltaica. Se debe realizar un estudio de la pluviometría de la zona con el objetivo calcular la escorrentía superficial y las precipitaciones máximas sobre la parcela. Las dimensiones de las canalizaciones de evacuación de aguas a construir se dimensionarán en función de los datos pluviales y la normativa nacional relacionada.

Vallado perimetral de la planta

La planta fotovoltaica contará con un cierre o vallado perimetral con objeto de evitar el ingreso de personal no autorizado a la planta. Este vallado perimetral actúa como cerramiento fijo. Los tramos laterales a los puntos de acceso rodean todo el perímetro de la planta fotovoltaica delimitando el espacio de máxima ocupación de la parcela.

Figura 58. Detalle de portón de dos hojas batientes para el acceso de vehículos. Fuente: Grenergy.
Figura 59. Vallado cinegético tipo (altura máxima de 2 m). Fuente: Grenergy.

Suministro de equipos

Previo al montaje electromecánico de la planta se realizará la recepción, acopio y almacenamiento de materiales en el lugar destinado a tal efecto. Todos los materiales para el montaje de la estructura solar, así como los módulos FV, cuadros eléctricos y otras piezas de pequeño tamaño se entregarán en obra debidamente paletizados. La descarga desde el camión hasta la zona de acopios se realizará mediante el uso de grúas pluma. El suministro de equipos incluye la recepción, acopio y reparto de los materiales de construcción.

Ejecución de cimentaciones

Estos trabajos incluirán la realización de las cimentaciones de las estructuras fotovoltaicas y de las estaciones media tensión (MT) o centros de transformación.

Las cimentaciones de las estructuras se realizarán directamente hincadas al terreno, para su instalación se utilizará maquinaria especializada. Los cálculos estructurales serán objeto de un proyecto independiente en el que se validará la solución de cimentación adoptada. La profundidad de hincado estará conforme a lo indicado en el estudio geotécnico en función de las condiciones del terreno y los ensayos in situ necesarios.

Para los centros de transformación se ejecutará plataformas para la sustentación y nivelación de los equipos. Esta plataforma será objeto de un diseño y cálculo independiente en el que se recojan las características del terreno y los pesos y dimensiones de los equipos. Además, se dispondrán las entradas y salidas de cableado necesarias para el correcto funcionamiento de los equipos.
Canalizaciones eléctricas

Las canalizaciones eléctricas se realizarán con los cables directamente enterrados bajo zanja. Se aprovechará la apertura de las zanjas para colocar en su fondo un cable de cobre desnudo que formará parte de la red de tierras principal. A continuación, se colocarán los circuitos de conducción eléctrica, rellenando los distintos niveles de las zanjas con zahorra artificial, material proveniente de la excavación que después se compactará adecuadamente con medios mecánicos, incluso hormigón si se considera necesario en el diseño. Donde corresponda, se instalarán arquetas de registro.

Figura 60. Excavación de zanjas. Fuente: Grenergy.

La red de cables de la planta solar fotovoltaica estará compuesta por tendidos de potencia de baja y media tensión, red de tierras y comunicaciones, se realizará mediante conducciones en zanjas de diferente tamaño en función de los circuitos que discurren por su interior.

Constructivamente todas las zanjas serán iguales a excepción de las zanjas de red de tierras, las cuales serán detalladas en los siguientes apartados de esta memoria.

Ejecución de edificios

La planta fotovoltaica dispondrá de una sala de control con almacén permanente dentro del recinto de la subestación, donde además se encontrará una sala de celdas donde realizarán las funciones necesarias para el correcto funcionamiento del propio centro. Las dimensiones finales de los edificios se calcularán en función de las necesidades de mantenimiento de la planta en funcionamiento.
Montaje mecánico

Montaje de estructuras y de los módulos fotovoltaicos

La estructura solar está formada por un conjunto de perfiles metálicos unidos entre sí. El montaje de la estructura concluye con la fijación de los módulos fotovoltaicos a los perfiles metálicos mediante grapas uniones atornilladas.

![Montaje de estructura solar con perfiles hincados directamente en el terreno.](image)

Figura 61. Montaje de estructura solar con perfiles hincados directamente en el terreno.

Fuente: Grenergy

Montaje de estaciones transformadoras

Las estaciones transformadoras tan solo necesitarán la adecuación del terreno donde se instalarán y su correcto posicionamiento en el campo solar.

Montaje eléctrico

Los trabajos de montaje eléctrico incluyen las siguientes actividades:

- Instalación eléctrica de Baja Tensión (BT).
- Instalación eléctrica de Media Tensión (MT).
- Instalación de Línea de evacuación.

Instalaciones eléctricas de Baja Tensión (BT)

La instalación eléctrica de baja tensión se puede dividir en:

- Instalación de corriente continua en baja tensión.
- Instalación de corriente alterna en baja tensión.

Instalación eléctrica de Media Tensión (MT)
Cada una de las estaciones de potencia de MT que conforman la planta cuenta al menos con los siguientes elementos:

- Inversores
- Transformador BT/MT.
- Un transformador de servicios auxiliares junto con un armario de baja tensión para dar servicio a todas las cargas auxiliares.
- Celdas de MT que permite la conexión en antena de los diferentes centros de transformación de la planta.

La instalación eléctrica en Media Tensión (MT) consiste en la interconexión entre la salida del transformador de potencia y las celdas de MT, que en el caso de estaciones de potencia prefabricadas suelen venir conectadas de fábrica.

La instalación se completa con la conexión eléctrica de todos los transformadores BT/MT de la planta formando varios circuitos eléctricos hasta el centro de distribución que irá ubicado en la subestación de la planta. La interconexión de los transformadores BT/MT se realizará mediante cable de MT de manera similar al resto de tendidos eléctricos subterráneos de la planta.

ST COLIMBO 132/30 KV Y ST COLECTORA LA CEREAL 400KV

La obra civil para la construcción de la ST Colimbo y la ST Colectora La Cereal conllevará las siguientes acciones:

Explanación y acondicionamiento del terreno

Se proyecta la ejecución de la explanación existente a la cota de proyecto, llevándose a cabo el desbroce y retirada de la tierra vegetal de dicha zona, que se acopiará en obra para su extendido final en las zonas libres exteriores a la explanada, procediéndose posteriormente a la realización de los trabajos de excavación y relleno compactado en las correspondientes zonas hasta la referida cota de explanación.

Las subestaciones se implantarán en lugares con reducida pendiente para minimizar el movimiento de tierras y por lo tanto minimizar en mayor medida el impacto ambiental sobre el terreno y paisaje.

La cota de terminado de grava de la explanada quedará 10 cm por encima de la cota de explanación indicada.

Cerramiento perimetral

El cerramiento que delimitará los terrenos destinados a alojar las subestaciones estará formado por una malla metálica, fijado todo sobre postes metálicos de 48 mm de diámetro,
colocados cada 2,50 m. La sujeción de los postes al suelo se realizará mediante dados de hormigón, rematándose el espacio entre dados con un bordillo prefabricado. El cerramiento así constituido tendrá una altura de 2,30 m sobre el terreno, cumpliendo la mínima reglamentaria establecida de 2,20 m.

Se instalarán en las subestaciones accesos formados por dos puertas metálicas, una peatonal de una hoja y 1 m de anchura y otra para el acceso de vehículos de dos hojas y 6 m de anchura.

Construcción de accesos y viales interiores

Se ha proyectado el acceso a las subestaciones desde vías de comunicación de dominio público.

Se construirán los viales interiores necesarios para permitir el acceso de los equipos de transporte y mantenimiento requeridos para el montaje y conservación de los elementos de la Subestación.

Construcción de edificio

En cada subestación se instalará un edificio formado por elementos modulares prefabricados de hormigón armado con aislamiento térmico, realizándose “in situ” la cimentación y solera para el asiento y fijación de dichos elementos prefabricados y de los equipos interiores del edificio, así como la organización de las canalizaciones necesarias para el tendido de los cables de potencia y control. Además, se revestirá el propio edificio con una capa de mortero y se rematará con una cubierta a dos aguas de teja árabe tradicional.

Bancada del transformador y depósito de aceite

Para la instalación de los transformadores de potencia previstos en cada subestación se construirá una (1) bancada, formada por una cimentación de apoyo, y una cubeta para recogida del aceite, que en caso de un hipotético derrame se canalizará hacia un depósito en el que quedará confinado. La cimentación se recubrirá con pintura impermeabilizante para evitar cualquier fuga en caso de vertido de aceite.

Se instalará en cada subestación un (1) depósito de aceite. Se determinará mediante el estudio y análisis de las necesidades de los transformadores de potencia a instalar en la subestación. Este estudio será parte de la ingeniería de detalle de la misma y considerará las características de los fluidos dieléctricos de los transformadores, así como sus volúmenes.

El depósito de aceite será mayorado en un 30% del volumen total del aceite del transformador para contemplar la posible entrada de agua y cuyas tomas de evacuación permiten la salida de agua, pero nunca la del aceite.
El material del depósito de aceite se determinará en la fase de ingeniería de detalle pudiendo ser de hormigón armado o poliéster reforzado con fibra de vidrio.

Cimentaciones

Se realizarán las cimentaciones necesarias para la sustentación del aparellaje exterior de 132 y 30 kV en el caso de la ST Colimbo y del aparellaje exterior de 132 y 400kV en el caso de la ST Colectora la Cereal.

Construcción de canalizaciones eléctricas

Se construirán todas las canalizaciones eléctricas necesarias para el tendido de los correspondientes cables de potencia y control.

Estas canalizaciones estarán formadas por zanjas, arquetas y tubos, enlazando los distintos elementos de la instalación para su correcto control y funcionamiento.

Las zanjas se construirán con bloques de hormigón prefabricado, colocados sobre un relleno filtrante en el que se dispondrá un conjunto de tubos porosos que constituirán parte de la red de drenaje, a través de la cual se evacuará cualquier filtración manteniéndose las canalizaciones libres de agua.

Drenaje de aguas pluviales

El drenaje de las aguas pluviales se realizará mediante una red de recogida formada por tuberías drenantes que canalizarán las mismas a través de un colector hasta el exterior de la Subestación, vertiendo en las cunetas próximas.

Terminado de la subestación

Acabada la ejecución del edificio, cimentaciones y canalizaciones, se procederá a la extensión de una capa de grava de 10 cm de espesor para dotar de uniformidad la superficie de la subestación. Se favorecerá este pavimento oscuro para reducir la contaminación lumínica.

LÍNEA DE EVACUACIÓN 132 KV ST COLIMBO – ST COLECTORA LA CEREAL Y LÍNEA DE EVACUACIÓN 400 KV ST COLECTORA LA CEREAL – ST LA CEREAL REE (TRAMO AÉREO)

Se describen a continuación las principales acciones de proyecto asociadas a la construcción de las líneas eléctricas.

Apertura de caminos de acceso

Los accesos a los apoyos, que se definirán durante la redacción del proyecto técnico de ejecución, se establecerán de acuerdo a los siguientes criterios técnicos y ambientales:

- Se priorizará la selección de caminos existentes y en buen estado.
- En relación con la necesidad de tener que abrir portillos, cercas y otros accesos a la propiedad privada, se respetará en la medida de lo posible la configuración inicial. En caso de verse afectados se devolverán a su estado original, una vez hayan concluido los trabajos.

- La selección de caminos se realizará minimizando los efectos sobre el medio ambiente, así como la afectación a los propietarios.

La tipología de accesos se muestra en la tabla siguiente:

<table>
<thead>
<tr>
<th>Actuación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nueva construcción</td>
<td>Camino permanente cuya creación es necesaria para el acceso a algún apoyo. Su justificación se basa en diversos condicionantes, especialmente los topográficos, geológico-geotécnicos y de control de erosión.</td>
</tr>
<tr>
<td>Camino existente en buen estado</td>
<td>Camino permanente ya construido, de distinta titularidad, cuya capacidad es óptima para soportar el tráfico exigido en la actuación del apoyo al que se adscribe. Pueden presentar firmes bituminosos, bases de zahorra o firme terrizo y no se requieren actuaciones de acondicionamiento de los mismos.</td>
</tr>
<tr>
<td>Campo a través</td>
<td>Trocha para la aproximación final al emplazamiento del apoyo sobre cultivos o prados, sobre el que se ha adquirido un derecho de paso a través de una servidumbre. Esta servidumbre es permanente, pero el tramo puede ser restaurado para su cultivo una vez finalizada la obra, pudiéndose volver a emplear siempre que sea necesario.</td>
</tr>
<tr>
<td>Camino existente a acondicionar</td>
<td>Camino permanente ya construido, de distinta titularidad, cuyo trazado es adecuado para acceder al apoyo al que se adscribe, pero que necesita de actuaciones diversas para obtener su plena funcionalidad, como refuerzos de firme, aumento de anchura o conformación de drenajes.</td>
</tr>
<tr>
<td>Tramo con actuación</td>
<td>Corresponde al caso concreto de tener la necesidad de actuar sobre cualquier tipo de construcción (muro, pozo, verja, acequias, conducciones subterráneas, etc.) o sobre el terreno para darle funcionalidad.</td>
</tr>
<tr>
<td>Camino público a acondicionar</td>
<td>Camino permanente ya construido, de titularidad pública, cuyo trazado es adecuado para acceder al apoyo al que se adscribe, pero que necesita de actuaciones diversas para</td>
</tr>
<tr>
<td>Actuación</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>obtener su plena funcionalidad, como refuerzos de firme, aumento de anchura o conformación de drenajes.</td>
</tr>
</tbody>
</table>

Cimentaciones de los apoyos

La cimentación de los apoyos de las líneas serás del tipo de zapatas individuales o patas separadas, esto es, está formada por cuatro bloques macizos de hormigón en masa, uno por pata, totalmente independientes.

Estas cimentaciones tienen forma troncocónica con una base cilíndrica de 0,5 m de altura, en la que se apoya la pata, siendo las dimensiones del macizo función de las características del terreno y del apoyo resultante de cálculo.

Para la realización de las cimentaciones será necesaria la apertura de una plataforma de trabajo para cada apoyo que delimite una zona de trabajo, necesaria a su vez para realizar posteriormente su montaje e izado.

Armado e izado de los apoyos

El montaje previo de la torre se realiza en el suelo, dentro de la plataforma de trabajo habilitada para los trabajos de obra civil. Para ello se disponen una serie de calces en los que se apoya la torre, quedando totalmente horizontal y sin tocar el terreno, con su base en la zona de anclaje, para que el apoyo quede colocado en este punto en el momento de ser izado.

Posteriormente, desde la plataforma, se izan los apoyos mediante grúas o plumas.

En zonas de difícil acceso para la maquinaria o donde existan cultivos o arbolado a conservar, se priorizará realizar el montaje sobre la propia torre mediante pluma. Este método se basa en el izado de las piezas una a una desde la plataforma de trabajo. No obstante, el izado de los apoyos mediante grúa se considera mejor desde el punto de vista de la seguridad a los trabajadores.

Tendido de cable

Una vez que se han izado los apoyos comienza la fase de tendido. En esta fase se continúan utilizando los accesos y explanadas de trabajo abiertos en las fases anteriores.

Tradicionalmente se utiliza el auxilio de un cable piloto de acero, usado como guía, y que es el que se arrastra por el terreno, siguiendo el vano entre cada dos apoyos, para a continuación, ser izado hasta su ubicación definitiva en el apoyo, pasándolo por una polea situada en la cruceta correspondiente y tensándolo.
El tendido del cable guía se realiza mediante una máquina de freno que va desenrollando los conductores de la bobina, según se avanza con el cable guía una vez pasado éste por la polea, para lo cual es arrastrado mediante un vehículo todo terreno o tractor. Cuando se llega hasta un apoyo, una persona sube una cuerda unida solidariamente al cable guía, hasta la polea, de forma que se pueda continuar con el vano siguiente.

En caso de no poder utilizarse este método, el tendido puede realizarse a mano o bien con helicóptero. Estos métodos se utilizan en zonas en las que lo abrupto del terreno o el valor de la vegetación presente desaconsejan el paso de un vehículo 4x4. Para ello se hace uso de una cuerda piloto y se trata de sortear la vegetación natural arbolada existente. Una vez que la cuerda piloto está colocada en las poleas, se procede a tender cables de acero cada vez más gruesos, hasta que finalmente se tienden los conductores.

En ambos casos, una vez izado el cable guía en el apoyo, o en su lugar una cuerda que sirva para tirar de éste, el tendido se realiza totalmente por el aire, no tocando los conductores en ningún momento el suelo o las copas de los árboles.

Colocación de salvapájaros

Para disminuir el riesgo de colisión de la avifauna se señala el cable de tierra con dispositivos que aumentan su visibilidad, conocidos como salvapájaros.

Eliminación de materiales y rehabilitación de daños

Una vez finalizadas las actuaciones, los lugares donde se realizan las obras deben quedar en condiciones similares a las existentes antes de comenzar los trabajos, en cuanto a orden y a limpieza, retirando los materiales sobrantes de las obras. Las cajas, embalajes, desechos, etc. deben ser recogidas y gestionados conforme a la legislación de aplicación. Se deberán restaurar a su situación original todas las plataformas y caminos de acceso que no tengan carácter definitivo.

Maquinaria

Se relacionan a continuación los elementos de maquinaria que componen parte del equipo de trabajo, según la fase de las obras:

- **Obra civil** (acondicionamiento de caminos, rebajes de terreno, actuaciones...): bulldóceres, palas retro, camiones, camiones con pluma y vehículo 4x4 (transporte de personal, equipo, madera, etc.), motosierras de cadena.
- **Excavaciones y hormigonado**: perforadora, compresor, hormigonera, camiones y vehículos 4x4.
- **Montaje e izado de apoyos**: camiones tráiler, para el transporte de materiales desde fábrica, camiones normales, grúas, plumas, y vehículos “todo terreno”.

Página 173
- Tensado de cables: equipos de tiro (cabeestrante de tiro, máquina de freno, etc.) camiones tráiler para el transporte de material desde la fábrica, camiones normales, vehículos 4x4.
- Colocación de salvapájaros: vehículos 4x4.

Control durante las obras

Durante las obras se establecerán una serie de controles y métodos de trabajo en cada fase, así como un control general y una serie de medidas de seguridad.

Todo ello se refleja en el conjunto de especificaciones técnicas y pliegos de condiciones que tiene que cumplir la empresa adjudicataria de los trabajos, es decir, el contratista.

El contratista será responsable, entre otras, de las siguientes cuestiones relacionadas con el impacto ambiental de las obras:

1. Orden, limpieza y limitación del uso del suelo de las obras objeto del contrato.
2. Adopción de las medidas que le sean señaladas por las autoridades competentes para causar los mínimos daños y el menor impacto en:
 - Caminos, acequias, canales de riego y, en general, todas las obras civiles que crucen las líneas o que sea necesario cruzar y/o utilizar para acceder a las obras.
 - Plantaciones agrícolas, pastizales y cualquier masa arbórea o arbustiva.
 - Formaciones geológicas, monumentos, yacimientos, reservas naturales, etc.
3. Cerramiento de las propiedades, ya sean naturales o de obra, manteniéndolas en todo momento según las instrucciones del propietario.
4. Obligación de causar los mínimos daños sobre las propiedades.
5. Prohibición de uso de explosivos, salvo en casos muy excepcionales.
6. Prohibición de verter aceites y grasas al suelo, debiendo recogerse y trasladar a vertedero o hacer el cambio de aceite de maquinaria en taller.
7. Queda totalmente prohibida la quema de residuos forestales, salvo que esta se realice con la pertinente autorización administrativa.
8. El contratista debe asegurar que las campas de trabajo y las zonas de acopio de materiales, serán las mínimas posibles, utilizarán la mínima extensión y estarán bien delimitadas.
9. Las referidas especificaciones ambientales se complementan, como corresponde con:
• Las condiciones ambientales (medidas preventivas y correctoras) resultantes del presente Estudio de impacto ambiental.

• El Plan de Vigilancia Ambiental para la fase de construcción resultante del presente Estudio de impacto ambiental.

• Las condiciones ambientales que deriven de los informes sectoriales emitidos hasta la fecha en la fase de consultas, así como el de la futura Declaración de Impacto Ambiental que se emita.

Operación y mantenimiento

El mantenimiento que se lleva a cabo implica revisiones periódicas del arbolado potencialmente afectado por la línea eléctrica.

Como norma general, se efectúan como mínimo dos revisiones rutinarias, o de mantenimiento preventivo, por año. En una de ellas se recorre a pie todo el trazado de la línea. La otra se realiza mediante un vuelo en helicóptero sobre toda la línea.

LÍNEA DE EVACUACIÓN 132KV ST COLIMBO – ST COLECTORA LA CEREAL Y LÍNEA DE EVACUACIÓN 400 KV ST COLECTORA LA CEREAL – ST LA CEREAL REE (TRAMO SUBTERRÁNEO)

Obra civil

Zanja del cable

Las canalizaciones de líneas subterráneas se proyectarán teniendo en cuenta las siguientes consideraciones:

• La canalización discursirá por terrenos de dominio público y privado, evitando siempre los ángulos pronunciados.

• El radio de curvatura después de colocado el cable será de mínimo 16 veces el diámetro. Los radios de curvatura en operaciones de tendido serán como mínimo el doble de las indicadas anteriormente en su posición definitiva.

• Los cruces de calzadas serán perpendiculares al eje de la calzada o vial.

• Los cruces de arroyos o cauces de agua serán perpendiculares al eje del mismo.

Los cables se alojarán en zanjas que, además de permitir las operaciones de apertura y tendido, cumplirá con las condiciones de paralelismo, cuando lo haya.

El lecho de la zanja debe ser liso y estar libre de aristas vivas, cantos, piedras, etc. En el mismo se colocará una capa de arena de mina o de río lavado, limpia y suelta, exenta de sustancias orgánicas, arcilla o partículas terrosas, y el tamaño del grano estará comprendido
entre 0,2 y 3 mm, siendo la capa de un espesor mínimo de 50 mm, sobre la que se depositará el cable o cables a instalar. Encima de los cables irá otra capa de arena de idénticas características con un espesor mínimo de 100 mm sobre los cables, y sobre ésta se colocará una protección a todo lo largo del trazado del cable. Esta protección estará constituida por el número de placas cubrecables necesario para cubrir toda la longitud y anchura de la zanja. Las dimensiones del cubrecables serán 250 mm de ancho por 1.000 mm de longitud. Esta placa tendrá una superficie lisa libre de irregularidades y defectos el corte de los extremos de las placas será perpendicular a su eje longitudinal, sin aristas o rebabas cortantes y su perfil será uniforme.

Las dos capas de arena cubrirán la anchura total de la zanja. A continuación, se tenderá una capa de tierra procedente de la excavación y con tierras de préstamo de arena, todo-uno o zahorras, de 0,3 m de espesor, apisonada por medios manuales. Se cuidará que esta capa de tierra esté exenta de piedras o cascotes. Sobre esta capa de tierra, y a una distancia mínima del suelo de 0,40 m y 0,40 m de la parte superior del cable se colocará una cinta de señalización como advertencia de la presencia de cables eléctricos.

A continuación, se terminará de rellenar la zanja con tierra procedente de la excavación, y en su defecto, con tierras de préstamo de, arena, todo-uno o zahorras, debiendo utilizar para su apisonado y compactación medios mecánicos.

Cuando los circuitos discurren bajo tubo hormigonado se realizará un dado de hormigón de dimensiones en el que se embeberán los tubos para el tendido de los cables. Sobre el hormigón, se terminará de rellenar la zanja con tierra procedente de la excavación, y en su defecto, con tierras de préstamo de, arena, todo-uno o zahorras, debiendo utilizar para su apisonado y compactación medios mecánicos.

Cámara de empalme

La cámara de empalme será prefabricada, de una sola pieza y estanca. Se ajustará a la pendiente del terreno con un máximo del 10%.

La colocación de la cámara se deberá efectuar con una grúa adecuada.

Una vez colocada la cámara en su sitio se procederá a la conexión de los distintos tubos de la canalización con la cámara y a la unión de los anillos exteriores con la puesta a tierra interior.

Una vez cerrada la tapa de la boca de tendido y antes de rellenar el espacio entre la cámara y el terreno con hormigón de limpieza, habrá que rellenar los huecos libres entre el tubo de ayuda al tendido y el pasamuros con lana de roca y posteriormente mortero, para evitar que el hormigón se una a la tapa de la boca de tendido, inutilizándola.
Si las características del terreno hacen inviable el transporte y colocación de este tipo de cámaras, se utilizarán cámaras modulares con las características que se detallan a continuación.

Las cámaras de empalme serán prefabricadas de hormigón armado y deberán ir colocadas sobre una losa de hormigón armado nivelada con las características definidas en el plano correspondiente.

Una vez colocada la cámara en su sitio se procederá a la conexión de los distintos tubos de la canalización con la cámara. Una vez embocados los tubos se procederá a su sellado.

Para finalizar estas tareas se rellenará el espacio entre la cámara y el terreno con un hormigón de limpieza tipo HM-12,5 hasta una cota de 300 mm por debajo de la cota del terreno.

Arquetas de telecomunicaciones

Para poder realizar los empalmes de los cables de fibra óptica necesarios para las comunicaciones entre las subestaciones y como ayuda para el tendido de los mismos se requiere la instalación de arquetas de telecomunicaciones. Estas arquetas también se instalarán al final de los tramos, en las cercanías de las estructuras soporte de los terminales exteriores de las subestaciones o apoyos PAS.

Tendido

Antes de empezar el tendido de los cables se estudiará el lugar más adecuado para colocar la bobina con objeto de facilitar el mismo. En el caso de trazado con desnivel se realizará el tendido en sentido descendente.

Las bobinas se situarán alineadas con la traza de la línea. Si existiesen curvas o puntos de paso difíciles próximos a uno de los extremos de la canalización, es preferible situar la bobina en ese extremo a fin de que el coeficiente de rozamiento sea el menor posible.

El traslado de las bobinas se realizará mediante vehículo transportándose siempre de pie y nunca tumbadas sobre uno de los platos laterales. Las bobinas estarán inmovilizadas por medio de cuñas adecuadas para evitar el desplazamiento lateral.

La velocidad de tendido será del orden de 2,5 a 5 metros por minuto y será preciso vigilar en todo momento que no se produzcan esfuerzos laterales importantes con las aletas de la bobina.

ACCIONES DE DESMANTELAMIENTO DEL PROYECTO

Acciones del desmantelamiento de la PFV

La vida útil de la PFV se estima en 40 años. Una vez finalizada, en caso de no realizarse una reposición de la planta, se procederá al desmantelamiento y retirada de todos los equipos. El
objetivo de las operaciones de desmantelamiento será la restauración de los terrenos a las condiciones anteriores a la construcción del parque, minimizando así la afección al medio ambiente y recuperando el valor ecológico de la zona afectada.

Desde el punto de vista del desmantelamiento, la instalación se compone de:

- Estructuras metálicas fijadas mediante hincado para colocación de los paneles.
- Módulos fotovoltaicos.
- Instalación eléctrica subterránea.
- Equipos electrónicos para la conversión de corriente continua en corriente alterna.
- Equipos eléctricos de medida y protección.
- Casetas prefabricadas para albergar los equipos de conversión y transformación.
- Sistema de seguridad, vigilancia y alumbrado.
- Vallado perimetral.
- Línea eléctrica de evacuación de 30 kV.

Para ejecutar el desmantelamiento de la instalación conectada a red, se han de ejecutar los siguientes trabajos:

- Desmontaje y retirada de los módulos fotovoltaicos.
- Desmontaje y retirada de estructuras metálicas y apoyos hincados.
- Retirada de circuitos eléctricos e interconexión.
- Desmontaje del sistema de inversión (inversores y centros de transformación).
- Desinstalación de los sistemas de seguridad, vigilancia, control y medida.
- Demolición de las cimentaciones, edificios prefabricados y subestación eléctrica.
- Retirada del cerramiento perimetral.
- Demolición de viales.
- Desmantelamiento y demolición de edificios prefabricados y cimentaciones.
- Retirada de la infraestructura de evacuación (línea eléctrica 30 kV soterrada).
- Restauración final.

Acciones del desmantelamiento de las ST y las LEAT

Una vez concluida la vida útil de las líneas eléctricas, se desmontarán todas las infraestructuras asociadas a ellas.
El cableado se retirará eliminando las fijaciones a los apoyos y a través de poleas se retirará mediante máquinas de tiro y freno.

Desmontaje de los apoyos

El desmantelamiento de un apoyo consiste en la retirada del apoyo y la recuperación de la orografía original de la plataforma en la que se ubica el apoyo.

Para el desmontaje de los apoyos, se contemplan 3 tipos diferentes de procedimientos según la ubicación de los mismos:

- **Procedimiento nº 1**: para la realización del desmontaje de los apoyos, se seguirán los siguientes pasos:
 1. Se soltarán los tornillos de dos de los cuatro anclajes del apoyo o bien se cortarán dos de las cuatro patas, y se tirará de él mediante un pull-lift, hasta que este se desplome al suelo en terreno descubiertos.
 2. Una vez esté en el suelo éste se troceará en dimensiones adecuadas para su transporte, mediante una cizalla hidráulica acoplada a una retroexcavadora, o bien con soplete, siempre intentando que la cizalla arrastre a su posición fija establecida los restos a trocear, para concentrar así todos los restos de pintura originados.
 3. El apoyo una vez troceado se acopiará con el camión-grúa en el lugar indicado para su recogida (gestión de residuos).

- **Procedimiento nº 2**: en los lugares donde no se pueda realizar el desmontaje de la forma anteriormente descrita, se seguirá el siguiente procedimiento:

 Se llevará una grúa autopropulsada, de tonelaje adecuado, hasta el apoyo. Una vez estribado el apoyo, se soltarán los tornillos de los anclajes de los tramos de la torre convenidos y la grúa descenderá el apoyo hasta el suelo. Un camión-grúa hará la retenida del apoyo en caso necesario. También se podrá desmontar el apoyo por tramos.

 El proceso de troceado se hará igual que en el caso anterior.

- **Procedimiento nº 3**: cuando por las condiciones del terreno, accesos o restricciones medioambientales no se pueda emplear ninguno de los dos métodos anteriores, se desmontará los apoyos de la siguiente manera:
 1. Se instalará en el apoyo una pluma debidamente arriostrada.
 2. Los operarios subirán al apoyo, y mediante una máquina de tiro y la pluma irán desmontando el apoyo en pequeños paneles.
3. Una vez en el suelo, estos paneles serán desmontados hasta el lugar adecuado para su posterior recogida.

Retirada de las cimentaciones

Las cuatro peanas de cada apoyo se demolerán hasta los 80 cm de profundidad en terrenos de labor o cultivo (evitando así rotura de maquinaria agrícola), en el resto de terrenos se picarán las peanas a 20 cm de la superficie excepto en zonas de roca viva donde se podrá demoler hasta ras de suelo. En todo caso se procederá con martillo hidráulico. Posteriormente se cortarán los anclajes utilizando métodos que no supongan riesgo ambiental, con especial atención a aquellos susceptibles de producir incendios y posteriormente se gestionarán adecuadamente aquellos residuos generados, restaurándose el terreno a su estado original a continuación.

GESTIÓN DE RESIDUOS

Se resumen a continuación los estudios de gestión de residuos incluidos en los Proyectos Básicos de la PFV GR Colimbo y de sus infraestructuras de evacuación.

PFV GR COLIMBO

Los residuos (código LER) que se pueden generar durante la construcción de la PFV son los siguientes:

<table>
<thead>
<tr>
<th>Código LER</th>
<th>Residuo</th>
<th>Tratamiento</th>
<th>Destino</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 01 01</td>
<td>Hormigón</td>
<td>Reciclado / vertedero</td>
<td>Planta reciclaje RCD / vertedero RCD</td>
</tr>
<tr>
<td>17 01 02</td>
<td>Ladrillos</td>
<td>Reciclado / vertedero</td>
<td>Planta reciclaje RCD / vertedero RCD</td>
</tr>
<tr>
<td>17 05 04</td>
<td>Tierras y piedras distintas de las especificadas en el código 17 05 03</td>
<td>Sin tratamiento específico</td>
<td>Restauración / vertedero</td>
</tr>
<tr>
<td>17 04 05</td>
<td>Metales: hierro y acero</td>
<td>Valorización</td>
<td>Reciclaje o recuperación de metales y de compuestos metálicos</td>
</tr>
<tr>
<td>17 09 04</td>
<td>Residuos mezclados de construcción/demolición que no contengan sustancias peligrosas</td>
<td>Reciclado / vertedero</td>
<td>Planta reciclaje RCD / vertedero RCD</td>
</tr>
<tr>
<td>17 02 01</td>
<td>Madera</td>
<td>Reciclado / Valorización</td>
<td>Planta de reciclaje / Planta de valorización energética</td>
</tr>
<tr>
<td>17 02 03</td>
<td>Plástico</td>
<td>Reciclado / Valorización</td>
<td>Planta de reciclaje RCD / vertedero RCD</td>
</tr>
<tr>
<td>17 04 11</td>
<td>Cables que no contienen hidrocarburos, alquitrán de hulla u otras sustancias peligrosas</td>
<td>Valorización</td>
<td>Reciclaje o recuperación de metales y de compuestos metálicos</td>
</tr>
<tr>
<td>Código LER</td>
<td>Residuo</td>
<td>Tratamiento</td>
<td>Destino</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>20 01 39</td>
<td>Envases de plástico</td>
<td>Recogida mediante sistema integrado de gestión (SIG)</td>
<td>Planta de reciclaje</td>
</tr>
<tr>
<td>20 01 01</td>
<td>Envases de papel y cartón</td>
<td>Recogida mediante sistema integrado de gestión (SIG)</td>
<td>Planta de reciclaje</td>
</tr>
<tr>
<td>20 03 01</td>
<td>Mezcla de residuos municipales</td>
<td>Valorización / eliminación</td>
<td>Planta de tratamiento / vertedero</td>
</tr>
<tr>
<td>15 02 02</td>
<td>Absorbentes contaminados. Principalmente serán trapos de limpieza contaminados</td>
<td>Según gestor autorizado</td>
<td>Gestor autorizado</td>
</tr>
<tr>
<td>15 01 11</td>
<td>Aerosoles</td>
<td>Según gestor autorizado</td>
<td>Gestor autorizado</td>
</tr>
<tr>
<td>15 01 10</td>
<td>Envases vacíos de metal o plástico contaminados</td>
<td>Según gestor autorizado</td>
<td>Gestor autorizado</td>
</tr>
</tbody>
</table>

Cada residuo será almacenado en la obra según su naturaleza, y se depositará en el lugar destinado a tal fin, según se vaya generando.

Los residuos no peligrosos se almacenarán temporalmente en contenedores metálicos o sacos industriales según el volumen generado previsto, en la ubicación previamente designada.

También se depositarán en contenedores o en sacos independientes los residuos valorizables como metales o maderas para facilitar su posterior gestión.

Todos los contenedores o sacos industriales que se utilicen en las obras tendrán que estar identificados según el tipo de residuo o residuos que van a contener. Estos contenedores tendrán que estar marcados además con el titular del contenedor, su razón social y su código de identificación fiscal, además del número de inscripción en el registro de transportistas de residuos. El responsable de la obra adoptará medidas para evitar que se depositen residuos ajenos a la propia obra.

Los residuos sólidos urbanos (RSU) se recogerán en contenedores específicos para ello, se ubicarán donde determine la normativa municipal. Se puede solicitar permiso para el uso de contenedores cercanos o contratar el servicio de recogida con una empresa autorizada por el ayuntamiento.

Los residuos cuyo destino sea el depósito en vertedero autorizado deberán ser trasladados y gestionados según marca la legislación.

Los residuos peligrosos que se generen en la obra se almacenarán en recipientes cerrados y señalizados, bajo cubierto. El almacenamiento se realizará siguiendo la normativa específica de residuos peligrosos, es decir, se almacenarán en envases convenientemente identificados especificando en su etiquetado el nombre del residuo, código LER, nombre y dirección del...
producer and pictogram of danger. They will be managed subsequently by authorized manager of dangerous residues.

It will be necessary to have the constant count of the authorizations of the managers of the residues, of the transporters and of the waste disposal sites.

In the following table it includes an estimation of the residues that will be generated during the construction of the PFV:

<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>Código LER</th>
<th>Cantidad</th>
<th>m³</th>
<th>Tn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuos de la silvicultura</td>
<td>020107</td>
<td>Partida civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tierras limpias y materiales pétreos</td>
<td>17 05 04</td>
<td>1.692,22</td>
<td>2.876,77</td>
<td></td>
</tr>
<tr>
<td>Hormigón</td>
<td>17 01 01</td>
<td>1,65</td>
<td>3,96</td>
<td></td>
</tr>
</tbody>
</table>

ST COLIMBO Y ST COLECTORA LA CEREAL

In continuation, they analyze the residues that are expected to be generated during the construction of these substations:

RCDs Nivel I

<table>
<thead>
<tr>
<th>Tierra y pétreos de la excavación</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 17 05 04</td>
</tr>
</tbody>
</table>

RCDs Nivel II

RCD: Naturaleza no pétreo

1. **Madera**

| X 17 02 01 | Madera |

2. **Metales**

| X 17 04 05 | Hierro y Acero |
| X 17 04 11 | Cables distintos de los especificados en el código 17 04 10 |

3. **Papel**

| X 20 01 01 | Papel y cartón |

4. **Plástico**

| X 17 02 03 | Plásticos |
| X 20 01 39 | Plásticos. Material plástico procedente de envases y embalajes de equipos |

5. **Vidrio**

| X 17 02 02 | Vidrio |

6. **Yeso**

| X 17 08 02 | Materiales de construcción a partir de yeso distintos a los del código 17 08 01 |

RCDs Nivel II
RCD: Naturaleza pétrea

1. **Arena, grava y otros áridos**
 - X 01 04 08 Residuos de grava y rocas trituradas distintos de los mencionados en el código 01 04 07
 - X 17 05 04 Tierras y piedras distintas de las especificadas en el código 17 05 03

2. **Hormigón**
 - X 17 01 01 Hormigón

3. **Ladrillos, azulejos y otros cerámicos**
 - X 17 01 02 Ladrillos
 - X 17 01 03 Tejas y materiales cerámicos

4. **Piedra**
 - X 17 05 04 Tierras y piedras distintas de las especificadas en el código 17 05 03
 - X 17 09 04 Residuos mezclados de construcción y demolición distintos de los especificados en los códigos 17 09 01, 17 09 02 y 17 09 03

RCD: Potencialmente peligrosos y otros

1. **Basuras**
 - X 20 03 01 Mezcla de residuos municipales

2. **Potencialmente peligrosos y otros**
 - X 13 02 05 Aceites minerales no clorados de motor, de transmisión mecánica y lubricantes
 - X 16 06 04 Pilas alcalinas (excepto 16 06 03)
 - X 15 02 02 Absorbentes, materiales de filtración (incluidos los filtros de aceite no especificados en otra categoría), trapos de limpieza y ropas protectoras contaminados por sustancias peligrosas
 - X 15 01 11 Aerosoles vacíos
 - X 15 01 10 Envases vacíos de metal o plástico contaminados

Se procurará, en los casos en los que sea posible, la reutilización de las tierras procedentes de la excavación. En cuanto al resto de materiales de la obra, no se prevé la reutilización en la obra, se transportará a vertedero autorizado.

La estimación de residuos generados durante la construcción de ambas subestaciones eléctricas se recoge en las tablas siguientes:
Residuos generados durante la construcción de la ST Colimbo

<table>
<thead>
<tr>
<th>RCDs Nivel I: Tierras y pétreos procedentes de excavación</th>
<th>Código Ler</th>
<th>Total M3</th>
<th>Peso específico (TN/M3)</th>
<th>Peso (TN)</th>
<th>Residuo (TN) 70%</th>
<th>Residuo M3 70%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17 05 04</td>
<td>470,83</td>
<td>1,25</td>
<td>926,03</td>
<td>648,222</td>
<td>518,578</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPERFICIE CERRAMIENTO SUBESENTACIÓN (M2)</th>
<th>Volumen residuos (m3)</th>
<th>Densidad Tipo (t/m3)</th>
<th>Toneladas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.826</td>
<td>565,2</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCDs Nivel II</th>
<th>Código Ler</th>
<th>% Considerado</th>
<th>Residuo Generado (TN)</th>
<th>Peso especifico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADERA</td>
<td>17 02 01</td>
<td>0,14%</td>
<td>0,742</td>
<td>0,6</td>
<td>1,236</td>
<td>1</td>
</tr>
<tr>
<td>METALES</td>
<td>17 04 05</td>
<td>0,25%</td>
<td>1,323</td>
<td>1,5</td>
<td>0,882</td>
<td>1</td>
</tr>
<tr>
<td>PAPEL</td>
<td>17 04 11</td>
<td>0,4%</td>
<td>0,186</td>
<td>0,9</td>
<td>0,207</td>
<td>1</td>
</tr>
<tr>
<td>PLÁSTICO</td>
<td>17 02 02</td>
<td>0,04%</td>
<td>0,227</td>
<td>0,9</td>
<td>0,232</td>
<td>1</td>
</tr>
<tr>
<td>VIDRIO</td>
<td>17 02 06</td>
<td>0,01%</td>
<td>0,071</td>
<td>1,5</td>
<td>0,047</td>
<td>1</td>
</tr>
<tr>
<td>YESO</td>
<td>17 08 02</td>
<td>0,00%</td>
<td>0,016</td>
<td>1,2</td>
<td>0,013</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL ESTIMACIÓN</td>
<td></td>
<td>0,43%</td>
<td>2,564</td>
<td></td>
<td>2,637</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCD Naturaliza pétreo</th>
<th>Código Ler</th>
<th>% Considerado</th>
<th>Residuo Generado (TN)</th>
<th>Peso especifico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARENA, GRAVA, ARIDOS</td>
<td>17 05 04</td>
<td>4,00%</td>
<td>21,478</td>
<td>1,5</td>
<td>14,318</td>
<td>1</td>
</tr>
<tr>
<td>HORMIGÓN</td>
<td>17 01 01</td>
<td>3,59%</td>
<td>18,214</td>
<td>2,25</td>
<td>8,551</td>
<td>1</td>
</tr>
<tr>
<td>LADRILLOS, AZULEJOS Y OTROS CERÁMICOS</td>
<td>17 01 02</td>
<td>0,04%</td>
<td>0,22</td>
<td>1,5</td>
<td>0,146</td>
<td>1</td>
</tr>
<tr>
<td>PIEDRA</td>
<td>17 05 04</td>
<td>0,11%</td>
<td>0,584</td>
<td>2</td>
<td>0,287</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL ESTIMACIÓN</td>
<td>17,7348%</td>
<td>41,532</td>
<td></td>
<td></td>
<td>23,313</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCD Potencialmente peligrosos o otros</th>
<th>Código Ler</th>
<th>% Considerado</th>
<th>Residuo Generado (TN)</th>
<th>Peso especifico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASURAS</td>
<td>17 02 03</td>
<td>0,04%</td>
<td>0,223</td>
<td>0,9</td>
<td>0,240</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>13 02 05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 08 04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTENCIALMENTE PELIGROSOS</td>
<td>15 02 02</td>
<td>0,03%</td>
<td>0,137</td>
<td>0,9</td>
<td>0,153</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>15 01 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 01 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ESTIMACIÓN</td>
<td>0,0671%</td>
<td>0,360</td>
<td></td>
<td></td>
<td>0,400</td>
<td></td>
</tr>
</tbody>
</table>
Residuos generados durante la construcción de la ST Colectora La Cereal

<table>
<thead>
<tr>
<th>CÓDIGO LER</th>
<th>TOTAL M3</th>
<th>Peso específico (TN/M3)</th>
<th>Peso (TN)</th>
<th>RESIDUO (TN) 70%</th>
<th>RESIDUO M3 70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 05 04</td>
<td>983,73</td>
<td>1,25</td>
<td>1104,66</td>
<td>773,285</td>
<td>618,612</td>
</tr>
</tbody>
</table>

SUPERFICIE CERRAMIENTO SUBESTACIÓN (M2)

<table>
<thead>
<tr>
<th>Volumen residuos (m3)</th>
<th>Densidad Tipo (t/m3)</th>
<th>Toneladas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5083,50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCDs Nivel II</th>
<th>CÓDIGOS LER</th>
<th>% Considerado</th>
<th>RESIDUO GENERADO (TN)</th>
<th>Peso específico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
</table>

RCD Natural que no pétre

<table>
<thead>
<tr>
<th>Tipo Material</th>
<th>CÓDIGOS LER</th>
<th>% Considerado</th>
<th>RESIDUO GENERADO (TN)</th>
<th>Peso específico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
</table>

RCD Natural que pétre

<table>
<thead>
<tr>
<th>Tipo Material</th>
<th>CÓDIGOS LER</th>
<th>% Considerado</th>
<th>RESIDUO GENERADO (TN)</th>
<th>Peso específico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tipo Material</th>
<th>CÓDIGOS LER</th>
<th>% Considerado</th>
<th>RESIDUO GENERADO (TN)</th>
<th>Peso específico (t/m3)</th>
<th>m3</th>
<th>Zonas de segregación</th>
</tr>
</thead>
</table>

TOTAL ESTIMACIÓN

Página 185
LÍNEA DE EVACUACIÓN 132 KV ST COLIMBO – ST COLECTORA LA CEREAL Y LÍNEA DE EVACUACIÓN 400 KV ST COLECTORA LA CEREAL – ST LA CEREAL REE

Las actividades que se llevarán a cabo y que darán lugar a la generación de residuos, serán las siguientes:

- Apertura/acondicionamiento de accesos y zonas de trabajo: desbroces/talas y movimientos de tierras.
- Obra civil: excavación y hormigonado de cimentaciones.
- Acopio de material necesario en las campas.
- Apertura de la calle de tendido. Apertura de calle de seguridad (talas y podas).
- Tendido de cables eléctricos y cables de tierra.
- Limpieza y restauración de las zonas de obra.

Los residuos peligrosos generados en la fase de construcción serán principalmente los derivados del mantenimiento de la maquinaria utilizada para la realización de la obra: aceites usados, restos de trapos impregnados con aceites y/o disolventes, envases que han contenido sustancias peligrosas, etc.

Las operaciones de mantenimiento de maquinaria se realizarán preferentemente en talleres externos, aunque debido a averías de la maquinaria en la propia obra y la dificultad de traslado de maquinaria de gran tonelaje, en ocasiones resulta inevitable realizar dichas operaciones in situ.

Debido a situaciones accidentales durante el mantenimiento de la maquinaria o a la manipulación de sustancias peligrosas pueden producirse pequeños vertidos de aceites, combustibles, etc. que originen tierras contaminadas.

En la fase de construcción los residuos no peligrosos que se generen serán del tipo metales, plásticos, restos de cables, restos de hormigón y restos orgánicos, etc.

Los excedentes de excavación generados debido a la realización de las cimentaciones de los apoyos serán:

- Línea de evacuación 132 kV ST Colimbo – ST Colectora La Cereal: 462 m³.
- Línea de evacuación 220 kV ST Colectora La Cereal – ST La Cereal REE: 193,7 m³.

En cuanto a las operaciones de movimiento de tierras, se retirará en primer lugar la capa superficial, constituida por tierra vegetal que podrá ser reutilizada para las labores de recuperación de la zona.
Las tierras sobrantes generadas debidas a las excavaciones, serán reutilizadas preferentemente en las labores de relleno, siempre que sea posible, tratando de minimizar, por tanto, las tierras sobrantes que deban ser retiradas.

Como consecuencia de la presencia del personal de obra, se generarán una serie de residuos asimilables a urbanos, como restos de comidas, envoltorios, latas, etc.

En las siguientes tablas se resumen los residuos generados tanto en la fase de construcción como en la fase de explotación de las líneas:

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>TIPO DE RESIDUO</th>
<th>PROCEDENCIA</th>
<th>GESTIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 01 01</td>
<td>Restos de Hormigón</td>
<td>Operaciones de hormigonado de cimentaciones</td>
<td>Retirada por Gestor autorizado, priorizando su valorización</td>
</tr>
<tr>
<td>17 01 06 / 17 01 07</td>
<td>Escombros</td>
<td>Demolición de cimentaciones</td>
<td>Retirada prioritariamente a plantas de fabricación de áridos para su reciclaje y sino es posible a vertederos autorizados</td>
</tr>
<tr>
<td>17 02 01</td>
<td>Madera</td>
<td>Realización de cimentaciones Montaje de estructuras</td>
<td>Retirada por Gestor autorizado, priorizando su reutilización, valorización</td>
</tr>
<tr>
<td>17 02 03</td>
<td>Plásticos (envases y embalajes)</td>
<td>Envoltorio de componentes, protección transporte de materiales</td>
<td>Retirada por Gestor autorizado, priorizando su reutilización, valorización</td>
</tr>
<tr>
<td>17 04 05</td>
<td>Hierro y acero</td>
<td>Realización de cimentaciones Montaje de estructuras</td>
<td>Retirada por Gestor autorizado, priorizando su reutilización, valorización</td>
</tr>
<tr>
<td>17 04 07</td>
<td>Metales mezclados</td>
<td>Realización de instalaciones eléctricas</td>
<td>Retirada por Gestor autorizado, priorizando su reutilización, valorización</td>
</tr>
<tr>
<td>17 04 11</td>
<td>Cables desnudos</td>
<td>Realización de instalaciones eléctricas</td>
<td>Retirada por Gestor autorizado, priorizando su reutilización, valorización</td>
</tr>
<tr>
<td>17 05 04</td>
<td>Excedentes de excavación</td>
<td>Operaciones que implican movimientos de tierras como apertura de cimentaciones</td>
<td>Reutilización en la medida del posible en la propia obra, el resto será retirado prioritariamente a plantas de fabricación de áridos para su reciclaje y finalmente si no son posibles las dos opciones anteriores a vertederos autorizados</td>
</tr>
<tr>
<td>Código LER</td>
<td>Tipo de residuo</td>
<td>Procedencia</td>
<td>Gestion</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>15 05 02</td>
<td>Trapos impregnados de sustancias peligrosas como aceites, disolventes, etc. (RP)</td>
<td>Operaciones de mantenimiento de la maquinaria de obra</td>
<td>Retirada por Gestor autorizado a vertedero autorizado</td>
</tr>
<tr>
<td>17 05 03</td>
<td>Tierras y piedras que contienen sustancias peligrosas (RP)</td>
<td>Posibles vertidos accidentales, derrames de la maquinaria y manipulación de sustancias peligrosas como aceites, disolventes, etc.</td>
<td>Retirada por Gestor autorizado a vertedero autorizado</td>
</tr>
<tr>
<td>13 02 05</td>
<td>Aceites usados (RP).</td>
<td>Operaciones de mantenimiento de la maquinaria de obra</td>
<td>Retirada por Gestor autorizado, priorizando su valorización</td>
</tr>
<tr>
<td>13 01 10</td>
<td>Envases que han contenido sustancias peligrosas, como envases de aceites, combustible, disolventes, pinturas, etc. (RP)</td>
<td>Operaciones de mantenimiento de la maquinaria de obra</td>
<td>Retirada por Gestor autorizado a vertedero autorizado</td>
</tr>
</tbody>
</table>

En la fase de explotación los residuos no peligrosos generados serán residuos asimilables a urbanos y los derivados de la propia actividad de mantenimiento, así como residuos vegetales de las operaciones de prevención de incendios.

A continuación, se resumen los residuos generados en fase de explotación:
RESIDUOS GENERADOS EN FASE DE EXPLOTACIÓN

<table>
<thead>
<tr>
<th>CÓDIGO LER</th>
<th>TIPO DE RESIDUO</th>
<th>PROCEDENCIA</th>
<th>GESTIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 05 02</td>
<td>Trapos impregnados de sustancias peligrosas como aceites, disolventes, etc... (RP)</td>
<td>Operaciones de mantenimiento de la maquinaria de obra</td>
<td>Retirada por Gestor autorizado a vertedero autorizado</td>
</tr>
<tr>
<td>13 01 10</td>
<td>Envases que han contenido sustancias peligrosas: envases de aceites, combustible, disolventes, pinturas, etc. (RP)</td>
<td>Operaciones de mantenimiento de la maquinaria de obra</td>
<td>Retirada por Gestor autorizado a vertedero autorizado</td>
</tr>
</tbody>
</table>

RESIDUOS NO PELIGROSOS

<table>
<thead>
<tr>
<th>CÓDIGO LER</th>
<th>TIPO DE RESIDUO</th>
<th>PROCEDENCIA</th>
<th>GESTIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 02 01</td>
<td>Residuos vegetales</td>
<td>Procedentes de operaciones de prevención de incendios</td>
<td>Retirada por gestor autorizado para su valoración</td>
</tr>
<tr>
<td>20 03 01</td>
<td>Residuos asimilables a urbanos</td>
<td>Procedentes del personal de planta: restos de comidas, envoltorios, latas, etc.</td>
<td>Retirada por Gestor autorizado a vertedero autorizado</td>
</tr>
</tbody>
</table>

Para la correcta gestión de los residuos en la instalación desde su producción hasta su recogida por parte de un gestor autorizado se habilitará una zona de almacenamiento de residuos que cumplirá con las características descritas a continuación:

Residuos no peligrosos

Durante la fase de obra se habilitarán zonas para el almacenamiento de residuos no peligrosos, de fácil acceso a los operarios (junto a casetas de obras, zonas de almacenamiento de materiales). Estarán perfectamente señalizadas y su ubicación será conocida por el personal de obra. Se instalarán diferentes cubas y contenedores que faciliten la segregación de los residuos para así facilitar su gestión posterior.

Las tierras sobrantes se acopiarán en la propia obra, tratando de disminuir el tiempo de almacenamiento el máximo posible. Preferentemente, se tratará de utilizar estas tierras en la propia obra.

Los restos de hormigón, que se encontrarán principalmente en las balsas de recogida de lavado de hormigonera, serán retirados y llevados a una cuba hasta su recogida.

Se dispondrán contenedores para el almacén de residuos asimilables a urbanos, identificados de forma que faciliten la recogida selectiva. Además, se dispondrán papeleras en el lugar de origen.
Para materiales reciclables como maderas, metales, restos plásticos se dispondrán cubas diferenciadas que faciliten su segregación.

Residuos peligrosos

El almacenamiento de residuos peligrosos para los residuos generados en la fase de construcción se realizará en una zona adecuada y destinada a tal fin, perfectamente señalizada y con las características que se describen a continuación:

- Se realizará sobre una superficie impermeabilizada y con estructuras que sean capaces de contener un posible vertido accidental de los residuos.

- Contará con una cubierta superior que evite que el agua de lluvia pueda provocar el arrastre de los contaminantes y sea protegido por la radiación solar.

- El área de almacenamiento de residuos peligrosos estará perfectamente identificado y señalizado.

- Los recipientes utilizados para el almacenamiento de residuos peligrosos serán adecuados a cada tipo de residuo y se encontrarán en perfecto estado, cumpliendo lo establecido en el Real Decreto 180/2015 de 13 de marzo que desarrolla la Ley 22/2011 de residuos en materia de residuos peligrosos.

- Cada uno de los contenedores de residuos peligrosos se encontrará etiquetado, según el sistema de identificación establecido en la legislación vigente.

Por su parte, según lo establecido en la Ley 22/2011, de 28 de julio, de residuos y suelos contaminados, los poseedores de residuos están obligados a entregarlos a un gestor de residuos para su valorización o eliminación, siendo prioritario destinar todo residuo potencialmente reciclable o valorizable a estos fines, evitando su eliminación siempre que sea posible.

En este sentido el destino final de los residuos generados en la instalación será siempre que sea posible la valorización. A continuación, se especifica la gestión final a la que se destinará cada uno de ellos:
Residuos no peligrosos

Las tierras sobrantes serán principalmente reutilizadas siempre que sea posible para el relleno de excavaciones en la propia obra, si esto no es posible se destinará junto con los restos de hormigón y el resto de residuos de construcción a plantas donde sea posible su reutilización, finalmente y como última opción serán retirados a vertederos autorizados.

Las maderas, chatarras y plásticos serán retiradas por gestor autorizado de residuos priorizando su reciclaje.

Los residuos asimilables a urbanos serán segregados de forma que se facilite su valorización, estos residuos serán retirados por gestor autorizado de residuos o bien mediante acuerdos con los ayuntamientos.

Residuos peligrosos

Los aceites usados generados en la instalación serán retirados por un gestor autorizado de residuos priorizando su valorización.

El resto de residuos peligrosos generados será retirado por un gestor autorizado de residuos peligrosos para su inertización y eliminación en vertedero.

A modo de resumen, en la tabla siguiente se recoge una estimación de los residuos generados tanto en la fase de construcción como en la explotación de las líneas eléctricas:

Línea de evacuación 132 kV ST Colimbo – ST Colectora La Cereal

A. Tramo aéreo

<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>Código LER</th>
<th>Cantidad estimada de residuo generado</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excedentes de excavación</td>
<td>170504</td>
<td>1.140,05 m³</td>
<td>m³</td>
</tr>
<tr>
<td>Restos de hormigón</td>
<td>170101</td>
<td>5,12 m³</td>
<td>m³</td>
</tr>
<tr>
<td>Papel y cartón</td>
<td>200101</td>
<td>73,44 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Maderas</td>
<td>170201</td>
<td>734,42 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Plásticos (envases y embalajes)</td>
<td>170203</td>
<td>1.285,24 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Chatarras metálicas</td>
<td>170405/170407/170401/170402</td>
<td>3.672,10 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos.</td>
<td>200301</td>
<td>234,00 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos Contenedor amarillo: metales y plásticos (si segregan)</td>
<td>150102/150104/150105/150106</td>
<td>351,00 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Trapos impregnados</td>
<td>150202*</td>
<td>1,84 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Tierras contaminadas</td>
<td>170503*</td>
<td>1.160,00 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Envases que han contenido sustancias peligrosas</td>
<td>150110*/150111*</td>
<td>55,08 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Residuos vegetales (podas y talas)</td>
<td>200201</td>
<td>0,00 kg</td>
<td>kg</td>
</tr>
</tbody>
</table>
B. Tramo subterráneo

<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>Código LER</th>
<th>Cantidad estimada de residuo generado</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excedentes de excavación</td>
<td>170504</td>
<td>804,49</td>
<td>m³</td>
</tr>
<tr>
<td>Restos de hormigón</td>
<td>170101</td>
<td>0,92</td>
<td>m³</td>
</tr>
<tr>
<td>Papel y cartón</td>
<td>200101</td>
<td>22,92</td>
<td>kg</td>
</tr>
<tr>
<td>Maderas</td>
<td>170221</td>
<td>0,29</td>
<td>kg</td>
</tr>
<tr>
<td>Plásticos (envases y embalajes)</td>
<td>170223</td>
<td>5,73</td>
<td>kg</td>
</tr>
<tr>
<td>Chatarra metálica</td>
<td>170405/170407/170401/170402</td>
<td>11,46</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos</td>
<td>200301</td>
<td>0,00</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos. Contenedor amarillo: metales y plásticos (si segregan)</td>
<td>150102/150104/150105/150106</td>
<td>12,48</td>
<td>kg</td>
</tr>
<tr>
<td>Trapos impregnados</td>
<td>150202*</td>
<td>18,72</td>
<td>kg</td>
</tr>
<tr>
<td>Tierras contaminadas</td>
<td>170503*</td>
<td>0,29</td>
<td>kg</td>
</tr>
<tr>
<td>Envases que han contenido sustancias peligrosas</td>
<td>150110*/150111*</td>
<td>114,6</td>
<td>kg</td>
</tr>
<tr>
<td>Residuos vegetales (podas y talas)</td>
<td>200201</td>
<td>2,87</td>
<td>kg</td>
</tr>
</tbody>
</table>

Línea de evacuación 220 kV ST Colectora La Cereal – ST La Cereal REE

A. Tramo aéreo

<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>Código LER</th>
<th>Cantidad estimada de residuo generado</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excedentes de excavación</td>
<td>170504</td>
<td>321,75</td>
<td>m³</td>
</tr>
<tr>
<td>Restos de hormigón</td>
<td>170101</td>
<td>1,44</td>
<td>m³</td>
</tr>
<tr>
<td>Papel y cartón</td>
<td>200101</td>
<td>5,74</td>
<td>kg</td>
</tr>
<tr>
<td>Maderas</td>
<td>170201</td>
<td>57,36</td>
<td>kg</td>
</tr>
<tr>
<td>Plásticos (envases y embalajes)</td>
<td>170203</td>
<td>100,38</td>
<td>kg</td>
</tr>
<tr>
<td>Chatarra metálica</td>
<td>170405/170407/170401/170402</td>
<td>286,80</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos</td>
<td>200301</td>
<td>39,31</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos. Contenedor amarillo: metales y plásticos (si segregan)</td>
<td>150102/150104/150105/150106</td>
<td>58,97</td>
<td>kg</td>
</tr>
<tr>
<td>Trapos impregnados</td>
<td>150202*</td>
<td>0,14</td>
<td>kg</td>
</tr>
<tr>
<td>Tierras contaminadas</td>
<td>170503*</td>
<td>110,00</td>
<td>kg</td>
</tr>
<tr>
<td>Envases que han contenido sustancias peligrosas</td>
<td>150110*/150111*</td>
<td>4,30</td>
<td>kg</td>
</tr>
</tbody>
</table>

Página 192
<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>Código LER</th>
<th>Cantidad estimada de residuo generado</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuos vegetales (podas y talas)</td>
<td>200201</td>
<td>0,00 kg</td>
<td>kg</td>
</tr>
<tr>
<td>B. Tramo subterráneo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excedentes de excavación</td>
<td>170504</td>
<td>1.520,47 m³</td>
<td>m³</td>
</tr>
<tr>
<td>Restos de hormigón</td>
<td>170101</td>
<td>3,65 m³</td>
<td>m³</td>
</tr>
<tr>
<td>Escombros</td>
<td>170107</td>
<td>22,06 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Papel y cartón</td>
<td>200101</td>
<td>0,55 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Maderas</td>
<td>170221</td>
<td>11,03 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Plásticos (envases y embalajes)</td>
<td>170223</td>
<td>11,03 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Chatarras metálicas</td>
<td>170405/170407/170401/170402</td>
<td>0,00 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos</td>
<td>200301</td>
<td>26,21 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Restos asimilables a urbanos. Contenedor amarillo: metales y plásticos (si segregan)</td>
<td>150102/150104/150105/150106</td>
<td>39,31 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Trapos impregnados</td>
<td>150202*</td>
<td>0,55 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Tierras contaminadas</td>
<td>170503*</td>
<td>220,60 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Envases que han contenido sustancias peligrosas</td>
<td>150110*/150111*</td>
<td>5,52 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Residuos vegetales (podas y talas)</td>
<td>200201</td>
<td>0,00 kg</td>
<td>kg</td>
</tr>
</tbody>
</table>
5 INVENTARIO DE DETALLE

Para facilitar la comprensión del presente apartado, se recomienda seguir en paralelo la cartografía temática localizada en el correspondiente anexo cartográfico, lo que ayudará a la identificación y localización de los elementos más relevantes del inventario ambiental.

Como se observa en la siguiente relación de planos, tras los primeros planos relativos a la situación, alternativas de proyecto y localización del proyecto y de la alternativa seleccionada, se incluye posteriormente la cartografía temática, que va desde la geología al paisaje y finaliza en la síntesis ambiental. Esta es la relación de planos coherente con el índice:

- Plano 1. Situación
- Plano 2. Alternativas de proyecto
- Plano 3. Localización del proyecto y de la alternativa seleccionada (detalle del proyecto)
- Plano 4. Geología
- Plano 5. Clinométrico
- Plano 6. Hidrología
- Plano 7. Riesgos del medio físico
- Plano 8. Riesgo de incendios
- Plano 9. Vegetación
- Plano 10. Fauna
- Plano 11. Hábitats de interés comunitario
- Plano 12. Espacios Naturales Protegidos
- Plano 13. Medio socioeconómico
- Plano 14. Patrimonio cultural
- Plano 15. Paisaje: calidad paisajística
- Plano 16. Síntesis ambiental

5.1 CLIMA

La evaluación climatológica del ámbito de estudio se realiza a partir de la información aportada por las estaciones meteorológicas que ofrecen datos de la Agencia Española de Meteorología (AEMET) más cercanas al ámbito, así como atendiendo a la clasificación
climatológica desarrollada por el Instituto Geográfico Nacional (IGN) en el Atlas Nacional de España (ANE).

Atendiendo a dicha clasificación climática, el ámbito de estudio se localiza en una zona de influencia de clima clasificado de acuerdo a la clasificación climática de Köppen-Geiger como Csa (clima templado con verano seco y caluroso).

Con el fin de aportar datos climáticos representativos del ámbito de estudio, se ha seleccionado como estación de referencia la Estación Meteorológica de Colmenar Viejo, ubicada en el interior del ámbito de estudio, e influenciada por clima templado con verano seco y caluroso (Csa).

Tabla 60 Estaciones meteorológicas y características particulares. AEMET

<table>
<thead>
<tr>
<th>Estación</th>
<th>Índice climatológico</th>
<th>Periodo</th>
<th>Altitud</th>
<th>Latitud</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>3191E</td>
<td></td>
<td>1004</td>
<td>40º 41’ 46” N</td>
<td>3º 45’ 54” O</td>
</tr>
</tbody>
</table>

![Figura 62 Estaciones climáticas de referencia](image)

Tabla 61 Datos climáticos de la Estación de Colmenar Viejo. AEMET

<table>
<thead>
<tr>
<th>Mes</th>
<th>T</th>
<th>TM</th>
<th>Tm</th>
<th>R</th>
<th>H</th>
<th>DR</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>4.8</td>
<td>8.0</td>
<td>1.6</td>
<td>52</td>
<td>77</td>
<td>5.7</td>
<td>140</td>
</tr>
<tr>
<td>Febrero</td>
<td>6.3</td>
<td>10.0</td>
<td>2.5</td>
<td>41</td>
<td>70</td>
<td>5.3</td>
<td>165</td>
</tr>
<tr>
<td>Marzo</td>
<td>9.3</td>
<td>13.9</td>
<td>4.7</td>
<td>36</td>
<td>61</td>
<td>5.0</td>
<td>201</td>
</tr>
</tbody>
</table>
Nos encontramos, por lo tanto, en una zona con influencia predominante de clima mediterráneo continental con inviernos templados y veranos secos y calurosos, donde la mayor parte de las precipitaciones se dan durante el invierno o las estaciones intermedias.

5.2 ATMÓSFERA Y SALUD HUMANA

5.2.1 Calidad del aire

La normativa que regula la calidad del aire en España incluye:

- Directiva 2004/107/CE del Parlamento Europeo y del Consejo, de 15 de diciembre de 2004, relativa al arsénico, el cadmio, el mercurio, el níquel y los hidrocarburos aromáticos policíclicos en el aire ambiente.

- Directiva 2008/50/CE del Parlamento Europeo y del Consejo, de 21 de mayo de 2008, relativa a la calidad del aire ambiente y una atmósfera más limpia en Europa.

- Directiva 2015/1480 de la Comisión, 28 de agosto de 2015, por la que se modifican varios anexos de las Directivas 2004/107/CE y 2008/50/CE del Parlamento Europeo y del Consejo en los que se establecen las normas relativas a los métodos de referencia, la validación de datos y la ubicación de los puntos de muestreo para la evaluación de la calidad del aire ambiente.

- Ley 34/2007, de 15 de noviembre, de calidad del aire y protección de la atmósfera.

- Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire.

- Real Decreto 39/2017, de 27 de enero, por el que se modifica el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire.

Estas normas establecen unos objetivos de calidad del aire, que se concretan en valores límite, valores objetivo, niveles críticos, objetivos a largo plazo o umbrales de información y/o de alerta a la población en función del contaminante.
Tabla 62 Valores límite de PM10 para la protección de la salud humana

<table>
<thead>
<tr>
<th>Tipo de valor límite</th>
<th>período promedio</th>
<th>valor límite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diario</td>
<td>24 horas</td>
<td>50 µg/m³ (no podrán superarse en más de 35 ocasiones por año civil)</td>
</tr>
<tr>
<td>Anual</td>
<td>1 año civil</td>
<td>40 µg/m³</td>
</tr>
</tbody>
</table>

Tabla 63 Valores límite para el dióxido de nitrógeno.

<table>
<thead>
<tr>
<th>Tipo de valor límite</th>
<th>valor límite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor límite horario (VL horario)</td>
<td>200 µg/m³ (no podrán superarse en más de 18 ocasiones por año civil)</td>
</tr>
<tr>
<td>Valor límite anual (VL anual)</td>
<td>40 µg/m³</td>
</tr>
</tbody>
</table>

Tabla 64 Valores límite para el dióxido de azufre.

<table>
<thead>
<tr>
<th>Valor límite horario</th>
<th>valor límite</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 µg/m³ (no podrán superarse en más de 24 ocasiones por año civil)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor límite diario</th>
<th>valor límite</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 µg/m³ (no podrán superarse en más de 3 ocasiones por año civil)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 65 Valores objetivo del ozono, establecidos para la protección de la salud humana.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Parámetro</th>
<th>Valor objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para la protección de la salud humana</td>
<td>Máxima diaria de las medias móviles octohorarias</td>
<td>120 µg/m³ que no deberán superarse más de 25 días por cada año civil de promedio en un periodo de 3 años</td>
</tr>
</tbody>
</table>

La evaluación de la calidad del aire del ámbito y su entorno se realiza a partir de los datos obtenidos de la red de Calidad del Aire de la Comunidad de Madrid (RCACM).

La citada Red se compone de 23 estaciones fijas de medición repartidas sobre 7 zonas homogéneas del territorio. El ámbito de estudio de detalle se encuentra localizado a caballo entre la Zona Sierra norte (zona 4) y la zona urbana noreste (zona 5). De este modo, las estaciones de referencia seleccionadas son la Estación de Colmenar Viejo, y la Estación de Guadalix de la Sierra, localizadas en las zonas de aglomeración 5 y 4 respectivamente.
Figura 63 Localización de estaciones meteorológicas en relación al centroide del ámbito de estudio y zonas de aglomeración de la Comunidad de Madrid. Fuente: AEMET; RECAM

Resumen de concentraciones y superaciones. Año 2020

Atendiendo a la información contenida en el Informe Anual sobre la Calidad del Aire 2020 elaborado por la RECACM, y a partir de los valores límite, umbrales y objetivos establecidos en el Real Decreto 102/2011 para garantizar la calidad del aire, se presentan las siguientes tablas, en las que se reúnen las concentraciones y superaciones de dichos límites registradas por las estaciones de referencia durante el año 2019:

Tabla 66. Superación de los valores límite diarios y anuales de PM10 en las estaciones de referencia, año 2020. Fuente: RECACM

<table>
<thead>
<tr>
<th>Estaciones</th>
<th>PM$_{10}$</th>
<th>Nº medias diarias</th>
<th>Media Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>> 50 µg/m3</td>
<td>(40µg/m3)</td>
</tr>
<tr>
<td>Zona Sierra Norte</td>
<td>Guadalix de la Sierra</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Zona Urbana noroeste</td>
<td>Colmenar Viejo</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Superaciones</td>
<td>No en más de 35 ocasiones</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Tabla 67. Superaciones de los valores límite diarios y anuales de NO2 en las estaciones de referencia, año 2020. Fuente: RECACM

<table>
<thead>
<tr>
<th>Estaciones</th>
<th>NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº superaciones VL horario (200 µg/m³)</td>
</tr>
<tr>
<td>Zona Sierra Norte</td>
<td>Guadalix de la Sierra</td>
</tr>
<tr>
<td>Zona Urbana noroeste</td>
<td>Colmenar Viejo</td>
</tr>
<tr>
<td>Superaciones</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 68. Superaciones de del valor objetivo para salud de O₃ en las estaciones de referencia, año 2020. Fuente: RECACM

<table>
<thead>
<tr>
<th>Estaciones</th>
<th>O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº superaciones valor objetivo para la salud (120 µg/m³)</td>
</tr>
<tr>
<td>Zona Sierra Norte</td>
<td>Guadalix de la Sierra</td>
</tr>
<tr>
<td>Zona Urbana noroeste</td>
<td>Colmenar Viejo</td>
</tr>
<tr>
<td>Superaciones</td>
<td></td>
</tr>
</tbody>
</table>

Tal y como se extrae de las tablas anteriores, a lo largo del año 2020 se producen superaciones del valor objetivo para la protección de la salud humana indicado por la OMS para el Ozono (O₃) (120 µg/m³ que no deberá superarse más de 25 días por cada año civil de promedio en un periodo de 3 años) en las dos estaciones de referencia, no habiéndose producido superaciones de los valores límite y objetivo establecidos para el resto de contaminantes atmosféricos.

Atendiendo al siguiente gráfico, se percibe que las concentraciones de ozono en el conjunto de la Red de Calidad del Aire de la Comunidad de Madrid son significativamente más elevadas durante los meses de verano (junio, julio y agosto), frente a las concentraciones medidas durante el resto del año.
Atendiendo a estos resultados, la calidad del aire en el entorno del ámbito de estudio se diagnostica como de buena calidad, registrándose niveles de concentración de contaminantes, en términos generales, por debajo de los valores umbrales establecidos por la legislación de aplicación, con la excepción del ozono, que ve aumentada su concentración en el conjunto de la región de Madrid durante los meses de verano, lo que produce que, en el balance anual, se registren concentraciones por encima del valor umbral de protección para la salud en más de 25 ocasiones.

5.2.2 Niveles sonoros

El análisis de los niveles sonoros que se consideran como valor umbral en la Comunidad de Madrid, se realiza atendiendo a lo indicado en el Artículo 2 del Decreto 55/2012, de 15 de marzo, del Consejo de Gobierno, por el que se establece el régimen legal de protección contra la contaminación acústica en la Comunidad de Madrid, según el cual dichos valores quedan definidos por la legislación estatal:

De este modo, resulta de aplicación la Ley 37/2003, de 17 de noviembre, del Ruido y los Real Decreto 1367/2007, de 19 de octubre, por el que se desarrolla la Ley 37/2003 en lo referente a la zonificación acústica.

El Artículo 5. Delimitación de los distintos tipos de áreas acústicas del R.D. 1367/2007 define los diferentes tipos de áreas acústicas en atención al uso predominante del suelo, estableciéndose unos Objetivos de Calidad Acústica (OCA) para cada una de estas áreas, que quedan indicadas en la Tabla A del Anexo II del citado RD:

<table>
<thead>
<tr>
<th>Tipo de Área Acústica</th>
<th>Indices de ruido</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_d</td>
<td>L_e</td>
</tr>
<tr>
<td>e</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>a</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>d</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>c</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>b</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>f</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

La mayor parte del proyecto se ubicaría en un espacio natural sin delimitación de OCA particulares, debiendo cumplirse aquellos Objetivos de Calidad Acústica indicados en el RD 1367/2007 para zonas tranquilas en campo abierto, encontrándose estos 5 dB(A) por debajo de los establecidos para una zona residencial: 60 dB(A) en periodo día (07:00-19:00) y tarde (19:00-23:00) y 50 dB(A) en periodo noche (23:00-07:00).

Sin embargo, a lo largo del trazado de la línea eléctrica proyectada, se encuentran, a menos de 300 metros de los elementos de proyecto, áreas residenciales dispersas (a), así como zonas de uso terciario (d) e industrial (b), en las que serán de aplicación los OCA establecidos para estas áreas acústicas.

No se han inventariado zonas de uso sensible, definidas como tipo de área acústica (e), a menos de 300 metros del proyecto.

5.2.3 Cambio Climático

A nivel nacional, el MITECO ha desarrollado un Anteproyecto de Ley de Cambio Climático y transición ecológica denominado Plan Nacional Integrado de Energía y Clima (PNIEC) para el periodo 2021-2030, en el que se definen los objetivos de reducción de emisiones de gases de efecto invernadero (GEI), de penetración de energías renovables y de eficiencia energética para el conjunto de España, con el que se da cumplimiento al Reglamento (UE) 2018/1999 del Parlamento Europeo y Consejo de 11 de diciembre de 2018 sobre la gobernanza de la Unión de la Energía y de la Acción por el Clima.
El PNIEC recoge los siguientes objetivos a alcanzar para el año 2030:

- 23% de reducción de emisiones GEI respecto a 1990.
- 42% de energías renovables sobre el consumo total de energía final.
- 39,5% de mejora de la eficiencia energética.
- 74% de energías renovables en la generación eléctrica.

El porcentaje de reducción de emisiones de GEI fijada (23% respecto a 1999), supone pasar de 340,2 millones de toneladas de CO2 equivalente (MTCO2-eq) emitidos al finalizar 2017, a 22,8 MtCO2-eq en 2030.

Con respecto a la Comunidad de Madrid, donde se localizaría el proyecto objeto del presente estudio, esta cuenta con una Estrategia de Calidad del Aire y Cambio Climático para el periodo 2013-2020 (Plan Azul+), en la que se recogen una serie de medidas orientadas a alcanzar la reducción de emisiones contaminantes a la atmósfera en la región, haciendo especial incidencia en la toma de medidas sobre los sectores contaminantes más significativos. Asimismo, la Estrategia se alinea con los objetivos nacional y europeo de eficiencia energética, cuota renovable en el consumo de energía y reducción de GEI en 2020 (Compromiso 20-20-20).

Para la definición de la Estrategia se ha llevado a cabo un diagnóstico de la calidad del aire y de cambio climático en la Comunidad de Madrid, en el que se han identificado las superaciones de los valores límite establecidos por la legislación (Real Decreto 102/2011, de 28 de enero), ya tratados en el apartado 5.2.1 “Calidad del aire” y los sectores de actividad con mayor contribución a las emisiones de GEI y otros contaminantes, modelizando mediante simulación con modelos matemáticos la contribución de las fuentes emisoras de los diversos sectores a los niveles de calidad del aire registrados.

La Estrategia citada cuenta con una Revisión realizada con el objetivo de permitir, por un lado, alcanzar los objetivos propuestos en la Estrategia para el año 2020 y, por otro, canalizar los esfuerzos hacia la consecución de los nuevos retos y estrategias establecidos en los horizontes temporales 2030 y 2050.

Evolución de las emisiones de Gases de Efecto Invernadero (GEI)

En términos absolutos, las emisiones de GEI en la Comunidad de Madrid han pasado de 13.749,21 kt CO2-eq en el año 1999 (un 4,9% de las emisiones nacionales) a 21.513,21 kt CO2-eq en el año 2019 (un 6,2% de las emisiones nacionales), con un máximo medido en el año 2007, de 25.036,68 kt CO2 eq.

El sector transporte es el principal emisor de GEI, seguido de la industria y del sector residencial, comercial e institucional, ambos con contribuciones similares. De este modo, en el año 2010 las emisiones del transporte representaron entorno al 45% del total regional,
mientras que el sector industrial y el residencial, comercial e institucional representaron un 28% y 25% respectivamente.

Analizando las emisiones por tipo de GEI, se observa que el CO2 es el GEI principal en la Región, con una aportación de más del 84% del total de las emisiones de la Comunidad de Madrid, de las cuales, la mayoría proviene del sector transporte, seguido del sector residencial, comercial e institucional e industria, en ese orden. Dichas emisiones se encuentran estrechamente relacionadas con el nivel de consumo energético de cada uno de los sectores.

En relación a los efectos previstos del Cambio Climático, en la Comunidad de Madrid se prevé para finales de siglo un aumento de las temperaturas máximas estacionales de entre 3,5 y 7,5ºC, y disminuciones de entre un 10 y un 40% de precipitación anual generalizadas, a excepción de los meses de julio y agosto, en los que se prevé un aumento de entorno a un 10-20% de acuerdo con el escenario IPCC A2.

 Así, los esfuerzos en materia de mitigación del Cambio Climático de la Estrategia se han centrado en la disminución de las emisiones de los sectores denominados difusos (aquellas no sujetas al comercio de derechos de emisión), cuya contribución a las emisiones totales de GEI en la Comunidad de Madrid es más relevante.

De este modo, la Estrategia establece un objetivo de reducción de las emisiones de CO2 en el sector transporte de un 15% y de un 15% en el sector residencial, comercial e institucional, con respecto a los valores inventariados en el año 2005. Se ha considerado adecuado tomar como año de referencia 2005 atendiendo a lo señalado en las Decisiones 406/2009/CE y 2013/162/UE, en las que se establecen los objetivos de reducción de emisiones para cada Estado Miembro que, en el caso de España, se fijan en un 10% de reducción en el periodo 2005-2020 para los sectores excluidos de la Directiva de Comercio de Emisiones, también denominados sectores difusos.

En el caso de la Comunidad de Madrid, la Estrategia 2013-2020 establece objetivos sectoriales que representan una reducción de las emisiones de CO2 globales de un 10% con respecto al 2005, acorde con el objetivo fijado para sectores difusos en España.

Tabla 70 Objetivo de reducción global de emisiones de CO2 eq para el año 2020. Fuente: Estrategia de Calidad del Aire y Cambio Climático de la Comunidad de Madrid (Plan Azul +)

<table>
<thead>
<tr>
<th>Año 2005</th>
<th>Emisión (kt) 2005 Global</th>
<th>Emisión (kt) objetivo 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 eq Global</td>
<td>23.654,84</td>
<td>21.289,36</td>
</tr>
</tbody>
</table>

La Estrategia incluye una serie de medidas para alcanzar dichos objetivos, de las cuales cuatro se encuentran ligadas al uso de energías renovables en diferentes sectores y ámbitos, indicando en su Revisión que actualmente se encuentra en proceso de redacción una nueva
Estrategia de Calidad del Aire, Energía y Cambio Climático de la Comunidad de Madrid (2021-2030) que entrará en vigor una vez finalice el periodo de aplicación del Plan Azul+, y que establecerá los objetivos a largo plazo y las líneas estratégicas para adaptar la planificación autonómica a los acuerdos y normas internacionales a largo plazo en materia de Cambio Climático con la siguiente actualización de objetivos:

<table>
<thead>
<tr>
<th>Sector</th>
<th>Emisiones 2005</th>
<th>% de reducción para el 2020, en relación al 2005</th>
<th>% de reducción para el 2030, en relación al 2005</th>
<th>Cantidad no emitida en el 2030, en relación al 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCI</td>
<td>5.889 kt</td>
<td>15%</td>
<td>26%</td>
<td>1.531 kt</td>
</tr>
<tr>
<td>Transporte</td>
<td>10.035 kt</td>
<td>15%</td>
<td>26%</td>
<td>2.609 kt</td>
</tr>
<tr>
<td>GLOBAL DIFUSOS</td>
<td>20.639 kt</td>
<td>10%</td>
<td>26%</td>
<td>5.366 kt</td>
</tr>
</tbody>
</table>

5.3 GEOLOGÍA, GEOMORFOLGÍA Y GEOTÉCNIA

Desde el punto de vista geológico, el ámbito de estudio se sitúa en la zona de transición entre el Sistema Central y la Cuenca Meso-Terciaria del Tajo o Cuenca de Madrid, representada principalmente en las hojas 509 534 del Mapa Geológico de España a escala 1:50.000 (MAGNA 50), con parte del ámbito incluido en las Hojas 510 y 485, que representan el sector nororiental del Sistema Central.

5.3.1 Geología

Encuadre geológico y litológica:

El ámbito de estudio se enmarca entre dos de los principales dominios geológicos de la Península Ibérica: el Sistema Central y la Cuenca del Tajo.

El Sistema Central Español constituye una cadena montañosa que se alza por encima de los 2.000 metros de altitud, separando las cuencas de los ríos Duero y Tajo, integrado por numerosas alineaciones montañosas, entre las que se intercalan pequeños valles. Está constituido principalmente por materiales precámbricos y paleozoicos deformados, metamorfizados e intruidos por granitoides durante la horogenia hercínica.

Este conjunto hercínico constituye el basamento sobre el que aflora una serie sedimentaria mesozoica, sobre la que aparece una serie paleógena sobre la que se disponen discordantemente los sedimentos neógenos que rellenan las depresiones del Duero y del Tajo.

Con respecto a la Cuenca del Tajo, se encuentra situada en la submeseta meridional, separada en su parte oriental de la Depresión Intermedia por la Sierra de Altoira,
constituyendo una estructura triangular en el centro de la Península Ibérica. Está constituida por materiales cretácios sobre el basamento hercíncico, con relleno terciario con una gran continuidad estrigráfica, con depósitos paleógenos que aparecen a modo de retazos en los bordes de la cuenca, sobre los que se dispone discordantemente un conjunto neógeno que constituye la mayor parte de los afloramientos.

De este modo, los materiales aflorantes en el ámbito de estudio pueden agruparse en dos grandes conjuntos, relacionados con los principales eventos orogénicos (hercíncico y alpino), pudiendo distinguirse:

- Materiales ígneos y sedimentarios preodovícicos, metamorfizados y deformados durante la orogenia hercíncica, afectados por intrusiones plutónicas en sus etapas tardías, que afloran dentro del ámbito de la Sierra de Guadarrama.

- Materiales sedimentarios neógenos, constituyentes de la Cuenca Madrid, tapizados por extensos depósitos cuaternarios aflorantes.

Entre ambos conjuntos, aparecen sedimentos cretácicos dispuestos a modo de pequeños retazos, debido a la intensa tectonización sufrida por el contacto entre el Sistema Central y la Cuenca de Madrid.

A continuación se aporta figura que recoge las litologías presentes en el ámbito de estudio.

Figura 65 Litologías presentes en el ámbito de estudio. Fuente: MGNA50 (IGME)
Lugares de Interés Geológico (LIG):

Los LIG se definen como zonas de interés científico, didáctico o turístico que, por su carácter único y/o representativo, son necesarias para el estudio e interpretación del origen y evolución de los grandes dominios geológicos españoles, incluyendo los procesos que los han modelado, los climas del pasado y su evolución paleobiológica.

Tras consultarse el Inventario Español de Lugares de Interés Geológico (IELIG), se ha comprobado que existen dos LIG en el interior del ámbito de estudio:

- **Yacimiento paleontológico del Mioceno inferior de la Encinilla (TM007):** la información que el Instituto Geológico y Minero de España (IGME) aporta sobre este Lugar de Interés Geológico es limitada, al tratarse de un LIG Confidencial. Se trata de un LIG localizado en la Cuenca del Tajo-Loranca y La Mancha, con un interés geológico principal paleontológico, e interés geológico secundario estratigráfico, sedimentológico, geomorfológico y petro-químico.

- **Falla de El Molar (TM013):** se trata de una falla normal, de dirección N130E y buzamiento 50-60º hacia el SO, desarrollada en unas capas de dolomías tableadas del Cretácico Superior. No teniendo un elevado valor científico, ha sido un recurso divulgativo de muchas generaciones de alumnos de secundaria residentes en Madrid y sus inmediaciones, lo que ha permitido incluirlo en el acervo del conocimiento geológico.

De ambos, el TM013 se encuentra alejado de los elementos de proyecto, mientras que el TM007 es coincidente en su límite exterior con parte del trazado de la L/132kV GR Colimbo – Colectora La Cereal.
5.3.2 Geomorfología

El relieve del ámbito de estudio presenta tres superficies y dominios de características muy diferentes: dominio de la Sierra de Guadarrama, dominio de las superficies y dominio de la depresión.

En el dominio de la Sierra, la morfología principal es la impuesta por un arrasamiento que da lugar a la superficie de Colmenar, una superficie de piedemonte, fuertemente incidida por diversos arroyos.

El dominio de las superficies, está representado por una gran llanura, muy incidida por la red fluvial, con una suave inclinación hacia el centro de la cuenca y a los principales cauces, descendiente en sucesivos escalones, que conforma una serie de lóbulos progresivos.

Por su parte, el dominio de la depresión, está constituido por diferentes unidades sedimentarias terciarias posttectónicas de piedemonte sujetas a una activa morfogénesis desde el final del Plioceno hasta la actualidad, entre las que destacan la Raña, que ocupa el interfluvio entre los valles del río Jarama y el río Henares.

De este modo, y sobre la base de los criterios fisiográficos incluidos en el Mapa Geomorfológico elaborado por la Consejería de Medio Ambiente y Desarrollo Regional de la Comunidad de Madrid, se han considerado las siguientes unidades geomorfológicas dentro del ámbito de estudio:
Fondos de valle: aquellos presentes en el ámbito son alargados y bastante rectilíneos. Su naturaleza es muy arenosa, con cantos de cuarzo y granitoides. En general, presentan un fuerte encajonamiento de la red, con fondos de cauce planos por los que circula una corriente estacional mal definida.

Barrancos, cárcavas y parameras: se trata de barrancos carentes de depósitos, en los que la incisión es absoluta, dando lugar a cárcavas, cabeceras de erosión fluvial, aristas, etc.

Navas: se trata de formaciones endorreicas desarrolladas sobre el macizo cristalino. Son zonas deprimidas en las que se producen fenómenos de retención de agua, decantaciones, hidromorfismo, etc. Esta unidad se encuentra poco representada en el ámbito de estudio.

Cuestas, plataformas y yesos: estas unidades son características de los bordes del Sistema Central, formando la transición entre las elevaciones o sierras y las cuencas terciarias. Se trata de planicies en general degradadas por la incisión fluvial, que forman parte del pedemonte.

Vertientes o glacis: se trata de rellanos escalonados, a modo de terrazas, que se diferencian de ellas por su pendiente, dando perfiles de glacis. Son formas morfológicas de transición entre las planicies generalizadas precuaternarias y las llanuras encajadas o aterrazamientos cuaternarios.
Hipsometría y pendientes:

Como puede observarse en la siguiente figura, la orografía del ámbito resulta bastante heterogénea, desde cotas menores a 650 metros hasta cotas de más de 900 metros, encontrando las zonas más llanas al este del ámbito estudiado, aumentando cota hacia el oeste, donde se sitúan las altas cumbres del Sistema Central.

![Figura 68 Mapa hipsométrico. Elaboración propia a partir del MDT-05. Fuente: CNIG](image)

Por su parte, las pendientes del ámbito resultan variables, predominando aquellas de hasta el 10%, pero con una importante representación de pendientes de más del 20%.

Tabla 71 Distribución de pendientes presentes en el ámbito de estudio

<table>
<thead>
<tr>
<th>Intervalos de pendientes</th>
<th>Sup (Ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menores del 5%</td>
<td>3.948</td>
<td>22</td>
</tr>
<tr>
<td>Entre el 5% y el 10%</td>
<td>4.006</td>
<td>22</td>
</tr>
<tr>
<td>Entre el 10% y el 15%</td>
<td>3.418</td>
<td>19</td>
</tr>
<tr>
<td>Entre el 15% y el 20%</td>
<td>2.439</td>
<td>14</td>
</tr>
<tr>
<td>Mayores del 20%</td>
<td>4.005</td>
<td>22</td>
</tr>
</tbody>
</table>
Adicionalmente, pueden consultarse las pendientes en mayor detalle en el Plano 5 “Clinométrico” del anexo cartográfico que acompaña al presente documento.

5.3.3 Condiciones geotécnicas

Para el análisis de las condiciones geotécnicas del ámbito de estudio, se ha tomado como base el “Mapa Geotécnico General a escala 1:200.000 (Hoja 45)” publicado por el IGME, a partir del cual se ha generado la siguiente figura:
La mayor parte del ámbito de estudio presenta restricciones geotécnicas medias, encontrando zonas con bajas, bajas-medias y altas restricciones geotécnicas hacia el entorno noroeste.

5.4 HIDROGEOLOGÍA

Para el estudio de la hidrogeología del ámbito de estudio de las infraestructuras eléctricas del proyecto, se ha consultado el mapa de masas de agua subterránea de la Confederación Hidrográfica del Tajo.

Así se ha comprobado que, en relación con las aguas subterráneas, el ámbito de estudio es en parte coincidente con las siguientes masas de agua subterráneas:

- **MASb 030.004**: Torrelaguna. Coincide con 2.386,18 ha del ámbito de estudio.
- **MASb 030.024**: Aluvial del Jarama: Guadalajara – Madrid. Coincide con 1.960,91 ha del ámbito de estudio.
Figura 71. Masas de agua subterránea presentes en el ámbito de estudio. Fuente: CHT.

En relación a las infraestructuras del proyecto, 24,18 ha de la PFV GR Colimbo, coinciden con la masa de agua subterránea 030.024 “Aluvial del Jarama: Guadalajara-Madrid” y 6,62 ha de dicha PFV y 7,39 km de la L132kV GR Colimbo-Colectora La Cereal con la masa de agua 030.004 “Torrelaguna”.

La ST Colectora La Cereal, la L/400kV Colectora La Cereal-La Cereal REE y 19,75 km de la L/132kV GR Colimbo-Colectora la Cereal se encuentran sobre la masa de agua subterránea 030.010 “Madrid: Manzanares-Jarama”.

MASb 030.010: Madrid: Manzanares - Jarama

La MASb 031.010 Madrid: Manzanares-Jarama se encuentra situada dentro de la provincia de Madrid ocupando una superficie de 538,56 km² de los cuales el 99,11 % (533,79 km²) corresponden a superficies detríticas de permeabilidad media.

La MASB 031.010 limita al norte con los materiales metamórficos y graníticos considerados de baja permeabilidad, al este con los depósitos cuaternarios del río Jarama, al oeste con el río Manzanares y el límite sur lo marca el cambio lateral de facies hacia las litologías margosferies de centro de cuenca, de baja permeabilidad.

Topográficamente la MASb se encuentra en el sector de la cuenca del Tajo perteneciente a la cubeta o fosa de Madrid. Dentro de esta masa se observa que las cotas varían entre los 571 y los 810 m s.n.m., obteniéndose una cota media de 682,92 m s.n.m.
Esta MASb se incluye en el sistema de explotación denominado MACROSISTEMA, subsistema JARAMA-GUADARRAMA.

Esta MASb abarca parte de dos cuencas hidrográficas cuyas arterias principales son los ríos Manzanares y Jarama. Asimismo, hay otros cauces de menor entidad que atraviesan esta masa como son el río Guadalix, el Arroyo Viñuelas y el Arroyo Tejada.

La MASb 031.010 Madrid: Manzanares-Jarama se incluye en su totalidad dentro de los materiales detríticos miocenos que rellenan la fosa del Tajo. Asimismo, incluye depósitos cuaternarios de escasa entidad, asociados a algunos de los cauces que la cruzan (ríos Manzanares, Guadalix y Arroyo Viñuelas).

El modelo general de distribución de facies del relleno terciario de la fosa del Tajo se adapta a un modelo de varios sistemas de abanicos aluviales asociados al borde de cuenca, superpuestos y de carácter endorreico, cuyas facies se solapan e interdigitan entre sí y que presentan una litología diferenciada en función de la distancia desde términos conglomeráticos gruesos y areniscas en matriz lutítica, en los bordes del área madre, hasta facies evaporíticas y químicas en las áreas centrales de cuenca, pasando por facies mixtas que representan la transición, en cambio lateral, de las primeras a las segundas.

Las formaciones hidrogeológicas (Fh) implicadas en esta MASb (definidas en el Mapa Litoestratigráfico 1:200.000, IGME 2006) son las siguientes:

- Terciarios: Fh 402 Arcosas a veces con cantos, con lutitas, margas, calizas y, localmente nódulos de silex y yeso (Mioceno) conocida en la literatura especializada como Formación detrítica intermedia y 400 Arcosas con cantos, conglomerados y arcillas (Mioceno) conocida como Formación gruesa de borde.

- Cuaternarios: Fh 706 Gravas, arenas, limos (Depósitos de aluviales, fondos de valle y terrazas bajas) y 704 Gravas, arenas, limos y arcillas (Depósitos de terrazas medias y altas) asociadas al río Guadalix.

Se considera como principal FGP (formación geológica permeable) dentro de la MASb Madrid: Manzanares-Jarama los sedimentos terciarios (Miocenos) que en conjunto se denominará Formación del Terciario detrítico, con permeabilidad media. Los depósitos cuaternarios poseen permeabilidad alta y a escala regional su comportamiento hidrogeológico se considera conjuntamente con los depósitos terciarios.

MASb 030.004 Torrelaguna

La MASb de Torrelaguna (código 030.004) se encuentra ocupando una estrecha franja entre las provincias de Madrid y Guadalajara. Abarca una superficie de 146,01 km², de los cuales, el 63,12% (92,17 km²) corresponden a superficies de permeabilidad media y alta.

Los límites de la MASb de Torrelaguna, por casi todo el perímetro, excepto por el sur, están constituidos por el contacto entre los materiales impermeables, rocas plutónicas y esquistos.
y pizarras de las sierras del norte de Madrid y Guadalajara y por el mencionado límite sur el contacto es con materiales terciarios de la Cuenca de Madrid y cuaternarios que rellenan la cuenca del Jarama.

Topográficamente, se encuentra en las estribaciones de la Sierra de Guadarrama cuyos relieves marcan el límite de la cubeta terciaria de la cuenca del Tajo. Las cotas varían entre los 644 y los 1178 m.s.n.m., obteniéndose una cota media de 866,91 m.s.n.m.

Esta MASb se incluye en el sistema acuífero nº 17, subunidad Jarama y parte de la subunidad Henares.

La MASb Torrelaguna está compuesta tanto por materiales por materiales mesozoicos, materiales terciarios y materiales cuaternarios.

Según el MAGNA, los materiales mesozoicos que afloran en la zona son de edad cretácica en el que se diferencian 2 tramos, a grandes rasgos, en función de la litología:

- **Facies Utrillas**: alternancia de arcillas y arenas cuarcíticas con frecuentes cambios laterales. La potencia de este tramo puede variar entre 20 y 70 metros. Desde el punto de vista hidrogeológico pueden considerarse de escaso interés por su baja permeabilidad, debido al gran contenido en arcillas y la heterometría de las arenas.

- **Tramo areniscoso-calizo-dolomítico**: a muro se encuentran unas margas con niveles de calizas margosas, dolomitizadas a techo. Sobre éstas aparece la formación detritica compuesta por materiales areniscosos. Finalmente, a techo, una serie de dolomías en bancos potentes muy homogéneas y suficientemente karstificadas. El comportamiento hidrogeológico de este tramo es bastante irregular dependiendo de los espesores de las areniscas y de los tramos calizos-dolomíticos, aunque interesante debido a la karstificación. Este tramo formará la FGP del Cretácico (Calizas, dolomías, margas, Dol. Villa de Ves, Caballar; F. Tabladillo, Hontoria, Margas Chera).

Los materiales terciarios son fundamentalmente de edad paleógena. Lo constituyen cantos, gravas, conglomerados, arenas arcósicas y margas en distintas proporciones.

Este tramo formará la FGP del Terciario (Areniscas cuarcíticas., gravas silíceas, conglomerados, arcillas rosadas, calizas, limolitas, y a veces yesos, Garumn). También hay depósitos de gravas cuarcíticas de matriz arcillosa (rañas), de edad miocena, que no tienen relación con la red hidrográfica actual y dada su litología y espesor no tienen interés hidrogeológico.

Los depósitos cuaternarios están formados por terrazas asociadas al río Jarama y depósitos aluviales y de llanura aluvial. Constituidos por gravas con matriz arenosa que alternan con arcillas, limos y arenas. Los depósitos de mayor extensión, e interés hidrogeológico, se encuentran a lo largo del río Jarama.
MASb 030.024 Aluvial del Jarama: Guadalajara – Madrid

Se extiende a ambas márgenes de río Jarama, desde las proximidades de Valdepeñas de la Sierra y Puebla del Vallés, en la provincia de Guadalajara, hasta las proximidades de San Fernando de Henares, en Madrid, pasando por Uceda, Fuente El Saz de Jarama y Paracuellos de Jarama. El límite con la masa Jarama-Tajuña se halla sobre el río Jarama a unos 2.250 m siguiendo el curso del río, aguas arriba de la confluencia con el Henares.

La MASb Aluvial del Jarama: Guadalajara - Madrid (código 030.024) se encuentra entre la provincia de Guadalajara y la Comunidad de Madrid.

Formada por los depósitos cuaternarios del río Jarama que se corresponden a superficies de permeabilidad media y alta.

Desde el punto topográfico, se observa que las cotas varían entre 479 y 679 m.s.n.m., obteniéndose una cota media de 531,52 m.s.n.m.

La MASb Aluvial del Jarama: Guadalajara - Madrid la componen fundamentalmente materiales de edad cuaternaria que se corresponden con depósitos aluviales actuales de los ríos y depósitos de terraza, formados por gravas, arenas y limos.

Se extiende por la margen del río Jarama, limitando en todo su contorno con materiales de baja permeabilidad, como son los yesos de edad miocena.

La MASb Aluvial del Jarama: Guadalajara - Madrid está constituida por materiales aluviales cuaternarios correspondientes a Fh 706, gravas, arenas y limos (depósitos de aluviales, fondos de valle y terrazas bajas en los ríos principales) y, Fh 704, gravas, arenas, limos y arcillas (depósitos de terrazas medias y altas).

Por tanto, se define como FGP (Formación geológica permeable) dentro de esta MASb a los materiales cuaternarios que forman el único acuífero de esta masa.

5.5 HIDROLOGÍA

En el presente apartado del inventario ambiental se describen las interacciones del proyecto con los cauces presentes en el ámbito de estudio.

El ámbito de estudio se encuadra dentro de la Cuenca Hidrológica del Tajo, por lo que, para estudiar las masas de agua presentes, se ha consultado la información en la página web de la Confederación Hidrográfica del Tajo. Mediante herramientas de Sistemas de Información Geográfica se ha analizado la presencia de masas de agua superficial y subterránea.

En el ámbito de estudio se encuentran presentes tramos de los ríos Guadalix y Jarama, así como 91 arroyos, 15 barrancos, y 1 reguero.
La relación de cauces de agua superficiales encontrados en el ámbito de estudio de la planta e infraestructuras eléctricas que conforman el proyecto, ordenados de mayor a menor longitud de recorrido, es la siguiente:

Tabla 72. Ríos y arroyos presentes en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Cauce</th>
<th>Longitud (km)</th>
<th>Cauce</th>
<th>Longitud (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Jarama</td>
<td>10,59</td>
<td>Arroyo del Gitano</td>
<td>1,70</td>
</tr>
<tr>
<td>Arroyo Tejada</td>
<td>10,23</td>
<td>Arroyo del Caño</td>
<td>1,68</td>
</tr>
<tr>
<td>Arroyo de Salobral</td>
<td>8,64</td>
<td>Arroyo de Valdemajadas</td>
<td>1,66</td>
</tr>
<tr>
<td>Arroyo del Morenillo</td>
<td>8,22</td>
<td>Arroyo de San Benito</td>
<td>1,66</td>
</tr>
<tr>
<td>Arroyo de la Fresneda</td>
<td>7,38</td>
<td>Arroyo de los Chociegos</td>
<td>1,61</td>
</tr>
<tr>
<td>Arroyo de San Vicente</td>
<td>6,10</td>
<td>Arroyo de Almenara</td>
<td>1,58</td>
</tr>
<tr>
<td>Arroyo de las Cañas de la Parrilla</td>
<td>5,88</td>
<td>Arroyo del Regachuelo</td>
<td>1,57</td>
</tr>
<tr>
<td>Arroyo de la Solana</td>
<td>5,35</td>
<td>Arroyo de las Becerras</td>
<td>1,56</td>
</tr>
<tr>
<td>Río Guadalix</td>
<td>4,91</td>
<td>Arroyo de las Carcavillas</td>
<td>1,55</td>
</tr>
<tr>
<td>Arroyo de Buitre</td>
<td>4,51</td>
<td>Arroyo de la Mocita</td>
<td>1,50</td>
</tr>
<tr>
<td>Arroyo del Monte</td>
<td>4,34</td>
<td>Arroyo del Barranco Hondo</td>
<td>1,49</td>
</tr>
<tr>
<td>Arroyo de los Cañitos</td>
<td>4,32</td>
<td>Arroyo de Valdecamis</td>
<td>1,44</td>
</tr>
<tr>
<td>Arroyo de la Casita</td>
<td>3,86</td>
<td>Arroyo de Valdeñigo</td>
<td>1,41</td>
</tr>
<tr>
<td>Arroyo de la Zurita</td>
<td>3,83</td>
<td>Arroyo del Registro</td>
<td>1,38</td>
</tr>
<tr>
<td>Arroyo de Valdearenas</td>
<td>3,67</td>
<td>Arroyo de Valdecorzas</td>
<td>1,17</td>
</tr>
<tr>
<td>Arroyo de la Hocecilla</td>
<td>3,66</td>
<td>Arroyo de Valdehondiguilla</td>
<td>1,14</td>
</tr>
<tr>
<td>Arroyo de Valdecalera</td>
<td>3,59</td>
<td>Arroyo de las Parras</td>
<td>1,12</td>
</tr>
<tr>
<td>Arroyo de la Fuente de Lucas</td>
<td>3,58</td>
<td>Arroyo del Escobar</td>
<td>1,08</td>
</tr>
<tr>
<td>Arroyo de Navalcapallo</td>
<td>3,50</td>
<td>Arroyo de la Fuente del Toro</td>
<td>1,05</td>
</tr>
<tr>
<td>Arroyo de las Praderas</td>
<td>3,34</td>
<td>Arroyo de Cabeza Cana</td>
<td>1,01</td>
</tr>
<tr>
<td>Arroyo de la Colada</td>
<td>3,33</td>
<td>Arroyo de la Dehesa de Abajo</td>
<td>1,00</td>
</tr>
<tr>
<td>Arroyo de las Casillas</td>
<td>3,23</td>
<td>Arroyo de la Fuente de la Cerca</td>
<td>1,00</td>
</tr>
<tr>
<td>Arroyo de las Vargas</td>
<td>3,14</td>
<td>Arroyo de Valdelatorre</td>
<td>0,99</td>
</tr>
<tr>
<td>Arroyo de la Canaleja</td>
<td>3,07</td>
<td>Arroyo de Sanderrincano</td>
<td>0,97</td>
</tr>
<tr>
<td>Arroyo de los Barrancos</td>
<td>3,06</td>
<td>Arroyo de Madroñalejo</td>
<td>0,94</td>
</tr>
<tr>
<td>Arroyo de Navacabera</td>
<td>2,98</td>
<td>Arroyo de la Pastelera</td>
<td>0,94</td>
</tr>
<tr>
<td>Arroyo Segoviela</td>
<td>2,82</td>
<td>Arroyo del Recuenco</td>
<td>0,94</td>
</tr>
<tr>
<td>Arroyo de la Soledad</td>
<td>2,75</td>
<td>Arroyo de las Mimbreras</td>
<td>0,90</td>
</tr>
<tr>
<td>Arroyo de la Calera</td>
<td>2,73</td>
<td>Arroyo del Río Seco</td>
<td>0,83</td>
</tr>
<tr>
<td>Arroyo de San Román</td>
<td>2,71</td>
<td>Arroyo de Valdemayón</td>
<td>0,83</td>
</tr>
<tr>
<td>Arroyo Mortero</td>
<td>2,69</td>
<td>Arroyo de la Cabezuela</td>
<td>0,79</td>
</tr>
<tr>
<td>Arroyo de las Veguillas</td>
<td>2,62</td>
<td>Arroyo de las Horcajos</td>
<td>0,78</td>
</tr>
<tr>
<td>Arroyo de Monteviejo</td>
<td>2,59</td>
<td>Arroyo del Pradillo</td>
<td>0,72</td>
</tr>
<tr>
<td>Arroyo de Ventamoros Quemados</td>
<td>2,47</td>
<td>Arroyo de Valdelacasa</td>
<td>0,67</td>
</tr>
<tr>
<td>Arroyo de Valdecarrizo</td>
<td>2,40</td>
<td>Arroyo de Navacabrería</td>
<td>0,67</td>
</tr>
<tr>
<td>Arroyo de la Dehesilla</td>
<td>2,30</td>
<td>Arroyo de Valdelacoja</td>
<td>0,64</td>
</tr>
<tr>
<td>Arroyo Valdenmedio</td>
<td>2,26</td>
<td>Arroyo de Charola</td>
<td>0,62</td>
</tr>
</tbody>
</table>
Además de estos cauces existen otros innominados de menor entidad que entre todos sumarían 202,29 km dentro del ámbito de estudio.

Figura 72. Red hidrológica superficial presente en el ámbito de estudio. Fuente: MITERD.

Las LEATs proyectadas presentan los siguientes cruzamientos con los cauces incluidos en el ámbito de estudio (Sistema de coordenadas UTM ETRS89 H30):

Tabla 73. Cruces de la L/132kV GR Colimbo-Colectora La Cereal con cauces.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>455433,33</td>
<td>4514705,42</td>
<td>Arroyo de San Vicente</td>
</tr>
</tbody>
</table>

Además de estos cauces existen otros innominados de menor entidad que entre todos sumarían 202,29 km dentro del ámbito de estudio.
<table>
<thead>
<tr>
<th>Nº</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>455206,54</td>
<td>4514659,28</td>
<td>Innominado</td>
</tr>
<tr>
<td>3</td>
<td>455074,70</td>
<td>4514632,80</td>
<td>Innominado</td>
</tr>
<tr>
<td>4</td>
<td>453302,10</td>
<td>4514069,20</td>
<td>Arroyo de la Solana</td>
</tr>
<tr>
<td>5</td>
<td>453100,20</td>
<td>4513653,90</td>
<td>Arroyo Valdenmedio</td>
</tr>
<tr>
<td>6</td>
<td>452960,00</td>
<td>4513215,40</td>
<td>Arroyo de las Praderas</td>
</tr>
<tr>
<td>7</td>
<td>452887,30</td>
<td>4512951,80</td>
<td>Innominado</td>
</tr>
<tr>
<td>8</td>
<td>452837,69</td>
<td>4512773,34</td>
<td>Innominado</td>
</tr>
<tr>
<td>9</td>
<td>452770,74</td>
<td>4512528,38</td>
<td>Arroyo de la Zurita</td>
</tr>
<tr>
<td>10</td>
<td>452732,72</td>
<td>4512387,68</td>
<td>Innominado</td>
</tr>
<tr>
<td>11</td>
<td>452663,30</td>
<td>4512134,90</td>
<td>Innominado</td>
</tr>
<tr>
<td>12</td>
<td>452622,67</td>
<td>4511986,62</td>
<td>Innominado</td>
</tr>
<tr>
<td>13</td>
<td>452583,53</td>
<td>4511843,44</td>
<td>Arroyo de Valdemayón</td>
</tr>
<tr>
<td>14</td>
<td>452428,20</td>
<td>4510887,30</td>
<td>Innominado</td>
</tr>
<tr>
<td>15</td>
<td>452421,40</td>
<td>4510754,30</td>
<td>Arroyo del Morenillo</td>
</tr>
<tr>
<td>16</td>
<td>452408,60</td>
<td>4510386,30</td>
<td>Arroyo de la Hocecilla</td>
</tr>
<tr>
<td>17</td>
<td>452597,20</td>
<td>4509942,60</td>
<td>Innominado</td>
</tr>
<tr>
<td>18</td>
<td>452606,20</td>
<td>4509469,20</td>
<td>Arroyo de la Fuente del Toro</td>
</tr>
<tr>
<td>19</td>
<td>452603,67</td>
<td>4509447,02</td>
<td>Arroyo de la Fuente de la Cerca</td>
</tr>
<tr>
<td>20</td>
<td>452293,60</td>
<td>4509120,00</td>
<td>Arroyo de la Calera</td>
</tr>
<tr>
<td>21</td>
<td>452082,90</td>
<td>4508385,00</td>
<td>Innominado</td>
</tr>
<tr>
<td>22</td>
<td>452142,30</td>
<td>4508210,90</td>
<td>Innominado</td>
</tr>
<tr>
<td>23</td>
<td>452489,73</td>
<td>4507378,26</td>
<td>Arroyo de Valdearenas</td>
</tr>
<tr>
<td>24</td>
<td>452540,48</td>
<td>4507043,33</td>
<td>Innominado</td>
</tr>
<tr>
<td>25</td>
<td>452404,01</td>
<td>4506520,89</td>
<td>Innominado</td>
</tr>
<tr>
<td>26</td>
<td>452291,09</td>
<td>4506088,60</td>
<td>Arroyo de la Casita</td>
</tr>
<tr>
<td>27</td>
<td>452225,43</td>
<td>4505837,24</td>
<td>Innominado</td>
</tr>
<tr>
<td>28</td>
<td>452235,40</td>
<td>4505308,10</td>
<td>Innominado</td>
</tr>
<tr>
<td>29</td>
<td>451262,69</td>
<td>4502770,30</td>
<td>Arroyo de los Cañitos</td>
</tr>
<tr>
<td>30</td>
<td>450965,30</td>
<td>4502264,40</td>
<td>Innominado</td>
</tr>
<tr>
<td>31</td>
<td>450678,82</td>
<td>4501947,93</td>
<td>Barranco de Valdeñigo</td>
</tr>
<tr>
<td>32</td>
<td>450274,20</td>
<td>4501727,40</td>
<td>Arroyo de los Cañitos</td>
</tr>
<tr>
<td>33*</td>
<td>449198,80</td>
<td>4501558,70</td>
<td>Río Guadalix</td>
</tr>
<tr>
<td>34</td>
<td>446858,67</td>
<td>4501202,01</td>
<td>Innominado</td>
</tr>
<tr>
<td>35</td>
<td>446594,70</td>
<td>4501139,10</td>
<td>Innominado</td>
</tr>
<tr>
<td>36</td>
<td>445851,61</td>
<td>4500943,43</td>
<td>Arroyo de la Fresneda</td>
</tr>
<tr>
<td>37</td>
<td>444304,43</td>
<td>4500669,54</td>
<td>Innominado</td>
</tr>
<tr>
<td>38</td>
<td>444174,93</td>
<td>4500654,70</td>
<td>Innominado</td>
</tr>
<tr>
<td>39</td>
<td>443659,74</td>
<td>4500530,31</td>
<td>Arroyo de las Cañas de la Parrilla</td>
</tr>
<tr>
<td>40</td>
<td>443501,31</td>
<td>4500459,85</td>
<td>Arroyo del Gitano</td>
</tr>
</tbody>
</table>

* Cruce soterrado
Tabla 74. Cruces de la L/400kV Colectora La Cereal-La Cereal REE con cauces.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>443308,16</td>
<td>4500431,43</td>
<td>Arroyo del Gitano</td>
</tr>
<tr>
<td>2</td>
<td>441470,59</td>
<td>4500443,69</td>
<td>Arroyo de Navacabera</td>
</tr>
<tr>
<td>3</td>
<td>441220,46</td>
<td>4500459,16</td>
<td>Inominado</td>
</tr>
<tr>
<td>4</td>
<td>440886,78</td>
<td>4500483,38</td>
<td>Arroyo de Salobral</td>
</tr>
<tr>
<td>5</td>
<td>440666,00</td>
<td>4500434,99</td>
<td>Arroyo de la Colada</td>
</tr>
<tr>
<td>6</td>
<td>440404,51</td>
<td>4500149,97</td>
<td>Arroyo de Ollera</td>
</tr>
<tr>
<td>7</td>
<td>440252,13</td>
<td>4499988,04</td>
<td>Arroyo de Salobral</td>
</tr>
<tr>
<td>8</td>
<td>439448,76</td>
<td>4499850,97</td>
<td>Inominado</td>
</tr>
<tr>
<td>9</td>
<td>438794,04</td>
<td>4499817,01</td>
<td>Inominado</td>
</tr>
<tr>
<td>10</td>
<td>438760,07</td>
<td>4499815,25</td>
<td>Inominado</td>
</tr>
<tr>
<td>11</td>
<td>437956,14</td>
<td>4499628,23</td>
<td>Arroyo de las Casillas</td>
</tr>
<tr>
<td>12</td>
<td>437508,04</td>
<td>4498705,04</td>
<td>Inominado</td>
</tr>
<tr>
<td>13</td>
<td>437495,38</td>
<td>4498602,91</td>
<td>Arroyo de las Casillas</td>
</tr>
<tr>
<td>14*</td>
<td>437213,40</td>
<td>4497814,44</td>
<td>Arroyo Tejada</td>
</tr>
<tr>
<td>15</td>
<td>436946,02</td>
<td>4497401,86</td>
<td>Arroyo de la Canaleja</td>
</tr>
<tr>
<td>16</td>
<td>436204,19</td>
<td>4496719,79</td>
<td>Arroyo de Buitre</td>
</tr>
<tr>
<td>17</td>
<td>436104,06</td>
<td>4496491,88</td>
<td>Inominado</td>
</tr>
<tr>
<td>18</td>
<td>436110,67</td>
<td>4495728,72</td>
<td>Arroyo de Navalcapallo</td>
</tr>
<tr>
<td>19</td>
<td>437714,59</td>
<td>4494732,69</td>
<td>Arroyo Tejada</td>
</tr>
</tbody>
</table>

* Cruce soterrado

En relación a la PFV GR Colimbo ésta no presenta coincidencias en el interior del vallado con cauces.

Puede también consultarse el Plano 6 “Hidrología” del anexo cartográfico que acompaña al presente documento.

5.5.1 Dominio Público Hidráulico (DPH)

De acuerdo con el texto refundido de la Ley de Aguas, aprobado por Real Decreto Legislativo 1/2001 de 20 de julio, constituyen el dominio público hidráulico, entre otros bienes, los cauces de corrientes naturales, continuas o discontinuas y los lechos de lagos, lagunas y embalses superficiales, en cauces públicos.

De acuerdo con la legislación de aguas, la zonificación del espacio fluvial está formada por las siguientes zonas:

- Álveo o cauce natural de una corriente continua o discontinua es el terreno cubierto por las aguas en las máximas crecidas ordinarias.
- Ribera es cada una de las fajas laterales situadas dentro del cauce natural, por encima del nivel de aguas bajas.
- Zona de policía es la constituida por una franja lateral de cien metros de anchura a cada lado, contados a partir de la línea que delimita el cauce, en las que se condiciona el uso del suelo y las actividades que en él se desarrollen. Su tamaño se puede ampliar hasta recoger la zona de flujo preferente, la cual es la zona constituida por la unión de la zona donde se concentra preferentemente el flujo durante las avenidas y de la zona donde, para la avenida de 100 años de período de retorno, se puedan producir graves daños sobre las personas y los bienes, quedando delimitado su límite exterior mediante la envolvente de ambas zonas.

- Zona de servidumbre es la franja situada lindante con el cauce, dentro de la zona de policía, con ancho de cinco metros, que se reserva para usos de vigilancia, pesca y salvamento.

- Lecho o fondo de los lagos y lagunas es el terreno que ocupan sus aguas, en las épocas en que alcanzan su mayor nivel ordinario. En los embalses superficiales es el terreno cubierto por las aguas cuando éstas alcanzan su mayor nivel a consecuencia de las máximas crecidas ordinarias de los ríos que lo alimentan.

- Zonas inundables son las delimitadas por los niveles teóricos que alcanzarían las aguas en las avenidas, cuyo período estadístico de retorno sea de quinientos años. En estas zonas no se prejuzga el carácter público o privado de los terrenos, y el Gobierno podrá establecer limitaciones en el uso, para garantizar la seguridad de personas y bienes.

Figura 73. Esquema de zonificación del espacio fluvial.

En relación con el proyecto que nos ocupa, la zona de referencia es la Zona de Policía. En esta zona se analiza, mediante el uso de la cartografía disponible en la Confederación Hidrográfica del Tajo, los emplazamientos de la planta solar fotovoltaica y subestaciones eléctricas objeto del proyecto.
En relación con las superficies planteadas en el proyecto para la instalación de la ST Colimbo, la ST Colectora La Cereal y la PFV GR Colimbo existen las siguientes coincidencias con zonas de policía de cauces:

Tabla 75. Superficies coincidentes de la PFV y ST del proyecto con la zona de policía de cauces.

<table>
<thead>
<tr>
<th>Infraestructura</th>
<th>Cauce</th>
<th>Superficie (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFV GR Colimbo</td>
<td>Innominado</td>
<td>3,30</td>
</tr>
<tr>
<td>ST Colectora La Cereal</td>
<td>Innominado</td>
<td>0,37</td>
</tr>
</tbody>
</table>

Esta información se muestra con mayor detalle en el Plano nº 6 “Hidrología” del anexo cartográfico que acompaña al presente documento.

Zonas inundables

En el ámbito de estudio discurren varios arroyos de un caudal importante, en el que se debe tener en cuenta las zonas que pueden quedar inundadas en época de crecida de los ríos.

Según la Directiva 2007/60 sobre evaluación y gestión de riesgos de inundación, el Ministerio para la Transición Ecológica, ha desarrollado un Sistema Nacional de Cartografía de Zonas Inundables (SNCZI), para la prevención de riesgos de inundación y la planificación territorial.

Mediante herramientas de Sistemas de Información Geográfica, se han estudiado aquellas zonas con riesgos de inundación para los períodos de tiempo de 10, 50, 100 y 500 años.

Dentro del ámbito de estudio del proyecto existe una zona con riesgo de inundación para los períodos indicados anteriormente:

- La L/132kV GR Colimbo – Colectora La Cereal cruza en su tramo soterrado una zona de probabilidad de inundación para los períodos de 10, 50, 100 y 500 años del río Guadalix. Esta zona se localiza en el centro sur del ámbito.
En relación con la PFV GR Colimbo, la ST Colimbo y la ST Colectora La Cereal, estas zonas inundables están suficientemente alejadas de ellas como para estimar que no habrá afecciones de ningún tipo sobre dichas infraestructuras eléctricas.

El Plano nº 7 “Riesgos del Medio Físico” del anexo cartográfico que acompaña al presente documento, muestra con mayor detalle las zonas inundables identificadas en el ámbito de estudio.
5.6 SUELOS

Tras un primer apartado en el que se indica la fuente de información utilizada para la clasificación de los suelos, se procede a clasificar los tipos de suelos presentes en el ámbito de estudio.

5.6.1 Datos de partida para la caracterización de los suelos

Dado que el ámbito de estudio está incluido en Madrid y Castilla La Mancha, se optó por utilizar la fuente bibliográfica “Sistema Español de Información de Suelos” (SEIS), del Ministerio de Medio Ambiente y del CSIC, los cuales se elaboraron a partir del correspondiente Atlas Nacional de España, escala 1:2.000.000 (IGN, 1992). En esa cartografía, se mantiene también la leyenda original única para todos los mapas, que corresponde a la clasificación natural de los suelos de acuerdo con la Soil Taxonomy a nivel de Grandes Grupos (USDA, 1987).

5.6.2 Clasificación edafológica de los suelos del ámbito de estudio

En base a la cartografía referida en el apartado anterior, distinguimos diferentes tipos de suelo en el ámbito de estudio, observándose que tiene extensiones muy similares quedando el territorio repartido en tres tipos de suelo: entisoles, inceptisoles y alfisoles (ver figura).

Figura 75. Mapa de los suelos en el ámbito de estudio, según Órdenes de la Soil Taxonomy.
Fuente: SEIS.
Inceptisoles

Descripción general

Los inceptisoles son suelos con características poco definidas al igual que sus horizontes. Como su nombre indica, son suelos incipientes, que manifiestan ciertas evidencias, aunque débiles, de evolución edáfica. Están más desarrollados que los Entisoles, pero carecen de los rasgos característicos de los otros órdenes del suelo.

En zonas de clima frío, se presenta acumulación de materiales orgánicos en la superficie debido a condiciones de baja degradación. Presentan un pH ácido, malas condiciones de drenaje y pueden contener minerales de arcilla amorfa como la álófana.

Al igual que en los otros órdenes, el régimen de humedad característico es el xérico, y los regímenes de temperatura son mésico o, en las zonas de mayor altitud, crístico.

Se desarrolla en ellos una agricultura productiva, salvo que les falte humedad. En las zonas con inclinación, la carencia de vegetación da lugar a problemas de erosión.

Procesos formadores

Estos suelos son jóvenes, pero con evidencias de intervención en algún grado de procesos edafogenéticos que conducen a la formación de diversos horizontes de diagnóstico (úmbrico, cámbico, cálcico o gypsico). Son suelos de definición muy compleja y representan un orden muy heterogéneo.

Su formación no está regida por ningún proceso específico, como no sea la alteración y el lavado. Podríamos afirmar que todos los procesos están representados, aunque con baja intensidad, y sin que predomine ninguno. Son pues suelos fundamentalmente eluviales. Se podrían definir como suelos de las regiones húmedas y subhúmedas con horizontes de alteración y con pérdidas de bases, Fe y Al. Presentan minerales inestables (la alteración no puede ser tan intensa como para destruirlos totalmente).

Tipologías en el ámbito de estudio

En el ámbito de estudio encontramos un inceptisol perteneciente al suborden Ochrept, grupo Xerochrept (asociación Xerorthent+Xerumbrept), que según la FAO se correspondería con un cambisol districo.

Localización en el ámbito de estudio

Dominan prácticamente en todo el ámbito de estudio, , en Torremocha del Jarama y excepto las zonas la sur en el término de Tres Cantos.
Alfisoles

Descripción general

El proceso de argiluviamción, indicador de un largo desarrollo evolutivo, caracteriza a los suelos incluidos en el Orden Alfisoles. Se trata de la translocación de arcilla de un punto a otro inferior del perfil, donde se acumula en formas características. Cuando el proceso de acumulación adquiere suficiente importancia, se define un horizonte de diagnóstico “argilico”.

Los Alfisoles son suelos que tienen:
- un epipedón óchrico
- un horizonte argilico
- un porcentaje de saturación de bases (PSB) de moderado a alto (mayor del 35%)
- agua a menos de 1500 kPa de tensión durante al menos tres meses al año

El Orden de los Alfisoles se caracteriza por presentar un horizonte subsuperficial con acumulación de arcillas desarrollado en condiciones de acidez o de alcalinidad sódica, asociado a un horizonte superior pobre en materia orgánica o de poco espesor. Los suelos que pertenecen al Orden precisan para su formación áreas estables con drenajes libres y largos periodos de tiempo.

Procesos formadores

Los procesos pedogenéticos más significativos en los Alfisoles son:
- La descomposición, humificación y mineralización de la materia orgánica
- La eluviation e iluviation
- La calcificación y descalcificación

Por tanto, los procesos pedogenéticos más significativos de un Alfsol son la formación de los epipediones superficiales y los procesos de eluviation que dan lugar a los horizontes állicos y argilicos, además de los procesos de descalcificación y calcificación.

En los Alfisoles desarrollados sobre material parental calcáreo, primero se produce una descalcificación de los horizontes A y E, para posteriormente dispersar las arcillas y proceder a la iluviation de éstas hasta que flocculan y dan lugar al horizonte Bt. La floculación de las arcillas puede deberse a la presencia de cationes divalentes acumulados y precipitados a cierta profundidad y que han dado lugar a horizontes cálcicos o petrocálcicos. Una vez desarrollado el horizonte argilico, se puede dar la calcificación de este horizonte.

En la génesis de un Alfsol, el proceso más importante es el de la traslocación de arcilla desde la parte superficial del perfil hasta su deposición en un horizonte subyacente.
En la zona se asocian a las principales tierras de cereal en secano, caracterizando en gran medida la unidad fisiográfica de la campiña. Se desarrollan fundamentalmente sobre los terrenos mesozoicos de arcosas y terrazas altas de ríos y arroyos.

Tipologías en el ámbito de estudio

A nivel del Suborden los alfisoles del ámbito se corresponden con Xeralfs, que se caracterizan por régimen de humedad xérico, con un largo período de sequía en verano, pero en invierno la humedad llega a capas profundas. El epípedo es duro o muy duro y macizo en seco.

Los Xeralfs son normalmente suelos con notables contrastes texturales, con un horizonte argílico con elevada capacidad de retención de agua disponible y de intercambio catiónico. Se presentan desde ligeramente desaturados en bases, en el caso del subgrupo Haploxeralf últico, hasta saturados, con pH moderadamente básicos, en los subgrupos Haploxeralf típico o cálcico. La textura del horizonte argílico dificulta el manejo agrícola de estos suelos, y afecta a su capacidad para transmitir el agua, motivo por el cual se saturan con facilidad durante los periodos lluviosos. No obstante, la capacidad para aportar humedad y nutrientes de este horizonte resulta determinante en su elevada aptitud como suelo agrícola.

El grupo presente en el ámbito dentro del suborden Xeralf es Haploxeralf, asociándose todos ellos a las tierras de cereal secano. Los Haploxeralfs son suelos generalmente profundos que poseen colores pardos (pardo rojizo, pero no rojos), con poca materia orgánica y un límite neto o gradual hacia un horizonte argílico de espesor moderado. Los Alfisoles Xeralf Haploxeralf según la FAO se corresponderían con luvisoles crómicos u órticos.

Existen de manera individual y también asociados a Inceptisoles, concretamente a los Xerochrept, referidos anteriormente.

Localización en el ámbito de estudio

Estos suelos se encuentran en la unidad de la campiña, en arcosas, como es el caso del ámbito de estudio y en el sur de la Comunidad de Madrid.

En el ámbito se localizan en la zona sur en el término de Tres Cantos, siendo el tipo de suelo sobre el que se asienta la ST La Cereal de REE. También estaría presente en el tramo final sur de la línea de L/132 kV GR Colimbo – Colectora La Cereal.

Entisoles

Descripción general

Los Entisoles son suelos de escaso grado de evolución, estando asociados a muy diversas litologías, formas del terreno o usos. De acuerdo con su escaso desarrollo evolutivo, reflejan en gran medida las características fisicoquímicas del material en el que se desarrollan con una débil evidencia de la acción de procesos edáficos significativos.
En relación con su clasificación, se caracterizan por la ausencia, o bien por un escaso desarrollo, de horizontes de diagnóstico distintos al epípedo “óctrico”, que corresponde a un horizonte superficial de color claro y con bajo contenido en carbono orgánico, o bien algo más oscurecido, pero de escaso espesor.

Los Entisoles son suelos típicos de laderas donde la escorrentía no permite la evolución de los suelos en profundidad a causa de la erosión hídrica. Aparecen principalmente en zonas forestales. No obstante, también suelen aparecer entisoles en zonas de barrancos con aluviones constantes que no permiten el desarrollo en profundidad (perfil A C). Por otra parte, son suelos potencialmente muy fértiles debido a los diferentes aluviones recibidos, utilizándose principalmente para cultivos hortícolas y frutícolas.

Procesos formadores

Los únicos factores formadores son la melanización y la gleificación. La melanización es el proceso por el que el suelo se oscurece debido a la materia orgánica. Se presenta generalmente en los horizontes A y en el epípedo óctrico. La gleificación consiste en la traslocación o pérdida de hierro y manganeso propia de suelos saturados de agua tras la reducción del manganeso y el hierro a formas solubles como Fe2+ y Mn2+.

Como consecuencia de la gleificación el suelo adquiere una coloración grisácea más o menos azulada y verdosa. De darse condiciones de sequía el Fe y el Mn se mantienen oxidados, y por tanto inmóviles, acumulándose en el suelo bajo la forma de compuestos de colores intensos (negros, rojos, pardos o amarillos). Esta alternancia origina moteados, estrías y concreciones, consecuencia típica de los procesos de hidromorfismo.

Tipologías en el ámbito de estudio

Los entisoles se clasifican en 5 subórdenes. El suborden representado en el ámbito es de los Orthents. Su descripción taxonómica sería Orden Entisoles, Suborden Orthents/Fluvents y Grupo Xerorthents/Xerofluvents.

Los Orthents son suelos esqueléticos que se han formado sobre superficies erosionadas recientemente y que no han evolucionado más debido a que su posición fisiográfica conlleva una gran inestabilidad del material parental. Los Orthents se encuentran en cualquier clima y bajo cualquier vegetación. La variedad de materiales litológicos sobre los que se encuentran los Orthents es muy amplia (calizas, margas, arcosas, granitos, gneises, pizarras, depósitos cuaternarios en general...). Su característica común es un limitado desarrollo edáfico, consecuencia de una elevada erosionabilidad. A nivel de grupo los Orthents del ámbito se incluyen dentro de los Xerorthents. Los usos forestales arbolados, así como los de matorral y pastizal, son los más frecuentes en las zonas donde dominan estos suelos.

Los Fluvents están asociados a depósitos aluviales y terrazas jóvenes, por lo que se les halla en valles y en deltas de ríos, especialmente los que cargan mucho sedimento. Su desarrollo se ve impedido por deposiciones repetidas de sedimento en periódicas inundaciones.
Presentan habitualmente un régimen de humedad “xérico” (grupo Xerofluvents), extensamente representado en valles y navas de deficiente drenaje, y, ya con muy escasa frecuencia, “údico” (Udifluvents). La formación de los Fluvents se relaciona con la secuencia de deposición de los materiales aluviales relacionada con fases de inundación-crecimiento vegetal, que determina una variación irregular de la materia orgánica con la profundidad y contenidos relativamente elevados en zonas profundas del suelo. Presentan por lo común mayor fertilidad que los suelos de su entorno, debido a la naturaleza de los aportes aluviales, por lo que habitualmente son dedicados a regadío, horticultura y selvicultura (p.e., choperas), así como a pastizales.

Localización en el ámbito de estudio

Dominan en las zonas de Sierra y Rampa, correspondiendo a suelos de escaso a moderado desarrollo, ácidos y arenosos, con abundancia relativa de materia orgánica y frecuentemente pedregosos y con roca próxima a la superficie.

Este tipo de suelo es minoritario en el ámbito de estudio y no hay ningún elemento del proyecto sobre este tipo de suelos.

5.6.3 Distribución de los tipos edáficos en las proximidades a los elementos del proyecto

A continuación, se expone una síntesis de los tipos edáficos existentes en el ámbito de estudio:

Tabla 76. Tipología de suelos en los emplazamientos del proyecto

<table>
<thead>
<tr>
<th>Elemento del proyecto</th>
<th>Tipo de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFV GR Colimbo</td>
<td>Inceptisol (Ochrepts)</td>
</tr>
<tr>
<td>L/132 kV GR Colimbo – Colectora La Cereal</td>
<td>Inceptisol (Ochrepts)</td>
</tr>
<tr>
<td>L/132 kV GR Colimbo – Colectora La Cereal (mitad norte)</td>
<td>Inceptisol (Ochrepts)</td>
</tr>
<tr>
<td>L/132 kV GR Colimbo – Colectora La Cereal (mitad sur, incluyendo el tramo soterrado)</td>
<td>Alfisol (Xeralfs)</td>
</tr>
<tr>
<td>L/400 kV Colectora La Cereal – La Cereal REE (aéreo)</td>
<td>Inceptisol (Ochrepts), excepto parte final Alfisol (Xeralfs)</td>
</tr>
<tr>
<td>L/400 kV Colectora La Cereal – La Cereal REE (soterrado)</td>
<td>Alfisol (Xeralfs)</td>
</tr>
<tr>
<td>ST Colimbo</td>
<td>Inceptisol (Ochrepts)</td>
</tr>
<tr>
<td>ST Colectora La Cereal</td>
<td>Alfisol (Xeralfs)</td>
</tr>
</tbody>
</table>
5.6.4 Descripción de los estados erosivos

Las condiciones de erosionabilidad en el entorno del proyecto se determinan tomando como base Mapa de Estados Erosivos 1:1.000.000 del Área de Hidrología y Zonas Desfavorecidas de la Dirección General de Desarrollo Rural y Política Forestal, disponible en el MITERD. En este Mapa, los resultados del cálculo de pérdidas de suelo por erosión laminar y en regueros se agrupan en niveles erosivos (ver figura).

Según el citado Mapa de Estados Erosivos, la pérdida tolerable de suelo por erosión (hídrica y eólica) en la mitad sur del ámbito y en la zona de ubicación de la PSFV GR Colimbo es de 0-5 t/ha/año, es decir, el más bajo de los estados erosivos que se distinguen en el Mapa de Estados Erosivos consultado.

No obstante, en la parte norte existen estados erosivos con mayores pérdidas, llegando a ser en ocasiones entre 50 y 100 t/ha/año, aunque en la mayor parte de esta zona norte los valores de pérdidas de suelo son de 12-25 t/ha/año, como es el caso de la ST de Colimbo.

5.7 VEGETACIÓN, FLORA Y HÁBITATS DE INTERÉS COMUNITARIO

En este apartado se recoge, tras una breve introducción sobre la vegetación potencial, una descripción general de la vegetación y los usos, presente en el ámbito del proyecto y, en
particular, en las proximidades a los elementos que constituyen el presente proyecto, como subestaciones, apoyos y accesos a los mismos.

5.7.1 Vegetación potencial

Considerando las tipologías biogeográficas y bioclimatológicas propuestas en el Mapa de Series de Vegetación Potencial de España de S. Rivas Martínez (ICONA 1987), el ámbito de estudio se encuadra en la región Mediterránea, superprovincia mediterráneo ibérica central, provincia Carpetano-Ibérico-Leonesa, sector Guadarrámico.

La mayor parte del ámbito de estudio se corresponde con la serie 24ab Juniper o xycedri-Querceto rotundifoliae, faciación mesomediterránea con Retama sphaerocarpa, siendo el tercio nordeste del ámbito vegetación perteneciente a serie 22b Bupleuro rigidi-Querceto rotundijol i a sigmetum mesomediterránea manchega y aragonesa basófila de la encina (Quercus rotundijolia) (ver figura).

En la serie 24ab Juniperó oxycedri-Querceto rotundifolía, faciación mesomediterránea con Retama sphaerocarpa, del piso mesomediterráneo estos matorrales (retamares) están caracterizados por la presencia de retama (Retama sphaerocarpa) y se incluyen en la asociación Cytiso scoparii-Retametum sphaerocarpae.

Cuando el perfil edáfico se degrada, el retamar es sustituido por jarales ricos en especies acidófilas y xerófilas características de la clase Cisto-Lavanduletea, entre las que cabe destacar la jara pringosa (Cistus ladanifer) y el cantueso (Lavandula pedunculata). Estos jarales de jara pringosa se incluyen en la asociación Rosmarino-Cistetum ladaniferi.

En mosaico con los jarales o sustituyéndolos en situaciones de una mayor degradación del suelo, se desarrollan comunidades de gramíneas vivaces como los lastonares (de la asociación Centaureo-Stipetum lagascae), de óptimo mesomediterráneo, o los berceales meso-supramediterráneos (de la asociación Arrhenathero baetici-Stipetum giganteae).

La serie 22b Bupleuro rigidi-Querceto rotundijolia sigmetum mesomediterránea manchega y aragonesa basófila de la encina (Quercus rotundifolia) es la serie de mayor extensión superficial de España. Su denominador común es un ombroclima de tipo seco y unos suelos ricos de carbonato cálcico. El carrascal o encinar, que representa la etapa madura de la serie, lleva un cierto número de arbustos esclerófilos en el sotobosque (Quercus cocciifera, Rhamnus alaternus var. parvifolia, Rhamnus lycioides subsp. lycioides, etcétera) que tras la total o parcial desaparición o destrucción de la encina aumentan su biomasa y restan como etapa de garriga en muchas de estaciones fragosas de estos territorios. En esta amplia serie, donde las etapas extremas de degradación, los tomillares, pueden ser muy diversos entre sí en su composición florística, los estados correspondientes a los suelos menos degradados son muy similares en todo el areal. Tal es el caso de la etapa de los coscojares o garrigas (Rhamno-Quercetum cocciiferae), de los retamares (Genisto scorpi-Retametum sphaerocarpae), la de los espartales de atochas (Fumano ericoidis-Stipetum tenacissimae, Arrhenathero albi-Stipetum tenacissimae) y en cierto modo la de los pastizales vivaces de Brachypodium retusum (Ruto angustifoliae-Brachypodietum ramosi). La vocación de estos territorios es agrícola (cereal, viñedo, olivar, etcétera) y ganadera extensiva.

En los suelos con alta presencia de humedad edáfica, como los de las riberias de los ríos, la vegetación potencial son comunidades influídas principalmente por esta circunstancia denominadas comunidades azonales, como es el caso en el ámbito de estudio correspondiente a la Geomacroserie riparia Ib silicicola carpetana de las fresnedas, que ocupa suelos sometidos a la presencia de humedad edáfica en las áreas de sustratos pobres en bases de la provincia Carpetano-Íbérico-Leonesa. El óptimo de la Geomacroserie de las fresnedas carpetanas se da en los pisos bioclimáticos meso y supramediterráneos, con ligeras variaciones florísticas y sintaxónomicas entre ambos.
5.7.2 Descripción general de la vegetación y los usos en el ámbito de estudio

El análisis y estudio de la flora y vegetación en el ámbito del proyecto responde a la necesidad de identificar y ubicar las formaciones existentes para completar el inventario de detalle y para el posterior análisis de impactos y propuesta de medidas de impacto.

Para llevar a cabo la caracterización de la tipología de vegetación presente en el ámbito de estudio se ha consultado como cartografía base la disponible en fuentes oficiales. En concreto, se ha consultado el Geoportal de la Infraestructura de Datos Espaciales de la Comunidad de Madrid, que es el catálogo de Información Geográfica de la Comunidad de Madrid.

Los mapas consultados han sido:

- Sistema de información de Ocupación del Suelo, SIOSE a escala 1:25.000 y el Mapa Digital Continuo de Vegetación de la Comunidad de Madrid
- Mapa Forestal de España a escala 1:25.000 (MFE25).
- Mapa Digital Continuo de Vegetación de la Comunidad de Madrid (Subdirección General de Estudios Territoriales y Cartografía de la Consejería de Medio Ambiente, Ordenación del Territorio y Sostenibilidad de la Comunidad de Madrid, 2006). En esta capa SIGI_MA_VEGETACIONPolygon.shp) se recogen tanto superficies ocupadas por vegetación, como superficies artificiales ocupadas por infraestructuras lineales, zonas urbanas, industriales, etc. Para la elaboración de esta cartografía se ha realizado mediante fotointerpretación y trabajo de campo, y para ello se ha utilizado la ortoimagen digital disponible y el mapa de vegetación de 1998.
- Mapa del Terreno Forestal 1:10.000 (Dirección General de Biodiversidad y Recursos Naturales de la Consejería de Medio Ambiente, Ordenación del Territorio y Sostenibilidad de la Comunidad de Madrid, 2009). Se trata de una capa (MSFORESTAL_MADRID.shp) realizada a escala 1:10.000 que incluye información sobre el tipo de vegetación, tipo de uso y clasificación. Para su creación se utilizaron como base, la capa de vegetación (2006) y la capa de Planeamiento (2006).

Como primera aproximación se ha utilizado la variable tipo de vegetación del Mapa Digital Continuo de Vegetación de la Comunidad de Madrid (ver figura).
Figura 76. Tipos de vegetación y usos del Mapa Digital Continuo de Vegetación de la Comunidad de Madrid, 2006.

Se ha calculado la superficie y el porcentaje que representa cada uno de los tipos de vegetación (ver tabla siguiente).

Tabla 77. Infraestructuras de líneas eléctricas presentes en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Tipo de vegetación</th>
<th>Superficie (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afloramientos rocosos y rasos (AFLOR)</td>
<td>4,1</td>
<td>0,02</td>
</tr>
<tr>
<td>Lámina de agua (AGUA)</td>
<td>0,8</td>
<td>0,00</td>
</tr>
<tr>
<td>Vegetación arbórea de coníferas (ARCON)</td>
<td>67,9</td>
<td>0,39</td>
</tr>
<tr>
<td>Vegetación arbórea de frondosas (ARFRO)</td>
<td>3.360,5</td>
<td>19,11</td>
</tr>
<tr>
<td>Artificial (ARTI)</td>
<td>1.294,5</td>
<td>7,36</td>
</tr>
<tr>
<td>Cultivos (CULTI)</td>
<td>4.938,7</td>
<td>28,09</td>
</tr>
<tr>
<td>Vegetación herbácea (HERBA)</td>
<td>3.668,9</td>
<td>20,87</td>
</tr>
<tr>
<td>Vegetación de matorral (MATO)</td>
<td>3.406,4</td>
<td>19,37</td>
</tr>
<tr>
<td>Vegetación arbórea mezcla de coníferas y frondosas (MZCFR)</td>
<td>431,5</td>
<td>2,45</td>
</tr>
<tr>
<td>Olivares (OLIVA)</td>
<td>283,6</td>
<td>1,61</td>
</tr>
<tr>
<td>Plantaciones de frondosas y coníferas (PFRCO)</td>
<td>126,2</td>
<td>0,72</td>
</tr>
<tr>
<td>Total</td>
<td>17.583</td>
<td>100</td>
</tr>
</tbody>
</table>

Los cultivos de secano suponen el 28,1% del ámbito de estudio mientras que el olivar se sitúa en un 1,6% de la superficie. El uso artificial asciende al 7,4%.

La superficie cubierta con vegetación natural supone aproximadamente dos tercios de la superficie total del ámbito. Entre esta vegetación natural destaca la vegetación herbácea...
(20,9%), el matorral (19,4%) y el bosque de frondosas (19,1%) que tienen una abundancia relativa prácticamente similar, ocupando en torno al 19-21% del ámbito. El resto de usos es muy minoritario, correspondiente a situaciones intermedias y de presencia testimonial.

Para una aproximación de mayor detalle, se ha consultado el Mapa del Terreno Forestal 1:10.000 (ver figura).

![Mapa del Terreno Forestal 1:10.000](image)

Figura 77. Tipos de vegetación forestal según el Mapa del Terreno Forestal 1:10.000 de 2009.

Figura 78. Leyenda de tipos de vegetación forestal de la figura anterior.

Se ha calculado la superficie de los diferentes tipos de vegetación y el porcentaje de superficies que estos tipos representan en el total del ámbito (ver tabla a continuación).
<table>
<thead>
<tr>
<th>Tipo de vegetación</th>
<th>Superficie (has)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afloramiento rocoso</td>
<td>1,4</td>
<td>0,01</td>
</tr>
<tr>
<td>Cantera, grava y vertedero</td>
<td>163,7</td>
<td>0,93</td>
</tr>
<tr>
<td>Cantuesar, tomillar y otras especies de pequeña talla</td>
<td>100,3</td>
<td>0,57</td>
</tr>
<tr>
<td>Chopería</td>
<td>45,6</td>
<td>0,26</td>
</tr>
<tr>
<td>Cultivo de almendro</td>
<td>9,7</td>
<td>0,06</td>
</tr>
<tr>
<td>Cultivo de regadío</td>
<td>401,5</td>
<td>2,28</td>
</tr>
<tr>
<td>Cultivo de secano herbáceo</td>
<td>4.514,4</td>
<td>25,67</td>
</tr>
<tr>
<td>Encinar</td>
<td>1.761,4</td>
<td>10,02</td>
</tr>
<tr>
<td>Encinar adehesado</td>
<td>898,1</td>
<td>5,11</td>
</tr>
<tr>
<td>Encinar adehesado cultivado</td>
<td>165,3</td>
<td>0,94</td>
</tr>
<tr>
<td>Enebral</td>
<td>158,4</td>
<td>0,90</td>
</tr>
<tr>
<td>Fresneda</td>
<td>14,7</td>
<td>0,08</td>
</tr>
<tr>
<td>Infraestructura lineal</td>
<td>281,9</td>
<td>1,60</td>
</tr>
<tr>
<td>Jaral</td>
<td>21,4</td>
<td>0,12</td>
</tr>
<tr>
<td>Lamina y curso de agua</td>
<td>0,8</td>
<td>0,00</td>
</tr>
<tr>
<td>Matorral de leguminosas</td>
<td>113,6</td>
<td>0,65</td>
</tr>
<tr>
<td>Matorral espinoso de rosáceas</td>
<td>24,6</td>
<td>0,14</td>
</tr>
<tr>
<td>Mezcla de encina y coníferas</td>
<td>380,8</td>
<td>2,17</td>
</tr>
<tr>
<td>Mezcla de encina y otras frondosas</td>
<td>17,4</td>
<td>0,10</td>
</tr>
<tr>
<td>Mezcla de enebro y frondosas</td>
<td>11,9</td>
<td>0,07</td>
</tr>
<tr>
<td>Mezcla de fresno y otras frondosas</td>
<td>8,5</td>
<td>0,05</td>
</tr>
<tr>
<td>Mezcla de pino carrasco y frondosas</td>
<td>7,0</td>
<td>0,04</td>
</tr>
<tr>
<td>Mezcla de pino piñonero y frondosas</td>
<td>9,1</td>
<td>0,05</td>
</tr>
<tr>
<td>Mezcla de quejigo y coníferas</td>
<td>2,5</td>
<td>0,01</td>
</tr>
<tr>
<td>Mosaico construcción - agrícola</td>
<td>64,7</td>
<td>0,37</td>
</tr>
<tr>
<td>Olivar</td>
<td>74,9</td>
<td>0,43</td>
</tr>
<tr>
<td>Otras frondosas</td>
<td>1,2</td>
<td>0,01</td>
</tr>
<tr>
<td>Pastizal y erial</td>
<td>3.454,7</td>
<td>19,65</td>
</tr>
<tr>
<td>Pinar de pino carrasco</td>
<td>56,1</td>
<td>0,32</td>
</tr>
<tr>
<td>Pinar de pino piñonero</td>
<td>12,3</td>
<td>0,07</td>
</tr>
<tr>
<td>Piornal, codesar y escobonal</td>
<td>27,6</td>
<td>0,16</td>
</tr>
<tr>
<td>Plantación de chopo</td>
<td>31,0</td>
<td>0,18</td>
</tr>
<tr>
<td>Plantación de coníferas</td>
<td>0,0</td>
<td>0,00</td>
</tr>
<tr>
<td>Plantación de otras frondosas</td>
<td>30,6</td>
<td>0,17</td>
</tr>
<tr>
<td>Prado</td>
<td>143,8</td>
<td>0,82</td>
</tr>
<tr>
<td>Quejigar</td>
<td>5,8</td>
<td>0,03</td>
</tr>
<tr>
<td>Raso</td>
<td>2,8</td>
<td>0,02</td>
</tr>
<tr>
<td>Retamar</td>
<td>2.960,5</td>
<td>16,84</td>
</tr>
<tr>
<td>Vegetación de ribera arbóreo - arbustiva</td>
<td>283,1</td>
<td>1,61</td>
</tr>
<tr>
<td>Vegetación de ribera de matorral</td>
<td>144,9</td>
<td>0,82</td>
</tr>
<tr>
<td>Vegetación de ribera herbáceae</td>
<td>30,2</td>
<td>0,17</td>
</tr>
<tr>
<td>Viñedo</td>
<td>181,3</td>
<td>1,03</td>
</tr>
<tr>
<td>Viñedo con cultivo de almendro</td>
<td>2,6</td>
<td>0,01</td>
</tr>
<tr>
<td>Viñedo con olivar</td>
<td>13,3</td>
<td>0,08</td>
</tr>
<tr>
<td>Zona urbanizada</td>
<td>947,8</td>
<td>5,39</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17.583</td>
<td>100,0</td>
</tr>
</tbody>
</table>
Esta tabla con la abundancia de los tipos de vegetación según el mapa forestal en el ámbito de estudio, a una escala más precisa, muestra, que concretamente los cultivos de secano son de un 25,7% de la superficie; el regadío, un 2,3%; el viñedo, un 1,2% y el olivar, un 0,4%. La zona urbanizada cubre un 5,4%; infraestructuras lineales, un 1,6% y canteras, graveras y vertederos, un 0,9%.

Figura 79. Los cultivos y las zonas carentes de vegetación natural ocupan aproximadamente un tercio de la superficie del ámbito de estudio.

De esta manera, se corrabora lo indicado al principio del apartado en base al Mapa Digital Continuo de Vegetación de la Comunidad de Madrid, en el que resultó que aproximadamente un tercio del ámbito es cultivo y urbano, y dos tercios vegetación natural.

Los pastizales y eriales son el tipo de vegetación natural más abundante, con un 25,7% del total del ámbito de estudio. A las zonas de pastizal y erial de siguen los retamares (16,8%), y a continuación en orden de abundancia los encinares (10,0%), las dehesas de encina (5,1%) y la mezcla de encinas con coníferas, concretamente enebros (2,2%).
Figura 80. Imagen representativa del ámbito de estudio en la que se observan, en primer plano, pastos como formación más abundante del ámbito. Al fondo masas de encinar y encinar adehesado. También se observa la presencia de retamares.

Figura 81. Pastos en la zona de la ST Colectora. Al fondo, arroyo del Buitre con saucedas y vegetación de ribera arbustiva y más al fondo y a la derecha, masas de encinar adehesado.

La vegetación de ribera arbóreo – arbustiva supone un 1,6%, la vegetación de ribera de matorral, 0,8% y la de ribera herbácea, 0,2%.
El resto de formaciones vegetales naturales no tiene relevancia en cuanto a su abundancia, no siendo ninguna de ellas superior al 1% de la superficie del ámbito.
5.7.3 Especies de flora amenazada

Se ha revisado el listado de especies de flora vascular amenazada (información básica procedente del Inventario Español de Especies Terrestres, IEET (MITECO, 2016) presentes en la zona para las cuadrículas UTM 10x10 km en las que se incluye el proyecto.

Las cuadrículas que incluye el ámbito de estudio son las 8 siguientes: 30TVL52, 30TVL51, 30TVL50, 30TVL59, 30TVL40 30TVL49, 30TVL30 y 30TVL39 (ver figura siguiente). En ninguna de ellas, hay especies de flora vascular amenazada según el citado Inventario.

No obstante, por quedar del lado de la seguridad, se ha estudiado contexto más amplio, y se han analizado también algunas de las cuadrículas adyacentes más próximas. Así pues, estudiaremos un contexto geográfico más amplio de manera que se incluya cualquier cuadrícula que esté a menos 5km de distancia de los elementos del proyecto. Así pues, las cuadrículas a revisar la presencia de flora abarcaría 14 cuadrículas 10x10km, las 8 incluidas anteriormente: 30TVL52, 30TVL51, 30TVL50, 30TVL59, 30TVL40 30TVL49, 30TVL30 y 30TVL39; más otras 6 también a menos de 5km del proyecto: 30TVL62, 30TVL61, 30TVL60, 30TVL48, 30TVL38 y 30TVL29.

Considerando ese contexto geográfico más amplio, que abarca las cuadrículas 10x10km que aparecen en la citada figura, se parece una especie de flora amenazada. Concretamente se encuentra en las cuadrículas 30TVL61, 30TVL60, fuera, aunque muy próximas del límite del ámbito. La especie presente en estas cuadrículas, según el citado IEET, es el helecho acuático *Marsilea strigosa*.

![Figura 84. Cuadrículas UTM 10x10 km en el ámbito de estudio. Fuente: MITECO.](image-url)

Endémica del cuadrante suroeste de la península Ibérica en las cuencas de los ríos Tajo, Sado, Guadiana y Guadalquivir.

Para las estimaciones y conteos directos se ha aplicado una generalización obtenida por observación directa, según la cual un individuo puede llegar a ocupar una superficie de 1 m2 por crecimiento vegetativo durante un ciclo anual. El hábitat natural de las poblaciones españolas, en cuanto a área de ocupación, no llega siquiera a los 100 m2, y el número de individuos en estas poblaciones no llega al 1% del total.

Según Anthos, las citas de esas cuadrículas 30TVL61, 30TVL60 son las siguientes:

Son citas que se encuentran en el término de El Casar, ya en Guadalajara, y asociadas a lagunas y navajos, al igual que otras más alejadas en las lagunas de Puebla de Beleña.

Su hábitat son los lechos y márgenes de ríos y arroyos estacionales sobre materiales metamórficos. Vive en grietas de pizarras, cascajares y arenas de sedimentación, y en sustratos limosos húmedos, siempre lejos de las zonas de mayor corriente. Las aguas son dulces y con escasa mineralización.

Se presenta en la asociación *Menthoion cervinae* (*Isoeto-Nanojuncetea*) y convive con *Isoetes velatum, I. setaceum, Littorella uniflora, Ranunculus peltatus, Pulicaria paludosa, Lythrum borysthenicum*, etc.
5.7.4 Hábitat de interés comunitario (HICs)

La Directiva 92/43/CEE establece, en su anexo I, una serie de Hábitats de Interés Comunitario (en adelante, HIC), los cuales pueden ser de carácter prioritario o no prioritario.

Se ha analizado la cartografía oficial de Atlas y Manual de los Hábitats Naturales y Seminaturales de España (MITECO, 2005). Existe una presencia notable de teselas HICs en el ámbito (ver tabla), ya que hay un total de 7.383 has de HIC de una superficie total de 17.583 has que tiene el ámbito de estudio, lo que supone que un 42,4% del ámbito es HIC. Dominan los HICs prioritarios respecto de los HICs no prioritarios en una proporción aproximada de 2 a 1. Es decir, de cada 3 hectáreas HICs, 2has son HICs prioritarios y 1 ha es de HIC no prioritario. (ver tabla).

Tabla 79. Superficie que representan las teselas con presencia de HIC prioritario y teselas sin HIC prioritario y porcentaje (%) considerando el total de zonas HICs y el total del ámbito de estudio, según la cartografía oficial del Atlas de los Hábitats del MITECO.

<table>
<thead>
<tr>
<th>Cobertura (%) HIC dominante</th>
<th>Nº</th>
<th>Superficie (has)</th>
<th>% HIC</th>
<th>% Ámbito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teselas con HIC Prioritarios</td>
<td>29</td>
<td>5.005,69</td>
<td>67,8</td>
<td>28,5</td>
</tr>
<tr>
<td>Teselas sin HIC Prioritarios</td>
<td>98</td>
<td>2.377,73</td>
<td>32,2</td>
<td>13,5</td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>7.383,41</td>
<td>100</td>
<td>42,0</td>
</tr>
</tbody>
</table>

Figura 85. Cuadriculas UTM 10x10 km en el ámbito de estudio. Fuente: MITECO.

El número de teselas HICs en el ámbito es de 127, de las cuales 29 son teselas con presencia de HIC prioritario y 98 teselas con HIC, pero ninguno de ellos prioritario. Así que vemos que,
aunque la superficie de HIC prioritario es mayor, estos se aglutan en un menor número de parcelas. Es decir, hay menos, pero son más grandes.

En cuanto a la distribución geográfica de estas teselas por el ámbito, indicar que hay más HICs en la zona sur que en la norte. También se observa que son más abundantes las teselas con HICs prioritarios en la zona sur del ámbito, mientras que los no prioritarios son más abundantes en la zona centro y norte.

Las teselas que contienen HICs prioritarios se deben a la presencia del HIC 6220*, siendo este el único HIC prioritario en todo el ámbito. En las teselas en las que está el HIC 6220* suele estar acompañado fundamentalmente del HIC 9340 y del HIC 5330, y también frecuentemente por HIC 4090, HIC 6420, HIC 6310 e HIC 5210.

Entre los HIC no prioritarios más frecuentes encontramos el HIC 9340 e HIC 5330, y también los ligados a cursos de agua o a zonas de suelos más húmedos como son el HIC 92A0, HIC 6420 e HIC 3260. Además, se encuentran otros como el HIC 4090, HIC 6310, HIC 5210 y un conjunto sin código UE, entre los que destacan los jarales y los espartales.

A continuación, una breve descripción general de los HICs más abundantes:

HIC prioritario 6220* - Zonas subestépicas de gramíneas y anuales del Thero-Brachypodietea (*)

Tipo de hábitat prioritario (*) distribuido en clima mediterráneo o en zonas cálidas atlánticas o alpinas. Las zonas de preferencia son claros, ubicándose en los claros que existen entre matorrales y pastos vivaces. También se instalan en el estrato herbáceo de dehesas o en zonas no arboladas. Se componen de una gran diversidad y variabilidad florística. Destacan géneros como Arenaria, Campanula, Asterolinum, Brachypodium o Stipa. En las zonas yesíferas del centro y del este destacan especies gipsícolas como Campanula fastigiata, Ctenopsis gypsophila o Clypeola eriocarpa.

En la capa de información geográfica el nombre del hábitat que aparece más abundante es *Poo bulbosae-Trifolietum subterranei* Rivas Goday 1964. Los HICs 6220 presentes en el sur del ámbito se corresponden con los majadales de *Poa bulbosa*: los que el Manual denomina Trifolio-Periballion (silicólicos).

Sin embargo, también aparecen más escasamente en la zona centro y norte, lastonares del *Phlomido lychnitidis-Brachypodietum ramosi* y pastizales anuales basófilos de la *Saxifrago tridactylitae-Hornungietum petraeae*.
En estos pastos herbáceos densos y de talla baja por el herbivorismo, dominan plantas anuales y vivaces de la *Poo bulbosa-Trifolietum subterranei*.
HIC no prioritario 9340 - Bosques esclerófilos mediterráneos dominados por la encina
(*Junipero oxycedri-Quercetum rotundifolioae*)

Son los bosques dominantes de la Iberia mediterránea presentes en casi toda la Península y en Baleares. La encina (*Q. rotundifolia*) vive en todo tipo de suelos hasta los 1800-2000 m. Con precipitaciones inferiores a 350-400 mm. es reemplazada por formaciones arbustivas o de coníferas xerófilas. Cuando aumenta la humedad es sustituida por bosques caducifolios o marcescentes o por alcornoques. Los encinares más complejos debieron ser los de las zonas litorales cálidas, aunque quedan pocos bien conservados. Serían bosques densos con arbustos termófilos como *Myrtus communis*, *Olea europaea var. sylvestris*, *Rhamnus oleoides*, etc. y lianas (*Smilax*, *Tamus*, *Rubia*, etc.). Los encinares continentales meseterños son los más pobres, con *Juniperus* y algunas hierbas forestales. De estos últimos, los de suelos ácidos llevan una orla de leguminosas (*Retama, Cytisus*, etc.) y un matorral de *Cistus, Halimium, Lavandula, Thymus*, etc., mientras que los de suelos básicos llevan un matorral bajo de *Genista, Erinacea, Thymus, Lavandula, Satureja*, etc.

Está representado por la asociación *Junipero oxycedri-Quercetum rotundifolioae Rivas-Martínez 1965.*

Figura 88. HIC 9340 de encinares de Junipero oxycedri-Quercetum rotundifolioae, en el ZEC Cuenca del río Manzanares. Es frecuente que alternen con encinares adehesado o abiertos del HIC 6310, en ocasiones también con majadales del HIC 6220
HIC no prioritario 5330 - Matorrales termomediterráneos y pre-estépicos

Son formaciones de matorral características de la zona termo-mediterránea. Quedan incluidos los matorrales, mayoritariamente indiferentes a la naturaleza sílicea o calcárea del sustrato, que alcanzan sus mayores representaciones o su óptimo desarrollo en la zona termomediterránea. También quedan incluidos los características matorrales termófilos endémicos que se desarrollan, principalmente en el piso termomediterráneo, pero también en el mesomediterráneo, del sureste de la Península Ibérica. A pesar de su elevada diversidad local, pueden considerarse como una variante occidental de la friganas orientales, muy similares en su aspecto fisonómico, las cuales han sido incluidas en otro tipo de hábitat diferente (33) atendiendo a su singularidad estructural.

El tipo presente en el ámbito es Cytisoc scoparii-Retametum sphaerocarpae Rivas-Martinez ex Fuente 1986. Se trata de comunidades con indiferencia edáfica de porte arbustivo (hasta 2 m de altura) y cobertura variable dominadas por fanerófitos y nanofanerófitos de biotipo retamoide de los géneros Genista, Cytisus y/o Retama. Aparece en un amplio rango de precipitaciones, sin llegar a aparecer en ningún caso bajo ombroclima húmedo.

Figura 89. El HIC 5330 de retamares se encuentra junto con encinares, dehesas y también en pastizales y próximos a cultivos como en la imagen tomada al norte del ámbito.
HIC no prioritario 92A0 - Bosques galería de Salix alba y Populus alba

Las choperas, alamedas, olmedas y saucedas distribuidas por las riberas de toda la Península y Baleares. Viven en las riberas de ríos y lagos, o en lugares con suelo al menos temporalmente encharcado o húmedo por una u otra razón, siempre en altitudes basales o medias. En los cursos de agua la vegetación forma bandas paralelas al cauce según el gradiente de humedad del suelo. Idealmente, en el borde del agua crecen saucedas arbustivas en las que se mezclan varias especies del género *Salix* (*S. atrocinerea, S. triandra, S. purpurea*), con *Salix salviifolia* preferentemente en sustratos siliceos, *Salix eleagnos* en sustratos básicos, y *S. pedicellata* en el sur peninsular. La segunda banda la forman alamedas y choperas, con especies de *Populus* (*P. alba, P. nigra*), sauces arbóreos (*S. alba, S. fragilis*), fresnos, alisos, etc. En las vegas más anchas y en la posición más alejada del cauce, ya en contacto con el bosque climatófilo, crece la olmeda (*Ulmus minor*). El sotobosque de estas formaciones lleva arbustos generalmente espinosos, sobre todo en los claros (*Rubus, Rosa, Crataegus, Prunus, Sambucus, Cornus*, etc.), herbáceas nemorales, y numerosas lianas (*Humulus lupulus, Bryonia dioica, Cynanchum acutum, Vitis vinifera, Clematis sp. pl.*, etc.).

En el ámbito de estudio estos HIC 92A0 están representados mayoritariamente por la saucedas salvióflias de la *Salicetum salviifoliæ*, aunque también aparecen alamedas occidentales de la *Salici atrocinereæ-Populetum albae*; alamedas albares de la *Rubio tinctorum-Populetum albae*; y olmedas ibéricas orientales de la *Opopanaco chironii-Ulmetum minoris*.

![Figura 90. Imagen de la vegetación en la ribera del arroyo del Buitre en la que aparece un HIC 92A0 de saucedas de la Salicetum salviifoliæ, muy presente en los arroyos de importancia media del ámbito de estudio.](image)

No obstante, en las teselas de HIC no prioritario en torno a los arroyos y ríos del ámbito pueden aparecer otros HIC acompañando al HIC 92A0. El HIC 3260 de vegetación hidrófita
de la serie *Callitricho brutiae* - *Ranunculetum pseudofluitantis* y el HIC 3150 de la serie *Potametum* - *pectinati*, aparecen en los cursos de mayor importancia como son los ríos Guadalix, Jarama, y arroyo Tejada.

![Imagen de cursos de agua con vegetación]

Figura. HICs 92A0 de sauceda e HIC 3260 de vegetación hidrofílica en el arroyo Tejada.

También en cursos de mayor entidad y con vegetación arbórea desarrollada aparecen además de saucedas de la *Salicetum salviifoliae* y alamedas albares de la *Rubio tinctorum-Populetum albae* o alamedas occidentales de *Salici atrocinerea-Populetum albae*.

![Imagen de cursos de agua con vegetación]

Figura 91. HICs 92A0 de sauceda salvifolia de la *Salicetum salviifoliae* y de alameda occidentales de *Salici atrocinerea-Populetum albae* en el río Guadalix

Asimismo, además de los HICs citados existen otros que acompañan habitualmente al 92A0 como son: HIC 6420 de juncal churrero ibérico occidental de la *Trifolio resupinati*
Holoschoenetum y juncal oligotrófo ibérico occidental de la Hyperico undulati-Juncetum acutiflori.

El Plano 9 “Hábitats de Interés Comunitario” del anexo cartográfico que acompaña al presente documento muestra con mayor detalle estas parcelas presentes en el ámbito de estudio y su interacción con los elementos del proyecto.

5.8 FAUNA

El análisis de la comunidad de fauna se ha centrado principalmente en la avifauna, debido a su mayor sensibilidad ante la instalación y funcionamiento de este tipo de infraestructuras.

En el anexo 1 se puede consultar el estudio anual de avifauna. Los resultados obtenidos hasta la fecha se incorporan en el presente aportado y en punto de identificación y valoración de impactos sobre la fauna. Por otro lado, se puede consultar en el anexo cartográfico del presente documento el específico en materia de fauna (Plano 10 “Fauna”).

El inventario del estudio y análisis de la fauna que permitirá llevar a cabo la evaluación de los efectos previsibles que la construcción de la PFV y sus infraestructuras de evacuación pudiera tener sobre la comunidad faunística, se ha realizado a cuatro niveles:

- En un primer lugar se ha llevado a cabo la identificación de especies del Inventario Nacional de Biodiversidad para las cuadrículas UTM 10x10 coincidentes con el área de estudio (30TVK39, 30TVK49, 30TVL30, 30TVL40, 30TVL50, 30TVL51 y 30TVL52) y se ha expuesto su estado de catalogación.
- En segundo lugar, se lleva a cabo una descripción de las comunidades faunísticas asociadas a los diferentes biotopos localizados en el ámbito de estudio.
- En tercer lugar, se describen las áreas de interés faunístico y zonas de mayor sensibilidad.
- Finalmente, se describen las especies potencialmente sensibles ante la construcción de una PSFV y sus infraestructuras de evacuación, para posteriormente valorar la potencial interacción.

5.8.1 Listado de fauna

Se indica el estado de catalogación de cada una de las especies que se citan o se han detectado en el ámbito de estudio de los siguientes catálogos:

- DH (09/147/CEE) Anexo II: especies animales y vegetación de interés comunitario cuya conservación es necesario designar zonas especiales de conservación.

- DA (09/147/CEE). X: Anexo I. Especies objeto de medidas de conservación especiales en cuanto a su hábitat.

A continuación, se describe el estado de legal de las especies presentes en el ámbito de estudio según el INB, documentación de referencia, estudio anual de avifauna y listados de Red Natura 2000, por grupos de especies.

Peces

Dentro del grupo de tres especies catalogadas en peligro de extinción en el CRCM, seis especies catalogadas como vulnerable en el LR de Peces, y tres especies catalogadas como invasoras.

Tabla 80. Listado de peces continentales citados en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Castellano</th>
<th>Especie</th>
<th>Nacional</th>
<th>CRCM</th>
<th>DH</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonidae</td>
<td></td>
<td>Trucha común</td>
<td>Salmo trutta</td>
<td>-</td>
<td>-</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lucio</td>
<td>Esox lucius</td>
<td>Exótica invasora</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barbo común</td>
<td>Luciobarbus bocagei</td>
<td>-</td>
<td>V</td>
<td>LR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barbo comizo</td>
<td>Luciobarbus comizo</td>
<td>PE</td>
<td>-</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpín dorado</td>
<td>Carassius auratus</td>
<td>Potencial invasor</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bermejuela</td>
<td>Achondrostoma aracasi</td>
<td>RPE</td>
<td>IE</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boga de Río</td>
<td>Pseudochondrostoma polyepis</td>
<td>-</td>
<td>II</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carpa</td>
<td>Cyprinus carpio</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calandino</td>
<td>Squalius albumoides</td>
<td>-</td>
<td>PE</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cacho</td>
<td>Squalius pyrenaicus</td>
<td>-</td>
<td>-</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lamprehuela</td>
<td>Cobitis calderoni</td>
<td>-</td>
<td>PE</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colmilleja</td>
<td>Cobitis paludica</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gambusia</td>
<td>Gambusia holbrooki</td>
<td>Exótica invasora</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pez Sol, Perca sol</td>
<td>Lepornis gibbosus</td>
<td>Exótica invasora</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Anfibios y reptiles
Se cita la presencia de 27 especies, 12 pertenecen al grupo de los anfibios y 15 al grupo de los reptiles. Destaca por su estado de catalogación la presencia de galápago leproso y la ranita de san Antón catalogados como Vulnerable en el CRCM.

<table>
<thead>
<tr>
<th>Tabla 81. Listado de anfibios y reptiles citados en el ámbito de estudio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAMILIA</td>
</tr>
<tr>
<td>Salamandridae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Discoglossidae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pelobatidae</td>
</tr>
<tr>
<td>Bufonidae</td>
</tr>
<tr>
<td>Bufonidae</td>
</tr>
<tr>
<td>Hylidae</td>
</tr>
<tr>
<td>Ranidae</td>
</tr>
<tr>
<td>Emydidae</td>
</tr>
<tr>
<td>Emydidae</td>
</tr>
<tr>
<td>Bataguridae</td>
</tr>
<tr>
<td>Amphisbaenidae</td>
</tr>
<tr>
<td>Gekkonidae</td>
</tr>
<tr>
<td>Scincidae</td>
</tr>
<tr>
<td>Lacertidae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Colubridae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Colubridae</td>
</tr>
<tr>
<td>Viperidae</td>
</tr>
</tbody>
</table>
Aves

El listado completo de avifauna está compuesto por un total de 163 especies, de las cuales 157 aparecen en el IEET. Del total de especies durante el estudio anual de avifauna se han observado hasta la fecha 64 especies.

A este respecto cabe destacar que el área de estudio tiene una superficie casi siete veces menor que la superficie incluida en las siete cuadrículas UTM10x10 (10.828 ha frente a 70.000 ha).

Entre las 64 especies inventariadas encontramos que, según el Catálogo Español de Especies Amenazadas, dos especies se encuentran catalogadas como “En Peligro de Extinción”, una como “Vulnerable” y 42 se encuentran incluidas en el LESRPE. Según el Catálogo Regional de la Comunidad de Madrid encontramos dos especies catalogadas como “En Peligro de Extinción”, tres como “Sensible a la Alteración del Hábitat”, tres como “Vulnerable” y tres como “De Interés Especial”. Finalmente, cabe destacar la presencia de 14 especies incluidas en el Anexo I de la Directiva Aves.

<table>
<thead>
<tr>
<th>Tabla 82. Listado de anfibios y reptiles citados en el ámbito de estudio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>Accipiter gentilis</td>
</tr>
<tr>
<td>Accipiter nisus</td>
</tr>
<tr>
<td>Acrocephalus arundinaceus</td>
</tr>
<tr>
<td>Acrocephalus scirpaceus</td>
</tr>
<tr>
<td>Actitis hypoleucos</td>
</tr>
<tr>
<td>Aegithalos caudatus</td>
</tr>
<tr>
<td>Aegypius monachus</td>
</tr>
<tr>
<td>Alauda arvensis</td>
</tr>
<tr>
<td>Aloceido atthis</td>
</tr>
<tr>
<td>Alectoris rufa</td>
</tr>
<tr>
<td>Anas clypeata</td>
</tr>
<tr>
<td>Anas platyrhynchos</td>
</tr>
<tr>
<td>Anas strepera</td>
</tr>
<tr>
<td>Anthus campestris</td>
</tr>
<tr>
<td>Anthus pratensis</td>
</tr>
<tr>
<td>Apus apus</td>
</tr>
<tr>
<td>Aquila adalberti</td>
</tr>
<tr>
<td>Aquila chrysaetos</td>
</tr>
<tr>
<td>Ardea cinerea</td>
</tr>
<tr>
<td>Asio otus</td>
</tr>
<tr>
<td>Athene noctua</td>
</tr>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Aythya ferina</td>
</tr>
<tr>
<td>Bubo bubo</td>
</tr>
<tr>
<td>Bubulcus ibis</td>
</tr>
<tr>
<td>Burhinus oedicinusmus</td>
</tr>
<tr>
<td>Buteo buteo</td>
</tr>
<tr>
<td>Calandrella brachydactyla</td>
</tr>
<tr>
<td>Caprimulgus europaeus</td>
</tr>
<tr>
<td>Carduelis cannabina</td>
</tr>
<tr>
<td>Carduelis carduelis</td>
</tr>
<tr>
<td>Carduelis chloris</td>
</tr>
<tr>
<td>Carduelis spinus</td>
</tr>
<tr>
<td>Cecropis daurica</td>
</tr>
<tr>
<td>Certhia brachydactyla</td>
</tr>
<tr>
<td>Cettia cetti</td>
</tr>
<tr>
<td>Charadrius dubius</td>
</tr>
<tr>
<td>Ciconia ciconia</td>
</tr>
<tr>
<td>Ciconia nigra</td>
</tr>
<tr>
<td>Cinclus cincclus</td>
</tr>
<tr>
<td>Circaetus galicus</td>
</tr>
<tr>
<td>Circus aeruginosus</td>
</tr>
<tr>
<td>Circus cyaneus</td>
</tr>
<tr>
<td>Circus pygargus</td>
</tr>
<tr>
<td>Cisticola juncidis</td>
</tr>
<tr>
<td>Clamator glandarius</td>
</tr>
<tr>
<td>Coccothraustes coccothraustes</td>
</tr>
<tr>
<td>Columba domesticus</td>
</tr>
<tr>
<td>Columba livia/domestica</td>
</tr>
<tr>
<td>Columba oenas</td>
</tr>
<tr>
<td>Columba palumbus</td>
</tr>
<tr>
<td>Coracias garrulus</td>
</tr>
<tr>
<td>Corvus corax</td>
</tr>
<tr>
<td>Corvus corone</td>
</tr>
<tr>
<td>Corvus monedula</td>
</tr>
<tr>
<td>Coturnix coturnix</td>
</tr>
<tr>
<td>Cuculus canorus</td>
</tr>
<tr>
<td>Cyanopica cyana</td>
</tr>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Delichon urbicum</td>
</tr>
<tr>
<td>Dendrocopos leucotos</td>
</tr>
<tr>
<td>Dendrocopos major</td>
</tr>
<tr>
<td>Egretta garzetta</td>
</tr>
<tr>
<td>Emberiza calandra</td>
</tr>
<tr>
<td>Emberiza cia</td>
</tr>
<tr>
<td>Emberiza cirrus</td>
</tr>
<tr>
<td>Emberiza hortulana</td>
</tr>
<tr>
<td>Erithacus rubecula</td>
</tr>
<tr>
<td>Falco columbarius</td>
</tr>
<tr>
<td>Falco naumann</td>
</tr>
<tr>
<td>Falco pelegrinoides</td>
</tr>
<tr>
<td>Falco peregrinus</td>
</tr>
<tr>
<td>Falco subbuteo</td>
</tr>
<tr>
<td>Falco tinnunculus</td>
</tr>
<tr>
<td>Ficedula hypoleuca</td>
</tr>
<tr>
<td>Fringilla coelebs</td>
</tr>
<tr>
<td>Fulica atra</td>
</tr>
<tr>
<td>Galeria cristata</td>
</tr>
<tr>
<td>Galerida theklae</td>
</tr>
<tr>
<td>Gallinula chloropus</td>
</tr>
<tr>
<td>Garrulus glandarius</td>
</tr>
<tr>
<td>Grus grus grus</td>
</tr>
<tr>
<td>Gyps fulvus</td>
</tr>
<tr>
<td>Hieraaetus fasciatus</td>
</tr>
<tr>
<td>Hieraaetus pennatus</td>
</tr>
<tr>
<td>Himantopus himantopus</td>
</tr>
<tr>
<td>Hippolais polyglotta</td>
</tr>
<tr>
<td>Hirundo rustica</td>
</tr>
<tr>
<td>Ixobrychus minutus</td>
</tr>
<tr>
<td>Jynx torquilla</td>
</tr>
<tr>
<td>Lanius excubitor</td>
</tr>
<tr>
<td>Lanius senator</td>
</tr>
<tr>
<td>Larus ridibundus</td>
</tr>
<tr>
<td>Loxia curvirostra</td>
</tr>
<tr>
<td>Lullula arborea</td>
</tr>
<tr>
<td>Luscinia megarhynchos</td>
</tr>
<tr>
<td>Melanocorypha calandra</td>
</tr>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Merops apiaster</td>
</tr>
<tr>
<td>Milvus migrans</td>
</tr>
<tr>
<td>Milvus milvus</td>
</tr>
<tr>
<td>Monticola saxatilis</td>
</tr>
<tr>
<td>Monticola solitarius</td>
</tr>
<tr>
<td>Motacilla alba</td>
</tr>
<tr>
<td>Motacilla cinerea</td>
</tr>
<tr>
<td>Motacilla flava</td>
</tr>
<tr>
<td>Muscicapa striata</td>
</tr>
<tr>
<td>Myiopsitta monachus</td>
</tr>
<tr>
<td>Nycticorax nycticorax</td>
</tr>
<tr>
<td>Oenanthe hispanica</td>
</tr>
<tr>
<td>Oenanthe leucura</td>
</tr>
<tr>
<td>Oenanthe oenanthe</td>
</tr>
<tr>
<td>Oriolus oriolus</td>
</tr>
<tr>
<td>Otis tarda</td>
</tr>
<tr>
<td>Otus scops</td>
</tr>
<tr>
<td>Parus ater</td>
</tr>
<tr>
<td>Parus caeruleus</td>
</tr>
<tr>
<td>Parus cristatus</td>
</tr>
<tr>
<td>Parus major</td>
</tr>
<tr>
<td>Passer domesticus</td>
</tr>
<tr>
<td>Passer hispaniolsins</td>
</tr>
<tr>
<td>Passer montanus</td>
</tr>
<tr>
<td>Pernis apivorus</td>
</tr>
<tr>
<td>Petronia petronia</td>
</tr>
<tr>
<td>Phalacrocorax carbo</td>
</tr>
<tr>
<td>Phoenicurus ochrurus</td>
</tr>
<tr>
<td>Phoenicurus phoenicurus</td>
</tr>
<tr>
<td>Phylloscopus bonelli</td>
</tr>
<tr>
<td>Phylloscopus collybita</td>
</tr>
<tr>
<td>Pica pica</td>
</tr>
<tr>
<td>Picus viridis</td>
</tr>
<tr>
<td>Podiceps cristatus</td>
</tr>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Podiceps nigricolis</td>
</tr>
<tr>
<td>Prunella modularis</td>
</tr>
<tr>
<td>Pterocles orientalis</td>
</tr>
<tr>
<td>Pyonoprogne rupestris</td>
</tr>
<tr>
<td>Pyrrhocorax pyrrhocorax</td>
</tr>
<tr>
<td>Rallus aquaticus</td>
</tr>
<tr>
<td>Regulus ignicapilla</td>
</tr>
<tr>
<td>Remiz pendulinus</td>
</tr>
<tr>
<td>Riparia riparia</td>
</tr>
<tr>
<td>Saxicola rubicola</td>
</tr>
<tr>
<td>Serinus serinus</td>
</tr>
<tr>
<td>Sitta europaea</td>
</tr>
<tr>
<td>Streptopelia decaocto</td>
</tr>
<tr>
<td>Streptopelia turtur</td>
</tr>
<tr>
<td>Strix aluco</td>
</tr>
<tr>
<td>Sturnus unicolor</td>
</tr>
<tr>
<td>Sylvia atricapilla</td>
</tr>
<tr>
<td>Sylvia borin</td>
</tr>
<tr>
<td>Sylvia cantillans</td>
</tr>
<tr>
<td>Sylvia communis</td>
</tr>
<tr>
<td>Sylvia conspicillata</td>
</tr>
<tr>
<td>Sylvia hortensis</td>
</tr>
<tr>
<td>Sylvia melanocephala</td>
</tr>
<tr>
<td>Sylvia undata</td>
</tr>
<tr>
<td>Tachybaptus ruficollis</td>
</tr>
<tr>
<td>Tetrao tetra x</td>
</tr>
<tr>
<td>Troglodytes troglodytes</td>
</tr>
<tr>
<td>Turdus merula</td>
</tr>
<tr>
<td>Turdus philomelos</td>
</tr>
<tr>
<td>Turdus viscivorus</td>
</tr>
<tr>
<td>Tyto alba</td>
</tr>
<tr>
<td>Upupa epops</td>
</tr>
<tr>
<td>Vanellus vanellus</td>
</tr>
</tbody>
</table>
Mamíferos

Se cita la presencia de 35 especies, entre estas destaca la presencia de 4 especies catalogadas como Vulnerable en el CEEA, 3 en el CRCM, y 5 en el Libro Rojo. Por otro lado, las especies destacarían con elevados estados de catalogación la cita de nutria catalogada en peligro de extinción en CRCM y la cita de murcielago mediano de herradura catalogado también en peligro de extinción el Libro Rojo.

Tabla 83. Listado de mamíferos citados en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Castellano</th>
<th>Especie</th>
<th>CEEA</th>
<th>CRCM</th>
<th>D H</th>
<th>LR</th>
<th>Mamíferos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erinaceidae</td>
<td>Erizo europeo</td>
<td>Erinaceus europaeus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td>Talpidae</td>
<td>Topo ibérico</td>
<td>Talpa occidentalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td>Soricidae</td>
<td>Musaraña común</td>
<td>Crocidura russula</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td>Rhinolophidae</td>
<td>Murciélago grande de herradura</td>
<td>Rhinolophus ferrumequinum</td>
<td>V</td>
<td>-</td>
<td>II/V</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Murciélago pequeño de herradura</td>
<td>Rhinolophus hipposideros</td>
<td>RPE</td>
<td>V</td>
<td>II/V</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Murciélago mediterráneo de herradura</td>
<td>Rhinolophus euryale</td>
<td>V</td>
<td>V</td>
<td>II/V</td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Murciélago mediano de herradura</td>
<td>Rhinolophus mehelyi</td>
<td>V</td>
<td>-</td>
<td>II/V</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>Vespertilionidae</td>
<td>Murciélago enano</td>
<td>Pipistrellus pipistrellus</td>
<td>RPE</td>
<td>-</td>
<td>IV</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Murciélago de Cabrera</td>
<td>Pipistrellus pygmaeus</td>
<td>RPE</td>
<td>-</td>
<td>IV</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Murciélago de cueva</td>
<td>Miniopterus schreibersii</td>
<td>V</td>
<td>-</td>
<td>II/V</td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td>Canidae</td>
<td>Zorro rojo</td>
<td>Vulpes vulpes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Comadreja</td>
<td>Mustela nivalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Visón americano</td>
<td>Mustela vison</td>
<td>Exótica</td>
<td></td>
<td></td>
<td>Invasora</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Turón</td>
<td>Mustela putorius</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garuña</td>
<td>Martes foina</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tejón</td>
<td>Meles meles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutria paleártica</td>
<td>Lutra lutra</td>
<td>RPE</td>
<td>PE</td>
<td>II/V</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Viverridae</td>
<td>Gineta</td>
<td>Genetta genetta</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Felidae</td>
<td>Gato montés</td>
<td>Felis silvestris</td>
<td>RPE</td>
<td>IE</td>
<td>IV</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Suidae</td>
<td>Jabalí</td>
<td>Sus scrofa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Cervidae</td>
<td>Ciervo rojo</td>
<td>Cervus elaphus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gamo</td>
<td>Dama dama</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Capreolidae</td>
<td>Corzo</td>
<td>Capreolus capreolus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Bovidae</td>
<td>Cabra montés</td>
<td>Capra pyrenaica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Sciridae</td>
<td>Ardilla</td>
<td>Sciurus vulgaris</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Cricetidae</td>
<td>Rata de agua</td>
<td>Arvicola amphibius</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topillo campesino</td>
<td>Microtus arvalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topillo de Cabrera</td>
<td>Microtus cabrerae</td>
<td>RPE</td>
<td>V</td>
<td>II/V</td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td>Muridae</td>
<td>Ratón de campo</td>
<td>Apodemus sylvaticus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Familia</td>
<td>Castellano</td>
<td>Especie</td>
<td>CEEA</td>
<td>CRC</td>
<td>D</td>
<td>H</td>
<td>LR</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Rata parda</td>
<td>Rattus norvegicus</td>
<td>Exótica invasora (Canarias)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Ratón casero</td>
<td>Mus musculus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Ratón moruno</td>
<td>Mus spretus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td>Gliiridae</td>
<td>Lirón careto</td>
<td>Eliomys quercinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td>Leporidae</td>
<td>Liebre ibérica</td>
<td>Lepus granatensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Conejo silvestre</td>
<td>Oryctolagus cuniculus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>VU</td>
</tr>
</tbody>
</table>

5.8.2 Descripción de biotopos y comunidad faunística asociada

En el ámbito de estudio podemos diferenciar cinco grandes áreas diferenciadas por su interés faunístico: las estepas de cultivos de secano (áreas pseudoesteparias), los encinares y zonas de matorral, los hábitats húmedos continentales, los roquedos y finalmente las zonas urbanas o degradadas.

Pseudoestepario

De importancia para determinadas especies de aves como la avutarda común, el sisón, el aguilucho cenizo y el cernícalo primilla, entre otras. Se tratan de cultivos de secano, salpicado puntualmente por cultivos leñosos como olivares o almendros. Estos pies arbóreos pueden servir como posaderos para especies rapaces de interés.

Por otro lado, también es característico de esta unidad ambiental la presencia de diversidad de especies de alaudidos, que dependen de la cobertura y disposición de la vegetación; y el alcaraván común, el cernícalo vulgar y el mocuelo.

Respecto al resto de grupos de fauna en el grupo de los mamíferos podría destacar la potencial presencia de ratón de campo, conejo, liebre ibérica y zorro; y en el grupo de los reptiles, especies tales como el lagarto ocelado, la lagartija colirroja y la culebra de escalera.
Encinar y Matorral mediterráneo

Se trata el biotopo con mayor representación en el ámbito de estudio junto con el pseudoesteprario, está conformado por encinares, etapas serials de degradación del encinar (*Quercus rotundifolia*) dominadas por retamares, matorral mediterráneo de tomillares (*Thymus sp.*) con esparto (*Stipa tenacissima*) y retama (*Retama sphaerocarpa*), y aulagares (*Genista scorpius*) con zarzas (*Rubus ulmifolius*) o majuelos (*Crataegus monogyna*), y pastizales con pies dispersos de encina.

Parte de este biotopo acoge buena población de conejo de monte, presa clave para muchas de las aves rapaces que acuden a la zona de estudio para cazar, y también es utilizado por ganado ovino.

Destacaría el hábitat como zona de campeo y caza para especies como el milano negro, milano real, águila calzada, busardo ratonero, entre otros. Además, de área de nidificación de especies forestales de rapaces en los bosquetes más maduros.

En relación con el resto de grupos de fauna en este hábitat en el grupo de los mamíferos destaca el zorro, la gineta, el jabalí y el ratón de campo, y entre los reptiles la lagartija colilarga y la culebra de escalera.
Hábitats húmedos continentales

De Norte a Sur la zona de estudio es atravesada por el canal de La Parra (Canal de Isabel II), y asociados a este aparecen formaciones riparias con ejemplares de pequeño porte de álamo blanco (*Populus alba*) acompañados de zarzas y juncos churreros (*Scirpus holoschoenus*).

Las grandes formaciones riparias se localizan en el flanco Este del área de estudio con el curso del río Jarama, perteneciente a la ZEC Cuencas de los ríos Jarama y Henares, con interesantes formaciones de bosque de ribera, con presencia de pies de gran porte de álamo blanco y sauce (*Salix alba*); y por la parte Sur del ámbito de estudio el curso del río Guadalix con importante bosque de ribera, con ejemplares de chopo y álamo de buen porte. Por otra parte, destaca la presencia a lo largo del ámbito de estudio de bosquetes lineales de chopos y fresnos en los fondos de valle ligados a arroyos estacionales.

Estos bosquetes son el hábitat potencial de nidificación de varias especies de aves rapaces que nidifican sobre árbol, como el Milano real y el águila imperial ibérica.

La comunidad faunística asociada a este biotopo son especies como la garza imperial y real, martín pescador, martinetes común, cigüeña blanca, milano negro, lagunero europeo y especies de las familias de los pícidos, como el torcecuello; en el grupo de los mamíferos destacaría la presencia de diferentes especies de quirópteros, así como potencialmente la nutria, el tejón, la gineta y el zorro; en el grupo de los reptiles destacan especies tales como el galápago leproso y la culebra viperina, y en el grupo de los anfibios el sapo de espuelas y la rana común.

Roquedos

Destacan pequeños cortados de roca caliza asociados a los arroyos Mortero y San Roman, y una pequeña red de cortados y cárcavas asociados a arroyos estacionales.

Estos roquedos de pequeña entidad revisten una gran importancia para especies típicas de hábitats rupícolas como falcónidos, o el búho real (*Bubo bubo*).
Zonas urbanas o degradadas

Cabe destacar finalmente la presencia de algunas construcciones dispersas en el área de estudio, algunas de ellas ocupadas o activas hoy en día y otras en desuso o en ruinas. Todas estas construcciones ofrecen posibilidades de nidificación para aves como el cernícalo primilla, la cigüeña blanca o la lechuza común.

5.8.3 Áreas de interés faunístico

A continuación, se exponen las áreas de interés para la avifauna localizadas dentro del ámbito de estudio y su coincidencia con los elementos del proyecto. Los valores presentes, y objeto de declaración de los espacios Red Natura 2000, Parque Regional y Reserva de la Biosfera se pueden consultar en el siguiente apartado 5.9 Espacios Natural protegidos. A continuación, identifican únicamente se destacan los valores en materia de avifauna.

Áreas Importante para las Aves (Seo/BirdLife)

- IBA 74 “Talamanca- Camarma”: se localiza a 0,98 km de la L/132 kV Colimbo – Colectora La Cereal. La zona acoge a la mejor población de avutarda común de Madrid, y es importante asimismo para otras aves esteparias como aguilucho pálido (90% de la población madrileña), aguilucho cenizo, cernícalo primilla, alcaraván común, sisón común y ganta ortega (mín 35 ind). Importante zona de alimentación y dispersión juvenil de rapaces como buitre negro, águila imperial ibérica, águila real y águila-azor perdicera. También cría cigüeña blanca. Invernada de búho campestre.

- IBA 71 “El Pardo- Viñuelas”: el ámbito de estudio es coincidente geográficamente en 3.458,95 ha con el espacio. De enorme importancia para la nidificación de rapaces como el águila imperial ibérica, buitre negro, milano negro (mín. 15 pp, y dormideros de no reproductores que suman hasta 400-500 ind), aguililla calzada (4-6 ind) y búho real. Buena representación de comunidades de paseriformes típicos de biomas mediterráneo, con chotacabras pardo, collab rubia, curraca carrasqueña y estornino negro, más escasos collalba negra y curruca tomillera. También cría la cigüeña negra (1-2 pp). Zona de alimentación de buitre leonado (30- 50 ind). En el embalse del Pardo, abundante invernada de anátidas, fochas, limícolas y lúridos (máx. 8.000 ind de gaviota reidora), y lugar de reposo migratorio para cigüeña negra, cigüeña blanca (300 – 350 ind), espátula común (mín. 7. Ind), ánsar común (150 -200 ind) y grulla común (500 –1000 ind). Existe un dormidero invernal de estornino negro de unos 3.000 ind.

- IBA 77 “Sierra de Ayllón”: se localiza a 1,6 km al norte de la PFV Colimbo. Muy importante para el águila real. Otras rapaces presentes son abejerro europeo, buitre leonado (65 pp), alimoche común, águila-azor perdicera, milano negro, milano real,
halcón peregrino y búho real (8 pp). También chova piquirroja (mín. 55 pp) y cigüeña negra (1 p).

☐ **Zona de Especial Conversación para las Aves:**

- **ZEPA ES0000139 “Estepas cerealistas de los ríos Jarama y Henares”:** se localiza a 0,98 km de la L/132 kV Colimbo – Colector La Cereal. El ámbito de estudio es coincidente en 126,53 ha con el espacio. Se trata de una zona de especial calidad e importancia para la protección de especies de aves de distribución esteparia. El uso predominante del suelo en la ZEPA es el de los cultivos cerealistas, que contribuye al mantenimiento de sus principales poblaciones de aves. Por otro lado, las formaciones palustres asociadas al río Torote acogen diversas poblaciones de aves invernantes. El número de especies de aves que justifica su declaración como ZEPA asciende a 36 (27 especies de aves del Anexo I de la Directiva 2009/147/CE, y 9 especies migradoras de presencia regular), de las que 18 son de distribución típicamente esteparia. Entre estas especies destacan, también, aquellas que además poseen algún grado de amenaza a escala global o regional, como aguilucho cenizo, avutarda común, cernícalo primilla, ganta ortega, carraca europea y sisón común.

- **ZEPA ES0000011 Monte de El pardo:** se localiza a 1,21 km de la L/132 kV Colectora La Cereal – La Cereal REE. Junto con las ZEPA “Soto de Viñuelas” y “Encinares del río Alberche y río Coño”, aporta a la red de ZEPA de la Comunidad de Madrid una buena representación de ecosistemas característicos de bosque mediterráneo, encontrándose en unas excelentes condiciones de conservación las formaciones esclerófilas. El hecho de haber sido una finca de acceso restringido al público, ha permitido una buena conservación de sus masas forestales. En esta ZEPA están representadas un total de 32 especies de aves del Anexo I de la Directiva 2009/147/CE, y otras 21 especies migradoras de presencia regular. Se trata de un espacio de vital importancia para la conservación de águila imperial ibérica, siendo también importante para otras especies de aves rapaces forestales como milán real, milán negro, aguilucho cenizo y aguiluza-azor perdicera. Por otro lado, el embalse de El Pardo tiene importancia local como zona de invernada y de alimentación para diversas especies de aves de distribución ligada a ambientes acuáticos, como cigüeña negra, cigüeña blanca, diversas especies de anatidas y láridos.

- **ZEPA ES0000012 Soto de Viñuelas:** se localiza a 1,33 km de la L/132 kV Colimbo – Colectora La Cereal. El ámbito de estudio es coincidente en 74,12 ha con el espacio. El Soto de Viñuelas aporta un típico e importante ejemplo de bosque esclerófilo mediterráneo, con la particularidad de encontrarse en unas buenas condiciones de conservación, y de características muy similares a las de la colindante ZEPA Monte de El Pardo. Cercano a la capital, Madrid, se halla en buena parte limitado por grandes urbes: al oeste por Tres Cantos y al sur por San Sebastián de los Reyes.
Presenta un alto interés faunístico de conservación al albergar parejas reproductoras de águila imperial ibérica, además de otras rapaces forestales como aguililla calzada, milano negro y milano real.

- **Planificación de la Red de Corredores de la Comunidad de Madrid**

 Coincidente con partes de los elementos del proyecto. La planificación tiene el objetivo de identificar y describir los elementos territoriales clave para la conectividad ecológica de la Comunidad de Madrid de forma que puedan ser incorporados en la planificación territorial de la Comunidad y en las diversas actuaciones sobre el territorio. Del documento se extraen los corredores de esteparias (factor e índice de idoneidad) y corredores generales.

Figura 92. Áreas de interés para la avifauna.

- **Zona de Especial Conservación**

 - ZEC ES3110001 Cuenca de los ríos Jarama y Henares: se localiza a 0,58 km de la L/132 kV Colimbo – Colector La Cereal. El ámbito de estudio es coincidente en 379,89 ha con el espacio.

 - ZEC ES3110003 Cuenca del río Guadalix: el cruce con el espacio será solventado mediante un tramo soterrado, la traza sobrevuela el espacio de manera perpendicular. El ámbito de estudio es coincidente en 126,53 ha con el espacio.
- ZEC ES311004 Cuenca del río Manzanares: se localiza a 0,98 km de la L/132 kV Colimbo – Colector La Cereal. El ámbito de estudio es coincidente en 126,53 ha con el espacio.

☐ Parque regional:
- Parque Regional Cuenca Alta del Manzanares: coincide con 3,38 km de la L/400kV Colectora La Cereal- REE La Cereal. El ámbito de estudio es coincidente en 1.838,68 ha con el espacio.

☐ Reserva de la Biosfera
- Reserva de la Biosfera “Cuenca Alta del Manzanares”: Coincide con 3,38 km de la L/400kV Colectora La Cereal- REE La Cereal. El ámbito de estudio es coincidente en 1.822,34 ha con el espacio.

5.8.4 Especies protegidas

Según el estudio anual de avifauna entre las especies que presentan una mayor abundancia destaca la grulla común (Grus grus), ave que pasa el invierno y hace el viaje migratorio siempre agrupada en grandes bandos (el total de individuos observados se concentra en tres bandos en migración prenupcial), seguida del buitre leonado (Gyps fulvus) y el milano real, ambas especies abundantes en la zona de estudio durante todo el periodo de muestreo y que, especialmente el buitre leonado pero también el milano real, presentan cierta tendencia al gregarismo. Aunque en menor medida, destacan también en la zona de estudio el buitre negro (Aegypius monachus) y el busardo ratonero (Buteo buteo).

Otras especies destacadas no por su abundancia, pero sí por su interés de conservación son el águila imperial (Aquila adalberti), el águila real (Aquila chrysaetos), el aguilucho pálido (Circus cyaneus), el aguilucho lagunero (Circus aeruginosus), el halcón peregrino (Falco peregrinus), la chova piquirroja (Pyrrhocorax pyrrhocorax), la avutarda (Otis tarda) y la cigüeña blanca (Ciconia ciconia).

A continuación, se describen las especies de interés con mayor estado de catalogación o vulnerabilidad ante este tipo de infraestructuras.

☐ Buitre negro

El buitre negro se encuentra catalogado a nivel regional como “En peligro de Extinción”, a nivel nacional como “Vulnerable” y se encuentra incluido en el Anexo I de la Directiva Aves.

Durante el periodo estudiado se han observado 61 individuos en 26 observaciones, distribuyéndose de manera homogénea por la práctica totalidad del área de estudio. Se trata aparentemente de individuos en busca de alimento, dado que en el área de estudio no existe ninguna colonia de cría.
Los resultados del censo nacional llevado a cabo en el año 2017 (Del Moral, 2017), señalan una cifra de 148 parejas reproductoras en la Comunidad de Madrid, concentrándose la mayoría de ellas en el Valle Alto del Lozoya (123 parejas, el 83% del total). Además, otras tres colonias o zonas de nidificación de la especie, las del Bajo Lozoya, Cuenca Alta del Manzanares y Sierra de La Cabrera, se encuentran próximas al área de estudio. Sus poblaciones están experimentando una evolución positiva la Comunidad de Madrid y a nivel nacional (Del Moral, 2017).

☐ Águila imperial ibérica

El águila imperial ibérica se encuentra catalogada tanto a nivel regional como nacional como “En peligro de Extinción” y se encuentra incluida en el Anexo I de la Directiva Aves.

En total se han realizado ocho observaciones, en todos los casos individuos aislados, tratándose en cinco ocasiones de individuos jóvenes, con plumajes de tipo pajizo o damero claro, probablemente en fase de dispersión. En otra ocasión se observó un individuo de edad indeterminada reclamando en vuelo. Finalmente, se han detectado dos nidos de la especie fuera del área de estudio, pero en su proximidad, ambos sobre torre de alta tensión y en ambos casos se observó un individuo arreglando el nido, por lo que pueden considerarse activos.

En la Comunidad de Madrid la especie presenta una tendencia al alza. Según la información ofrecida por el Centro de Recuperación de Animales Silvestres (CRAS) de la Comunidad de Madrid, desde 2009 la especie ha duplicado su presencia en 2020 ascendió a un total de 73 parejas.

☐ Milano real

El milano real se encuentra catalogado como “Vulnerable” en la Comunidad de Madrid y “En Peligro de Extinción” a nivel nacional, estando incluido a su vez en el Anexo I de la Directiva Aves.

La especie ha resultado muy abundante durante todo el periodo estudiado, habiéndose observado sobre todo individuos en busca de alimento, pero también se han detectado un mínimo de tres nidos activos de la especie, uno de ellos, en el río Guadalix a la altura del polígono industrial de San Agustín de Guadalix, en el que se observó a un individuo echado en el nido, y otros dos en los que se observó a un individuo aportando material o arreglando el nido.
En enero de 2019 en la Comunidad de Madrid se registró el récord de ejemplares invernantes: un mínimo de 2,543 milanos repartidos en 11 dormideros, uno de ellos en el Parque del Sureste con 752 ejemplares (Molina et al., 2020).

En el último censo nacional realizado en 2014 (Molina, 2015) la población reproductora se estimó en un mínimo de 63 parejas seguras y 73 territorios. Esta cifra sitúa a la Comunidad de Madrid entre las diez provincias con un mayor número de parejas nidificantes. Estos datos, comparados con los del censo del año 2004 (Cardiel, 2006) en el que se contabilizaron 36 parejas en la Comunidad de Madrid, indican una tendencia positiva de la especie en la región.

Avutarda común

La avutarda común se encuentra catalogada como “Sensible a la alteración de su hábitat” en la Comunidad de Madrid y está incluida en el LESRPE y en el Anexo I de la Directiva Aves.

Hasta la fecha en el seguimiento anual de avifauna, se han efectuado dos observaciones de la especie, tratándose en ambos casos de individuos solitarios. Una de las observaciones consistió en un ejemplar de edad y sexo indeterminados que atravesó volando la envolvente de la LE en dirección O, mientras que el otro se trató de un macho posado en un campo de rastrojo en la envolvente de la PSFV. Por lo que, en la actualidad, no se puede corroborar la existencia de dicha presencia de la especie en el área.

5.9 ESPACIOS PROTEGIDOS

Los espacios protegidos que se encuentran a menos de 10 km del área de estudio son los siguientes:

Tabla 84. Espacios naturales protegidos situados a < 10 km de distancia de elementos del proyecto.

<table>
<thead>
<tr>
<th>Espacio Protegido</th>
<th>Elemento del proyecto</th>
<th>Distancia</th>
<th>Superficie coincidente con el ámbito (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parque Regional Cuenca Alta del Manzanares</td>
<td>Coincide con 3,38 km (1,96 km de trazado aéreo y 1,42 km de tramo soterrado) de la L/400kV Colectora La Cereal La Cereal REE.</td>
<td>-</td>
<td>1.838,68</td>
</tr>
<tr>
<td>ZEC ES3110001 Cuenca de los ríos Jarama y Henares</td>
<td>L/132kV GR Colimbo-Colectora La Cereal.</td>
<td>0,58 km al Este.</td>
<td>378,97</td>
</tr>
<tr>
<td>ZEC ES3110003 Cuenca del río Guadalix</td>
<td>Coincide con 156 m del tramo soterrado de la L/132kV GR Colimbo-Colectora La Cereal.</td>
<td>-</td>
<td>82,11</td>
</tr>
<tr>
<td>ZEC ES3110004 Cuenca del río Manzanares</td>
<td>Coincide con 3,38 km (1,96 km de trazado aéreo y 1,42 km de tramo soterrado) de la L/400kV Colectora La Cereal La Cereal REE.</td>
<td>-</td>
<td>1.824,61</td>
</tr>
<tr>
<td>Espacio Protegido</td>
<td>Elemento del proyecto</td>
<td>Distancia</td>
<td>Superficie coincidente con el ámbito (ha)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>ZEC ES3110002 Cuenca del río Lozoya y Sierra norte</td>
<td>PFV GR Colimbo</td>
<td>7,2 km al Norte.</td>
<td>-</td>
</tr>
<tr>
<td>ZEC ES 0000164 Sierra de Aylón</td>
<td>PFV GR Colimbo</td>
<td>7,9 km al Norte.</td>
<td>-</td>
</tr>
<tr>
<td>ZEPA ES0000139 Estepas cerealistas de los ríos Jarama y Henares</td>
<td>L/132kV GR Colimbo-Colectora La Cereal.</td>
<td>0,98 km al Este.</td>
<td>126,53</td>
</tr>
<tr>
<td>ZEPA ES0000011 Monte de El pardo</td>
<td>L/400kV Colectora La Cereal- La Cereal REE.</td>
<td>1,21 km al Sur.</td>
<td>-</td>
</tr>
<tr>
<td>ZEPA ES0000012 Soto de Viñuelas</td>
<td>L/132kV GR Colimbo-Colectora La Cereal.</td>
<td>1,33 km al Sur.</td>
<td>74,12</td>
</tr>
<tr>
<td>ZEPA ES0000488 Sierra de Aylón</td>
<td>PFV GR Colimbo</td>
<td>7,9 km al Norte.</td>
<td>-</td>
</tr>
<tr>
<td>Reserva de la Biosfera "Cuenca Alta del Manzanares"</td>
<td>Coincide con 3,38 km (1,96 km de trazado aéreo y 1,42 km de tramo soterrado) de la L/400kV Colectora La Cereal - La Cereal REE.</td>
<td>-</td>
<td>1.822,34</td>
</tr>
</tbody>
</table>

Figura 93. Espacios Naturales Protegidos, ZEC, ZEPA y Reservas de la Biosfera presentes en el ámbito de estudio. Fuente: MITERD.
Parque Regional Cuenca Alta del Manzanares, ZEC Cuenca del río manzanares, Reserva de la Biosfera “Cuenca Alta del Manzanares”, ZEPA ES0000011 Monte El Pardo y ZEPA ES0000012 Soto de Viñuelas

El parque regional de la Cuenca Alta del Manzanares, creado en 1985, es el espacio natural protegido de mayor superficie de la Comunidad de Madrid (España) y uno de los de mayor valor ecológico y paisajístico.1 Está situado en el noroeste de la región y se extiende alrededor del curso alto del río Manzanares, a lo largo de 42.583 hectáreas. Sus principales municipios de referencia son Manzanares el Real y Hoyo de Manzanares. La Unesco lo declaró Reserva de la Biosfera en 1993.

Se asienta en la falda sur de la sierra de Guadarrama, con la excepción del Monte de El Pardo y su apéndice oriental, el Monte o Soto de Viñuelas, que se encuentran en la llanura detrítica, característica de la Submeseta Sur. Cuenta con numerosos ecosistemas, entre los que destacan pinares, encinares, enebrales, jarales, melojares y zonas húmedas.

El parque cuenta con un Plan Rector de Uso y Gestión (PRUG), aprobado en 1987 y revisado en 1995. El 15 de febrero de 1993, el parque regional de la Cuenca Alta del Manzanares recibió la declaración de Reserva de la Biosfera por parte de la Unesco, y, más tarde, el Monte de Viñuelas, que se encuentra al este del parque, fue reconocido como Zona Especial de Protección para Aves (ZEPA). Además, los dos grandes embalses integrados dentro del parque, el de Santillana y el de El Pardo, se encuentran protegidos por la Ley 7/1990, de 28 de junio, de Protección de Embalses y Zonas Húmedas de la Comunidad de Madrid. Asimismo, el espacio cuenta con el Plan de Gestión del Espacio Protegido Red Natura 2000 constituido por la Zona Especial de Conservación (ZEC) “Cuenca del río Manzanares” y las Zonas de Especial Protección para las Aves (ZEPA) “Monte de El Pardo” y “Soto de Viñuelas” en el que se establecen, entre otras cuestiones, las medidas de conservación apropiadas para evitar el deterioro de los hábitats naturales, así como el de las especies de interés comunitario, y para mantener el Espacio Protegido en un estado de conservación favorable.

El Espacio Protegido Red Natura 2000 está constituido por la Zona Especial de Conservación (ZEC) “Cuenca del río Manzanares” y las Zonas de Especial Protección para las Aves (ZEPA) “Monte de El Pardo” y “Soto de Viñuelas”. Fue incluido en la Red Natural 2000 por albergar 26 Tipos de Hábitats de Interés Comunitario (4 de ellos prioritarios) de los incluidos en el Anexo I de la Directiva 92/43/CEE, Directiva Hábitats y 25 Especies Red Natura 2000 de las incluidas en el Anexo II de la citada Directiva, además de otras especies de flora y fauna de relevancia y dos enclaves de alto valor botánico: los alcornocales de la vertiente sur de la Sierra de Hoyo de Manzanares y el sabinar de Becerril de la Sierra.
Tabla 85. Inventario de los tipos de HIC presentes en el Espacio Protegido Red Natura 2000 Cuenca del río Manzanares. Superficie en hectáreas y porcentaje que supone respecto a la superficie total del Espacio Protegido y respecto a la superficie de los HIC en el Espacio Protegido. Los HIC prioritarios están marcados con un asterisco (*).

<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo de Hábitat</th>
<th>Superficie (ha)</th>
<th>% EPRN2000</th>
<th>% total HIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3110</td>
<td>Aguas oligotróficas con un contenido de minerales muy bajo de las llanuras arenosas (Littorelletalia uniflorae).</td>
<td>2,77</td>
<td>0,004</td>
<td>0,01</td>
</tr>
<tr>
<td>3150</td>
<td>Lagos eutróficos naturales con vegetación Magnopotamion o Hydrocharition.</td>
<td>1,64</td>
<td>0,003</td>
<td>0,01</td>
</tr>
<tr>
<td>3170</td>
<td>Estanques temporales mediterráneos (*).</td>
<td>13,75</td>
<td>0,02</td>
<td>0,05</td>
</tr>
<tr>
<td>3260</td>
<td>Ríos de pisos de planicie a montano con vegetación Ranunculion fluitantis y de Callitricho- Batrachion.</td>
<td>0,66</td>
<td>0,001</td>
<td><0,001</td>
</tr>
<tr>
<td>4030</td>
<td>Brezales secos europeos.</td>
<td>666,2</td>
<td>1,06</td>
<td>2,32</td>
</tr>
<tr>
<td>4090</td>
<td>Brezales oromediterráneos endémicos con aligá.</td>
<td>775,23</td>
<td>1,23</td>
<td>2,7</td>
</tr>
<tr>
<td>5120</td>
<td>Formaciones montanas de Genista purgans.</td>
<td>1400,9</td>
<td>2,22</td>
<td>4,88</td>
</tr>
<tr>
<td>5210</td>
<td>Matorrales arborecentes de Juniperus spp.</td>
<td>2237,59</td>
<td>3,55</td>
<td>7,8</td>
</tr>
<tr>
<td>5330</td>
<td>Matorrales termomediterráneos y pre-estépicos.</td>
<td>1.236,40</td>
<td>1,96</td>
<td>4,31</td>
</tr>
<tr>
<td>6160</td>
<td>Prados ibéricos siliceos de Festuca indigesta.</td>
<td>203,54</td>
<td>0,32</td>
<td>0,71</td>
</tr>
<tr>
<td>6220</td>
<td>Zonas subestérpicas de gramíneas y anuales del Thero-Brachypodietea (*).</td>
<td>4622,62</td>
<td>7,34</td>
<td>16,11</td>
</tr>
<tr>
<td>6230</td>
<td>Formaciones herbosas con Nardus, con numerosas especies, sobre sustratos siliceos de zonas montañosas (y de zonas submontañosas de la Europa continental) (*).</td>
<td>433,85</td>
<td>0,69</td>
<td>1,51</td>
</tr>
<tr>
<td>6310</td>
<td>Dehesas perennifolias de Quercus spp.</td>
<td>5142,13</td>
<td>8,16</td>
<td>17,92</td>
</tr>
<tr>
<td>6420</td>
<td>Prados húmedos mediterráneos de hierbas altas del Molinion-Holoschoenion.</td>
<td>566,45</td>
<td>0,9</td>
<td>1,97</td>
</tr>
<tr>
<td>6510</td>
<td>Prados pobres de siega de baja altitud (Alopecurus pratensis, Sanguisorba officinalis).</td>
<td>13,27</td>
<td>0,02</td>
<td>0,05</td>
</tr>
<tr>
<td>7150</td>
<td>Depresiones sobre sustratos turbosos del Rhynchosporion.</td>
<td>0,003</td>
<td><0,001</td>
<td><0,001</td>
</tr>
<tr>
<td>8130</td>
<td>Desprendimientos mediterráneos occidentales y termófilos.</td>
<td>139,73</td>
<td>0,22</td>
<td>0,49</td>
</tr>
<tr>
<td>8220</td>
<td>Pendientes rocosas siliceas con vegetación cosmofítica</td>
<td>659,33</td>
<td>1,05</td>
<td>2,3</td>
</tr>
<tr>
<td>8230</td>
<td>Roquedos siliceos con vegetación pionera del Sedo-Scleranthion o del Sedo albi-Veronicion dillenii.</td>
<td>317,49</td>
<td>0,5</td>
<td>1,11</td>
</tr>
<tr>
<td>91B0</td>
<td>Fresnedas termófilas de Fraxinus angustifolia.</td>
<td>551,27</td>
<td>0,87</td>
<td>1,92</td>
</tr>
<tr>
<td>9230</td>
<td>Robledales galacio-portugueses con Quercus robur y Quercus pyrenaica.</td>
<td>304,12</td>
<td>0,48</td>
<td>1,06</td>
</tr>
<tr>
<td>9240</td>
<td>Robledales ibéricos de Quercus faginea y Quercus canariensis.</td>
<td>0,57</td>
<td>0,001</td>
<td><0,001</td>
</tr>
<tr>
<td>92A0</td>
<td>Bosques galería de Salix alba y Populus alba.</td>
<td>299,3</td>
<td>0,48</td>
<td>1,04</td>
</tr>
</tbody>
</table>
La gran extensión del parque regional de la Cuenca Alta del Manzanares y, sobre todo, su acusada diferencia altitudal favorece la presencia de ecosistemas representativos de cuatro de los cinco pisos bioclimáticos de la región mediterránea de la península Ibérica, desde el crioromediterráneo hasta el mesomediterráneo.

Por la amplitud de su superficie, sobresale el encinar carpetaño. Además, son destacables los quejigales, las fresnedas, los pinares de montaña (tanto de pino silvestre como de pino resinero), los roquedos, los piornales, los pastizales supra-arbóreos y los rebollares, así como los sotos, articulados —estos últimos— alrededor del Manzanares y sus afluentes, con especial mención a los dos embalses principales de este río, el de Santillana y el de El Pardo.

También abundan arbustos y matorrales característicos de la vegetación mediterránea, como la jara pringosa, el romero, el tomillo y el cantueso.

A mediados del siglo XX, el territorio que hoy ocupa el parque regional de la Cuenca Alta del Manzanares fue objeto de diversas repoblaciones forestales, principalmente de coníferas, como el pino negral, el ciprés, el cedro y la arizónica, además de pino piñonero (en los fondos de los valles) y de pino silvestre y pino laricio (en las laderas).

Este espacio natural cuenta con zonas de una gran singularidad botánica. Sus bosques más representativos son el abedular de La Pedriza, el alcornocal de la Sierra del Hoyo, el enebral de Hoyo de Manzanares y el sabinar de Becerril de la Sierra, además de los montes de El Pardo y de Viñuelas, considerados como los encinares adehesados mejor conservados de Europa.

En lo que respecta a la fauna, se han clasificado alrededor de 300 especies de vertebrados, algunas de las cuales, en peligro de extinción, que se unen a un número, aún sin cuantificar, de invertebrados.

En el ámbito territorial de la ZEC quedan incluidos totalmente los territorios de las dos ZEPA, en las cuales se han inventariado un total de 41 aves de las incluidas en el Anexo I de la Directiva 2009/147/CE, Directiva Aves (32 en la ZEPA Monte de El Pardo y 9 en la ZEPA Soto de Viñuelas), y 21 aves acuáticas migratorias e invernantes de presencia regular en el embalse de El Pardo, además de otras especies de aves relevantes en el ámbito geográfico de la Comunidad de Madrid.

<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo de Hábitat</th>
<th>Superficie (ha)</th>
<th>% EPRN2000</th>
<th>% total HIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>92D0</td>
<td>Galerías y matorrales ribereños termomediterráneos (Nerio-Tamaricetea y Secunregion tinctoriae).</td>
<td>0,33</td>
<td>0,001</td>
<td><0,001</td>
</tr>
<tr>
<td>9340</td>
<td>Encinares de Quercus ilex y Quercus rotundifolia.</td>
<td>9196,56</td>
<td>14,6</td>
<td>32,05</td>
</tr>
<tr>
<td>9560</td>
<td>Bosques endémicos de Juniperus spp. (*)</td>
<td>4,11</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Código</td>
<td>Código</td>
<td>Nombre científico</td>
<td>Nombre común</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerambyx cerdo</td>
<td>Capricornio de las encinas</td>
<td></td>
</tr>
<tr>
<td>1065</td>
<td></td>
<td>Euphydryas aurinia</td>
<td>Doncella de ondas rojas</td>
<td></td>
</tr>
<tr>
<td>6170</td>
<td></td>
<td>Actias isabellae</td>
<td>Mariposa isabelina</td>
<td></td>
</tr>
<tr>
<td>1083</td>
<td></td>
<td>Lucanus cervus</td>
<td>Ciervo volante</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobitis paludica</td>
<td>Colmilleja</td>
<td></td>
</tr>
<tr>
<td>6076</td>
<td></td>
<td>Tropidophoxinellus albumoides</td>
<td>Calandina</td>
<td></td>
</tr>
<tr>
<td>6149</td>
<td></td>
<td>Pseudochondrostoma polylepis</td>
<td>Boga de río</td>
<td></td>
</tr>
<tr>
<td>6155</td>
<td></td>
<td>Achondrostoma arcasii</td>
<td>Bermejuela</td>
<td></td>
</tr>
<tr>
<td>6168</td>
<td></td>
<td>Luciobarbus comizo</td>
<td>Barbo comizo</td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td></td>
<td>Discoglossus galganoi</td>
<td>Sapillo pintojo ibérico</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emys orbicularis</td>
<td>Galápago europeo</td>
<td></td>
</tr>
<tr>
<td>1221</td>
<td></td>
<td>Mauremys leprosa</td>
<td>Galápago leproso</td>
<td></td>
</tr>
<tr>
<td>1259</td>
<td></td>
<td>Lacerta schreiberi</td>
<td>Lagarto verdinegro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1301</td>
<td>Barbastella barbastellus</td>
<td>Murciélago de bosque</td>
<td></td>
</tr>
<tr>
<td>1302</td>
<td></td>
<td>Galemys pyrenaicus</td>
<td>Desmán ibérico</td>
<td></td>
</tr>
<tr>
<td>1304</td>
<td></td>
<td>Rhinolophus ferrumequinum</td>
<td>Murciélago grande de herradura</td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td></td>
<td>Rhinolophus euryale</td>
<td>Murciélago mediterráneo de herradura</td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td></td>
<td>Barbastella barbastellus</td>
<td>Murciélago de bosque</td>
<td></td>
</tr>
<tr>
<td>1310</td>
<td></td>
<td>Manioteus schreibersii</td>
<td>Murciélago de cueva</td>
<td></td>
</tr>
<tr>
<td>1321</td>
<td></td>
<td>Microtus cabrerae</td>
<td>Topillo de Cabrera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1323</td>
<td>Myotis emarginatus</td>
<td>Murciélago ratonero pardo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myotis bechsteinii</td>
<td>Murciélago ratonero forestal</td>
<td></td>
</tr>
<tr>
<td>1338</td>
<td></td>
<td>Myotis myotis</td>
<td>Murciélago ratonero grande</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1355</td>
<td>Lutra lutra</td>
<td>Nutria paleártica</td>
<td></td>
</tr>
</tbody>
</table>

Entre los mamíferos, existen interesantes poblaciones de ardilla, comadreja, conejo, ciervo, corzo, gamo, gato montés, garduña, gineta, jabalí, liebre, lirón careto, tejón y zorro, así como de cabra montés.

En relación a los anfibios, el parque reúne el 56,5 % de los anfibios que habitan en la península ibérica y el 59,5 % de los reptiles. Además, presenta un elevado número de endemismos, con un total de doce especies de herpetos. Entre los lugares más valiosos para la preservación de la herpetofauna, sobresale la Cuerda Larga, que constituye una zona de conservación de primer orden para la lagartija serrana, que tiene una distribución muy...
restringida en el territorio peninsular. Además, el galápago europeo, seriamente amenazado en la Comunidad de Madrid, tiene en el embalse de Santillana uno de sus principales refugios regionales.

Por último, en relación a los peces, el río Manzanares y, principalmente, los embalses construidos sobre su curso albergan poblaciones de barbo, carpa, lucio y trucha.

En el capítulo de la fauna avícola, merece una mención especial el águila imperial ibérica, una de las aves más amenazadas del mundo. La lista de rapaces del parque regional se completa con el águila real, el águila calzada, el águila culebrera, el águila pescadora, el búho real, el búho chico, el cárabo, el cernícalo, el elanio, la lechuza, el milano real, el milano negro, el mochuelo y el ratonero. A lo largo del curso del río Manzanares, principalmente en su cabecera, se reúnen fochas, garzas reales, porrones, somormujos y zampullines. Otras especies avícolas del parque son, entre otras, el abejaruco, la abubilla, la codorniz, el cuco, la paloma torcaz, el martín pescador, la perdiz, el petirrojo y el picapinos, además de aves de rapina, como el buitre negro y el buitre leonado.

Tabla 87. Especies de aves del Anexo I de la Directiva 2009/147/CE en la ZEPA Monte de El Pardo.

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>A022</td>
<td>Ixobrychus minutus</td>
<td>Avetorillo común</td>
</tr>
<tr>
<td>A023</td>
<td>Nycticorax nycticorax</td>
<td>Martinete común</td>
</tr>
<tr>
<td>A026</td>
<td>Egretta garzetta</td>
<td>Garceta común</td>
</tr>
<tr>
<td>A029</td>
<td>Ardea purpurea</td>
<td>Garza imperial</td>
</tr>
<tr>
<td>A030</td>
<td>Ciconia nigra</td>
<td>Cigüeña negra</td>
</tr>
<tr>
<td>A031</td>
<td>Ciconia ciconia</td>
<td>Cigüeña blanca</td>
</tr>
<tr>
<td>A034</td>
<td>Platalea leucorodia</td>
<td>Espátula común</td>
</tr>
<tr>
<td>A073</td>
<td>Milvus migrans</td>
<td>Milano negro</td>
</tr>
<tr>
<td>A074</td>
<td>Milvus milvus</td>
<td>Milano real</td>
</tr>
<tr>
<td>A078</td>
<td>Gyps fulvus</td>
<td>Buitre leonado</td>
</tr>
<tr>
<td>A079</td>
<td>Aegypius monachus</td>
<td>Buitre negro</td>
</tr>
<tr>
<td>A080</td>
<td>Circaetus gallicus</td>
<td>Culebrera europea</td>
</tr>
<tr>
<td>A091</td>
<td>Aquila chrysaetos</td>
<td>Águila real</td>
</tr>
<tr>
<td>A092</td>
<td>Hieraaetus pennatus</td>
<td>Aguililla calzada</td>
</tr>
<tr>
<td>A093</td>
<td>Aquila fasciata</td>
<td>Águila azor perdicera</td>
</tr>
<tr>
<td>A094</td>
<td>Pandion haliaetus</td>
<td>Águila pescadora</td>
</tr>
<tr>
<td>A127</td>
<td>Grus grus</td>
<td>Grulla común</td>
</tr>
<tr>
<td>A131</td>
<td>Himantopus himantopus</td>
<td>Cigüeñuela común</td>
</tr>
<tr>
<td>A133</td>
<td>Burhinus oedicnemus</td>
<td>Alcaraván común</td>
</tr>
<tr>
<td>A197</td>
<td>Chlidonias niger</td>
<td>Fumarel común</td>
</tr>
<tr>
<td>A215</td>
<td>Bubo bubo</td>
<td>Búho real</td>
</tr>
<tr>
<td>A229</td>
<td>Alcedo atthis</td>
<td>Martín pescador común</td>
</tr>
<tr>
<td>A231</td>
<td>Coracias garrulus</td>
<td>Carraca europea</td>
</tr>
<tr>
<td>A245</td>
<td>Galerida theklae</td>
<td>Cogujada montesina</td>
</tr>
</tbody>
</table>

Página 271
<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>A246</td>
<td>Lullula arborea</td>
<td>Alondra totovia</td>
</tr>
<tr>
<td>A279</td>
<td>Oenanthe leucura</td>
<td>Collalba negra</td>
</tr>
<tr>
<td>A302</td>
<td>Sylvia undata</td>
<td>Currucu rabilarga</td>
</tr>
<tr>
<td>A379</td>
<td>Emberiza hortulana</td>
<td>Escribano hortelano</td>
</tr>
<tr>
<td>A397</td>
<td>Tadorna ferruginea</td>
<td>Tarro canelo</td>
</tr>
<tr>
<td>A399</td>
<td>Elanus caeruleus</td>
<td>Elanio azul</td>
</tr>
<tr>
<td>A405</td>
<td>Aquila adalberti</td>
<td>Águila imperial ibérica</td>
</tr>
</tbody>
</table>

Tabla 88. Especies de aves del Anexo I de la Directiva 2009/147/CE en la ZEPA Soto de Viñuelas.

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>A073</td>
<td>Milvus migrans</td>
<td>Milano negro</td>
</tr>
<tr>
<td>A074</td>
<td>Milvus milvus</td>
<td>Milano real</td>
</tr>
<tr>
<td>A079</td>
<td>Aegypius monachus</td>
<td>Buitre negro</td>
</tr>
<tr>
<td>A092</td>
<td>Hieraetus pennatus</td>
<td>Aguililla calzada</td>
</tr>
<tr>
<td>A131</td>
<td>Himantopus himantopus</td>
<td>Cigüeñuela común</td>
</tr>
<tr>
<td>A133</td>
<td>Burhinus oedicnemus</td>
<td>Alcaraván común</td>
</tr>
<tr>
<td>A215</td>
<td>Bubo bubo</td>
<td>Búho real</td>
</tr>
<tr>
<td>A246</td>
<td>Lullula arborea</td>
<td>Alondra totovia</td>
</tr>
<tr>
<td>A302</td>
<td>Sylvia undata</td>
<td>Currucu rabilarga</td>
</tr>
<tr>
<td>A405</td>
<td>Aquila adalberti</td>
<td>Águila imperial ibérica</td>
</tr>
</tbody>
</table>

Tabla 89. Especies de aves migratorias de presencia regular en la ZEPA Monte de El Pardo.

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>A005</td>
<td>Podiceps cristatus</td>
<td>Somormujo lavanco</td>
</tr>
<tr>
<td>A008</td>
<td>Podiceps nigricollis</td>
<td>Zampullín cuelliniego</td>
</tr>
<tr>
<td>A017</td>
<td>Phalacrocorax carbo</td>
<td>Cormorán grande</td>
</tr>
<tr>
<td>A028</td>
<td>Ardea cinerea</td>
<td>Garza real</td>
</tr>
<tr>
<td>A043</td>
<td>Anser anser</td>
<td>Ánsar común</td>
</tr>
<tr>
<td>A048</td>
<td>Tadorna tadorna</td>
<td>Tarro blanco</td>
</tr>
<tr>
<td>A050</td>
<td>Anas penelope</td>
<td>Silbón europeo</td>
</tr>
<tr>
<td>A051</td>
<td>Anas strepera</td>
<td>Ánade friso</td>
</tr>
<tr>
<td>A052</td>
<td>Anas crecca</td>
<td>Cerceta común</td>
</tr>
<tr>
<td>A053</td>
<td>Anas platyrhynchos</td>
<td>Ánade azulón</td>
</tr>
<tr>
<td>A055</td>
<td>Anas querquedula</td>
<td>Cerceta carretona</td>
</tr>
<tr>
<td>A056</td>
<td>Anas clypeata</td>
<td>Cuchara común</td>
</tr>
<tr>
<td>A059</td>
<td>Aythya ferina</td>
<td>Porrón europeo</td>
</tr>
<tr>
<td>A061</td>
<td>Aythya fuligula</td>
<td>Porrón moñudo</td>
</tr>
<tr>
<td>A125</td>
<td>Fulica atra</td>
<td>Focha común</td>
</tr>
<tr>
<td>A142</td>
<td>Vanellus vanellus</td>
<td>Avefría europea</td>
</tr>
<tr>
<td>A153</td>
<td>Gallinago gallinago</td>
<td>Agachadiza común</td>
</tr>
<tr>
<td>A165</td>
<td>Tringa ochropus</td>
<td>Andarrios grande</td>
</tr>
<tr>
<td>Código</td>
<td>Nombre científico</td>
<td>Nombre común</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>A168</td>
<td>Actitis hypoleucos</td>
<td>Andarríos chico</td>
</tr>
<tr>
<td>A179</td>
<td>Larus ridibundus</td>
<td>Gaviota reidora</td>
</tr>
<tr>
<td>A183</td>
<td>Larus fuscus</td>
<td>Gaviota sombría</td>
</tr>
</tbody>
</table>

ZEC ES3110001 Cuenca de los ríos Jarama y Henares y ZEPA ES0000139 Estepas cerealistas de los ríos Jarama y Henares

La Zona Especial de Conservación (ZEC) y la Zona de Especial Protección para las Aves (ZEPA) fueron declaradas mediante Decreto 172/2011, de 3 de noviembre, a través del cual también fue aprobado el Plan de Gestión de dichos Espacios Protegidos Red Natura 2000.

El espacio tiene una superficie aproximada de 36.063 ha.

La ZEC Cuencas de los ríos Jarama y Henares se compone de tres unidades principales:

a) La ZEPA de las estepas cerealistas de los ríos Jarama y Henares, que supone el 90% del total de la superficie del espacio.

b) Los cursos fluviales y sus riberas (100 metros de margen a cada lado) de los tramos medio-altos de los ríos Jarama y Henares, a su paso por la Comunidad de Madrid.

c) Una serie de cantiles y cortados asociados a los cursos fluviales con importancia para diversos taxones.

La ZEPA Estepas cerealistas de los ríos Jarama y Henares se distribuye a lo largo de la rampa que conecta la sierra al norte de la Comunidad de Madrid y la fosa fluvial del Tajo al sur. Se encuentra comprendida entre los cauces de los ríos Jarama y Henares (incluidos en la ZEC). Se caracteriza por un clima mediterráneo semiárido (precipitaciones medias anuales de 350-400mm) y un largo periodo de sequía estival. Presenta un relieve suave con ligera pendiente hacia el suroeste. La vegetación potencial sería la de bosques de galería en las vegas y encinares en las cuestas. Se observan importantes manchas seriales de degradación del encinar, debido probablemente a un excesivo pastoreo en el pasado, dominadas por retamares (*Retama sphaerocarpa*).

La red fluvial en la ZEC se encuentra representada por tres ríos principales: Jarama, Henares y Torote. Esta dominancia de medios fluviales favorece la existencia de amplias terrazas, coluviones, conos de deyeción y fondos de valle con depósitos holocénicos y pleistocénicos, propiciando un dominio de materiales del tipo de arenas, limos y gravas poligénicas. Los cantiles asociados a los ríos Jarama y Henares, e incluidos en parte en la ZEC, se caracterizan por su naturaleza caliza en el primer caso y arcillosa en el segundo. El índice de red fluvial en la ZEC se eleva de forma importante al incluir un mayor número de ríos, pasando a ser un total de 2,81 m/ha. Respecto a las carreteras, el índice es de 0,34 m/ha para carreteras nacionales o autopistas y de 3,44 para carreteras de segundo y tercer orden.
Se trata de una zona de especial calidad e importancia para la protección de especies de tipo estepario y acuático. Incluye poblaciones numerosas de Otis tarda, Tetrao tetrix, Falco naumanni, Pterocles orientalis, Circus pygargus y Circus pyganeus. Resulta de interés para taxones y hábitats asociados a ríos al incluir aves rúpicoicas como Falco peregrinus, Pyrrhocorax pyrrhocorax, Oenanthe leucura y varios refugios de quirópteros y hábitats acuáticos como formaciones de bosques de galería de Salix alba y Populus alba y prados de Molinion-Holoschoenion.

El uso dominante del suelo son los cultivos cerealistas, lo cual contribuye al mantenimiento de las poblaciones de avifauna de tipo estepario. Los ríos Torote y Jarama aportan poblaciones diversas de fauna piscícola y, en sus formaciones palustres asociadas, ornitológica invernante en unas buenas condiciones de conservación. Por último, cabe resaltar las poblaciones de Lutra lutra en el tramo alto del río Jarama.

En lo relativo a los tipos de hábitats del Anexo I de la Directiva Hábitats representados en estos dos Espacios Protegidos, su objetivo de conservación será el mantenimiento de la superficie inventariada en el momento de la declaración de los Espacios Protegidos con un margen de un ±2 por 100 de la superficie en cada caso.

Los Espacios Protegidos acogen un gran número de especies de fauna, tanto de aves como de otros grupos taxonómicos, que le proporcionan un alto valor de conservación. Según los censos de vertebrados más recientes, en los dos Espacios Protegidos conviven de una manera regular un mínimo de 239 taxones, de los que 153 corresponden a aves. De ellos, 36 especies de aves son consideradas de interés comunitario de conservación, además de otras 13 especies de vertebrados diferentes a aves. En resumen, son 49 especies de vertebrados las que justificaron la declaración de los Espacios Red Natura 2000 propuestos en los interfluvis del Jarama y Henares.

<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo de hábitat</th>
<th>Superficie (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5330</td>
<td>Matorrales termomediterráneos y pre estépicos.</td>
<td>882,64</td>
</tr>
<tr>
<td>9340</td>
<td>Bosques de Quercus ilex y Quercus rotundifolia.</td>
<td>300,1</td>
</tr>
<tr>
<td>92A0</td>
<td>Bosques de galería de Salix alba y Populus alba.</td>
<td>246,23</td>
</tr>
<tr>
<td>4090</td>
<td>Brezales oromediterráneos endémicos con aliaga.</td>
<td>91,21</td>
</tr>
<tr>
<td>6420</td>
<td>Prados húmedos mediterráneos de hierbas altas del Molinion-Holoschoenion.</td>
<td>61,32</td>
</tr>
<tr>
<td>5210</td>
<td>Matorrales arborescentes de Juniperus sp.</td>
<td>58,8</td>
</tr>
<tr>
<td>92D0</td>
<td>Galerías y matorrales ribereños termomediterráneos (Nerio-Tamaricetea y Securinegion tinctoriae).</td>
<td>18,42</td>
</tr>
<tr>
<td>4030</td>
<td>Brezales secos europeos.</td>
<td>9,53</td>
</tr>
<tr>
<td>Código</td>
<td>Tipo de hábitat</td>
<td>Superficie (ha)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>1430</td>
<td>Matorrales halonitrófilos (Pegano-Salsoletea).</td>
<td>6,01</td>
</tr>
<tr>
<td>3140</td>
<td>Aguas oligomesotróficas con vegetación bética de Chara sp.</td>
<td>1,68</td>
</tr>
<tr>
<td>3150</td>
<td>Lagos eutróficos naturales con vegetación Magnopotamion o Hydrocharition.</td>
<td>6,49</td>
</tr>
<tr>
<td>3170*</td>
<td>Estanques temporales mediterráneos *.</td>
<td>1,68</td>
</tr>
<tr>
<td>3250</td>
<td>Ríos mediterráneos de caudal permanente con Glaucium flavum.</td>
<td>5,11</td>
</tr>
<tr>
<td>3280</td>
<td>Ríos mediterráneos de caudal permanente del Paspalo-Agrostidion con cortinas vegetales ribereñas de Salix y Populus alba.</td>
<td>2,8</td>
</tr>
<tr>
<td>6220*</td>
<td>Zonas subestepicas de gramíneas y anuales de Thero-Brachypodietea *.</td>
<td>7,46</td>
</tr>
<tr>
<td>6430</td>
<td>Megaforbiones eutróficos hidrófilos de las orlas de llanura y de los pisos montano a alpino.</td>
<td>2,01</td>
</tr>
<tr>
<td>91B0</td>
<td>Fresnedas termófilas de Fraxinus angustifolia.</td>
<td>0,8</td>
</tr>
<tr>
<td>91E0*</td>
<td>Bosques aluviales de Alnus glutinosa y Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae)</td>
<td>0,43</td>
</tr>
</tbody>
</table>
Tabla 91. Especies clave de vertebrados presentes en el ZEC y la ZEPA y categorías de conservación. Fuente: Plan de conservación Decreto 172/2011.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Falco naumanni</td>
<td>Cernicalo primilla</td>
<td>Peligro de Ext.</td>
<td>Interés Especial</td>
<td>A. I D. Aves</td>
<td>Bueno</td>
<td>30-40 par.</td>
<td>Pérdaa habitat, intensificación agraria, pérdaa lugares de cría.</td>
<td>Sí</td>
</tr>
<tr>
<td>Circus pygargus</td>
<td>Águilucho cenizo</td>
<td>Vulnerable</td>
<td>Vulnerable</td>
<td>A. I D. Aves</td>
<td>Bueno</td>
<td>50-80 par.</td>
<td>Pérdaa habitat, intensificación agraria, pérdaa de nidadas.</td>
<td>Sí</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>Águilucho pálido</td>
<td>Interés Especial</td>
<td>Interés Especial</td>
<td>A. I D. Aves</td>
<td>Bueno</td>
<td>20-25 par.</td>
<td>Pérdaa habitat, intensificación agraria, pérdaa de nidadas.</td>
<td>Sí</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>Halcón peregrino</td>
<td>Vulnerable</td>
<td>Interés Especial</td>
<td>A. I D. Aves</td>
<td>Regular</td>
<td>2-8 territ.</td>
<td>Pérdaa hábitat, uso de fitosanitarios, expolio.</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Objetivos de conservación: A. I D. Aves: Aves, Interés Aves.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutra lutra</td>
<td>Nutria paleártica</td>
<td>Peligro de Ext.</td>
<td>Vulnerable</td>
<td>A. II. D. Háb.</td>
<td>Bueno</td>
<td>Mantenimiento y mejora de las poblaciones del río Jarama</td>
<td>Pérdida calidad del hábitat y su fragmentación</td>
<td>NO</td>
</tr>
<tr>
<td>Rhinolophus spp., Myotis spp. Y Miniopterus schreibersii</td>
<td>Quirópteros</td>
<td>-</td>
<td>-</td>
<td>Bueno</td>
<td>Mantenimiento y mejora de las poblaciones del río Jarama</td>
<td>Pérdida calidad del hábitat y su fragmentación</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

*Nota: los objetivos de conservación de fauna son necesarios para el establecimiento del estado de conservación favorable de las poblaciones de fauna que dieron lugar a la declaración del Espacio Red Natura, y se corresponden con el tamaño poblacional de las especies clave que dieron lugar a la declaración del Espacio Red Natura en su día. Estos valores serán indicadores de un estado de conservación favorable del Espacio.

UNIÓN EUROPEA HABITATS: Categorías establecidas por la Directiva Hábitats (92/43/CEE). II= Especies de interés comunitario con áreas de especial protección; IV= Especies de interés comunitario con una protección estricta; V= Especies de interés comunitario que pueden ser gestionadas; ES= Especies prioritarias.

UNIÓN EUROPEA AVES: Categorías establecidas por la Directiva Aves de la Comunidad Europea (2009/147/CE). I= Especies objeto de medidas de conservación especiales en cuanto a su hábitat, II= Especies que pueden ser objeto de cazos en el marco de la legislación nacional, III= Especies que pueden ser comercializadas con una licencia especial o tras examinar si no pone en peligro el nivel de población, su distribución geográfica o la tasa de reproducción de la especie en el conjunto de la Comunidad.
ZEC ES311003 Cuenca del río Guadalix

Este espacio fue declarado Zona de Especial Conservación a través del Decreto 106/2014, de 3 de septiembre, del Consejo de Gobierno, por el que se declara Zona Especial de Conservación el Lugar de Importancia Comunitaria Cuenca del río Guadalix y se aprueba su Plan de Gestión.

El lugar abarca todo el curso del río Guadalix, desde el embalse de Pedrezuela (incluido éste) hasta su confluencia con el río Jarama. Igualmente incluye el Monte de Utilidad Pública Dehesa de Moncalvillo, el cual aporta extensas formaciones de enebráles y monte mediterráneo.

Climatológicamente se caracteriza por un dominio del clima mediterráneo continental, con influencias montanas dada la cercanía al macizo Guadarrámico (sobre todo en la zona norte del LIC/ZEC). La temperatura media anual varía entre los 7° C y los 18° C y la precipitación media entre los 600 y los 700 mm anuales.

Geológicamente, se distinguen dos zonas bien diferenciadas: en el tramo inferior del curso fluvial y en la mayor parte del embalse, dominan los materiales cuaternarios compuestos por gravas poligénicas, arenas y limos. En el resto del territorio son más abundantes los materiales paleozoicos de gneises glandulares, microglandulares y esquistosos con anfibolitas.

Las formaciones vegetales predominantes son los encinares, sobre todo en el monte de la Dehesa de Moncalvillo. Aparecen igualmente pastos submontanos, y la vegetación ribereña se reduce a una estrecha franja en el curso medio y bajo del río, apareciendo principalmente *Populus nigra* y *Fraxinus sp.* y, en menor medida, *Ulmus sp.* y *Alnus glutinosa*.

La red hidrográfica se encuentra representada por el embalse de Pedrezuela, el río Guadalix y varios de sus afluentes en la Dehesa de Moncalvillo (Arroyo Retuertas, Higueras y Matahonda).

La importancia del lugar radica en dos aspectos principales: por un lado, al incluir la vegetación y fauna mediterránea asociada al Monte de Utilidad Pública Dehesa de Moncalvillo, y, por otro lado, al incluir las comunidades acuáticas e invernales asociadas al curso del río Guadalix y al embalse de Pedrezuela. Respecto a las formaciones mediterráneas de la Dehesa de Moncalvillo, destacan por su extensión y buen estado de conservación las formaciones de enebráles pertenecientes a la asociación fitosociológica *Juniperus oxycedrus-Quercetum rotundifoliiiae* (R. Goday, 1959), de interés al encontrarse incluidos en los hábitats de interés comunitario 5210 y 9340. Respecto a los ambientes acuáticos, destacan las formaciones ribereñas de *Alnus glutinosa* (prioritarias), las poblaciones de fauna piscícola (que incluye cinco especies de interés comunitario: *Rutilus alburnoides*, *Cobitis taenia*, *Chondrostoma polylepis*, *Rutilus arcasii* y *Barbus comiza*) y de *Lutra lutra*, así como las comunidades de aves acuáticas invernales en el embalse. A modo de resumen, este
Espacio alberga un total de 16 tipos de hábitats naturales de interés comunitario, cuatro de ellos prioritarios, que en conjunto ocupan una superficie de 1.419 ha, lo que supone el 57,27 % de este territorio Natura 2000. Por otro lado, en el Espacio habitan 12 Especies Red Natura 2000: 2 especies de mamíferos, un anfibio, 2 de reptiles, 5 de peces continentales y 2 de invertebrados.

Tabla 92. Hábitats de interés comunitario presentes en el ZEC ES311003 río Guadalix y superficie que ocupan. Los prioritarios están marcados con un asterisco (*).

<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo de hábitat</th>
<th>Superficie (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3150</td>
<td>Lagos eutróficos naturales con vegetación Magnopotamion o Hydrocharition.</td>
<td>5,76</td>
</tr>
<tr>
<td>3170</td>
<td>Estanques temporales mediterráneas (*).</td>
<td>72,26</td>
</tr>
<tr>
<td>3250</td>
<td>Ríos mediterráneos de caudal permanente con Glaucium flavum</td>
<td>0,3</td>
</tr>
<tr>
<td>4090</td>
<td>Brezales oromediterráneos endémicos con aliaga.</td>
<td>17,31</td>
</tr>
<tr>
<td>5210</td>
<td>Matorrales arborecentes de Juniperus spp.</td>
<td>311,96</td>
</tr>
<tr>
<td>5330</td>
<td>Matorrales termomediterráneos y pre-estépicos.</td>
<td>34,04</td>
</tr>
<tr>
<td>6110</td>
<td>Prados calcáreos cársticos o basófilos del (Alysso-Sedion albi) (*).</td>
<td>0,66</td>
</tr>
<tr>
<td>6220</td>
<td>Zonas subestépicas de gramíneas y anuales del Thero-Brachypodietea (*).</td>
<td>165,85</td>
</tr>
<tr>
<td>6310</td>
<td>Dehesas perennífolias de Quercus spp.</td>
<td>205,98</td>
</tr>
<tr>
<td>6420</td>
<td>Prados húmedos mediterráneos de hierbas altas del Molinion-Holoschoenion.</td>
<td>5,47</td>
</tr>
<tr>
<td>8210</td>
<td>Pendientes rocosas calcícolas con vegetación cosmofítica.</td>
<td>0,66</td>
</tr>
<tr>
<td>91B0</td>
<td>Fresnedas termófilas de Fraxinus angustifolia.</td>
<td>2,52</td>
</tr>
<tr>
<td>91E0</td>
<td>Bosques aluviales de Alnus glutinosa y Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae). (*)</td>
<td>65,69</td>
</tr>
<tr>
<td>9240</td>
<td>Robledales ibéricos de Quercus faginea y Quercus canariensis.</td>
<td>13,51</td>
</tr>
<tr>
<td>92A0</td>
<td>Bosques galería de Salix alba y Populus alba.</td>
<td>24,48</td>
</tr>
<tr>
<td>9340</td>
<td>Encinares de Quercus ilex y Quercus rotundifolia.</td>
<td>492,08</td>
</tr>
</tbody>
</table>

Tabla 93. Especies de fauna presentes en el ZEC ES311003 río Guadalix.

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>1044</td>
<td>Coenagrion mercuriale</td>
<td>Corta narices</td>
</tr>
<tr>
<td>1065</td>
<td>Euphydryas aurinia</td>
<td>Doncella de ondas rojas</td>
</tr>
<tr>
<td>Código</td>
<td>Nombre científico</td>
<td>Nombre común</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>6155</td>
<td>Achondrostoma arcasii</td>
<td>Bermejuela</td>
</tr>
<tr>
<td>5302</td>
<td>Cobitis paludica</td>
<td>Colmilleja</td>
</tr>
<tr>
<td>6168</td>
<td>Luciobarbus comizo</td>
<td>Barbo comizo</td>
</tr>
<tr>
<td>1194</td>
<td>Discoglossus galganoi</td>
<td>Sapillo pintojo ibérico</td>
</tr>
<tr>
<td>1195</td>
<td>Discoglossus jeanneae</td>
<td>Sapillo pintojo meridional</td>
</tr>
<tr>
<td>1259</td>
<td>Lacerta schreiber</td>
<td>Lagarto vérminegro</td>
</tr>
<tr>
<td>1221</td>
<td>Mauremys leprosa</td>
<td>Galápago leproso</td>
</tr>
<tr>
<td>A079</td>
<td>Aegypius monachus</td>
<td>Buitre negro</td>
</tr>
<tr>
<td>A229</td>
<td>Alcedo atthis</td>
<td>Martín pescador</td>
</tr>
<tr>
<td>A056</td>
<td>Anas clypeata</td>
<td>Cuchara común</td>
</tr>
<tr>
<td>A053</td>
<td>Anas platyrhynchos</td>
<td>Anade real</td>
</tr>
<tr>
<td>A051</td>
<td>Anas strepera</td>
<td>Anade friso</td>
</tr>
<tr>
<td>A091</td>
<td>Aquila chrysaetos</td>
<td>Águila real</td>
</tr>
<tr>
<td>A405</td>
<td>Aquila adalberti</td>
<td>Águila imperial</td>
</tr>
<tr>
<td>A059</td>
<td>Aythya ferina</td>
<td>Porrón europeo</td>
</tr>
<tr>
<td>A061</td>
<td>Aythya fuligula</td>
<td>Porrón moñudo</td>
</tr>
<tr>
<td>A215</td>
<td>Bubo bubo</td>
<td>Búho real</td>
</tr>
<tr>
<td>A133</td>
<td>Burhinus oedicnemus</td>
<td>Alcaraván común</td>
</tr>
<tr>
<td>A243</td>
<td>Calandrella brachydactyla</td>
<td>Terrera común</td>
</tr>
<tr>
<td>A031</td>
<td>Ciconia ciconia</td>
<td>Cigüeña blanca</td>
</tr>
<tr>
<td>A080</td>
<td>Circaetus gallicus</td>
<td>Águila culebrena</td>
</tr>
<tr>
<td>A082</td>
<td>Circus cyaneus</td>
<td>Aguilucho pálido</td>
</tr>
<tr>
<td>A084</td>
<td>Circus pygargus</td>
<td>Aguilucho cenizo</td>
</tr>
<tr>
<td>A231</td>
<td>Coracias garrulus</td>
<td>Carraca común</td>
</tr>
<tr>
<td>A379</td>
<td>Emberiza hortulana</td>
<td>Escribano hortelano</td>
</tr>
<tr>
<td>A125</td>
<td>Fulica atra</td>
<td>Focha común</td>
</tr>
<tr>
<td>A245</td>
<td>Galerida theklae</td>
<td>Cogujada montesina</td>
</tr>
<tr>
<td>A078</td>
<td>Gyps fulvus</td>
<td>Buitre leonado</td>
</tr>
<tr>
<td>A092</td>
<td>Hieraaetus pennatus</td>
<td>Aguililla calzada</td>
</tr>
<tr>
<td>A246</td>
<td>Lullula arborea</td>
<td>Alondra totovia</td>
</tr>
<tr>
<td>A242</td>
<td>Melanocorypha calandra</td>
<td>Calandria común</td>
</tr>
<tr>
<td>A073</td>
<td>Milvus migrans</td>
<td>Milano real</td>
</tr>
<tr>
<td>A279</td>
<td>Oenanthe leucura</td>
<td>Collalba negra</td>
</tr>
<tr>
<td>A017</td>
<td>Phalacrocorax carbo</td>
<td>Comorán grande</td>
</tr>
<tr>
<td>A005</td>
<td>Podiceps cristatus</td>
<td>Somormujo lavanco</td>
</tr>
<tr>
<td>A346</td>
<td>Pyrrhocorax pyrrhocorax</td>
<td>Chova piquorroja</td>
</tr>
<tr>
<td>A210</td>
<td>Streptopelia turtur</td>
<td>Tórtola común</td>
</tr>
</tbody>
</table>
Código | Nombre científico | Nombre común
--- | --- | ---
A302 | Sylvia undata | Currucu rabilarga
A004 | Tachybaptus ruficollis | Zampullín cuellirrojo
A128 | Tetrax tetrax | Sisón común

| 1355 | Lutra lutra | Nutria paleártica |

5.10 POBLACIÓN Y MEDIO SOCIOECONÓMICO

El proyecto de la PFV Colimbo y sus infraestructuras de evacuación contempla las siguientes actuaciones:

- Construcción de la PFV GR Colimbo y su Línea Soterrada de Media Tensión (LSMT).
- L/132 kV GR Colimbo – Colectora La Cereal
- L/400 kV Colectora La Cereal – La Cereal REE
- ST Colimbo 132/30 kV
- ST Colectora La Cereal 400/132 kV

El ámbito de estudio considerado para analizar los potenciales efectos del proyecto sobre el medio comprende una superficie de 17.586 Ha que incluye terrenos de los siguientes municipios: Algete, Colmenar Viejo, El Molar, El Vellón, Madrid, Pedrezuela, San Agustín de Guadalix, Talamanca del Jarama, Torrelaguna, Torremocha del Jarama, Tres Cantos, Valdepiélagos y Valdetorres de Jarama.

Sin embargo, para el desarrollo de los apartados siguientes y para el estudio de los efectos de las actuaciones del proyecto sobre la población y los aspectos socioeconómicos, se ha considerado aquella superficie que incluye actuaciones asociadas al proyecto y que, por tanto, requieren de evaluación. Esta superficie se localiza sobre los siguientes 7 términos municipales: Colmenar Viejo, El Molar, El Vellón, San Agustín de Guadalix, Torrelaguna, Torremocha del Jarama y Tres Cantos.

5.10.1 Descripción demográfica

En el presente capítulo se han recopilado los datos referentes a la distribución y evolución de la población en los términos municipales considerados, así como la información sobre los grupos de población según edad, sexo y nacionalidad.

Esta información se ha obtenido de los datos publicados por el Instituto Nacional de Estadística (INE) y el Instituto de Estadística de la Comunidad de Madrid.
Distribución de la población por municipio

A partir de los datos publicados por el Instituto Nacional de Estadística se ha estudiado la distribución de la población en los municipios considerados, así como su densidad.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Población</th>
<th>Superficie (km²)</th>
<th>Densidad (hab/Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>50.752</td>
<td>182,88</td>
<td>277,52</td>
</tr>
<tr>
<td>El Molar</td>
<td>8.938</td>
<td>50,18</td>
<td>178,12</td>
</tr>
<tr>
<td>El Vellón</td>
<td>1.958</td>
<td>33,49</td>
<td>58,47</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>13.379</td>
<td>38,22</td>
<td>350,05</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>4.760</td>
<td>43,06</td>
<td>110,54</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>1.019</td>
<td>18,86</td>
<td>54,03</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>47.722</td>
<td>37,95</td>
<td>1.257,50</td>
</tr>
</tbody>
</table>

Como muestra la tabla anterior, la mayor densidad de población corresponde al municipio de Tres Cantos. Por el contrario, la menor densidad de población corresponde al municipio de Torremocha del Jarama.

Según los valores de la tabla anterior, existen 2 grupos de municipios claramente diferenciados:

- Municipios con menos de 10.000 habitantes: El Molar, El Vellón, Torrelaguna y Torremocha del Jarama.
- Municipios con más de 10.000 habitantes: Colmenar Viejo, San Agustín de Guadalix y Tres Cantos.

Evolución y variación de la población por municipio

3 Datos consolidados a 1 de enero de 2019.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>34.194</td>
<td>19,55%</td>
<td>40.878</td>
<td>11,23%</td>
<td>45.468</td>
<td>14,23%</td>
<td>51.938</td>
</tr>
<tr>
<td>El Molar</td>
<td>3.898</td>
<td>37,84%</td>
<td>5.373</td>
<td>48,39%</td>
<td>7.973</td>
<td>16,48%</td>
<td>9.287</td>
</tr>
<tr>
<td>El Vellón</td>
<td>1.190</td>
<td>9,58%</td>
<td>1.304</td>
<td>34,97%</td>
<td>1.760</td>
<td>13,86%</td>
<td>2.004</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>6.333</td>
<td>39,46%</td>
<td>8.832</td>
<td>40,68%</td>
<td>12.425</td>
<td>8,38%</td>
<td>13.466</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>2.898</td>
<td>40,10%</td>
<td>4.060</td>
<td>21,13%</td>
<td>4.918</td>
<td>-1,30%</td>
<td>4.854</td>
</tr>
<tr>
<td>Torrechoba del Jarama</td>
<td>351</td>
<td>73,50%</td>
<td>609</td>
<td>41,38%</td>
<td>861</td>
<td>24,85%</td>
<td>1.075</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>36.598</td>
<td>8,82%</td>
<td>39.826</td>
<td>3,11%</td>
<td>41.065</td>
<td>17,68%</td>
<td>48.326</td>
</tr>
</tbody>
</table>

Como se aprecia en la tabla anterior, a excepción de Torrelaguna, desde el año 2001, se ha incrementado la población en los municipios analizados, si bien, este incremento se ha ido ralentizado a lo largo de los años (llegando incluso a ser negativo como en el citado caso del municipio de Torrelaguna).

La variación de población más destacable se produjo en Torrechoba del Jarama, municipio en el que la población se incrementó un 73,50% - pasando de 351 a 609 habitantes - entre 2001 y 2006.

Se muestra a continuación la evolución de la población desde el año 2001 en los 7 municipios analizados:

Colmenar Viejo

El Molar

El Vellón

San Agustín de Guadalix

Torrelaguna

Torremocha del Jarama

Tres Cantos
Población por rangos de edad, sexo y municipio

Se muestran a continuación las pirámides de población para los 7 municipios analizados:

Colmenar Viejo

El Molar

El Vellón

San Agustín de Guadalix

Torrelaguna

Torremocha del Jarama

Tres Cantos
Población empadronada según nacionalidad y municipio

En la tabla siguiente se muestra la población nacional y extranjera de cada municipio analizado:

Tabla 98. Población empadronada según nacionalidad y municipio. Instituto de Estadística de la Comunidad de Madrid, 2020.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Población</th>
<th>Nacional</th>
<th>Extranjera</th>
<th>% de población extranjera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>43.577</td>
<td>5.921</td>
<td></td>
<td>12,94%</td>
</tr>
<tr>
<td>El Molar</td>
<td>6.766</td>
<td>1.900</td>
<td></td>
<td>25,03%</td>
</tr>
<tr>
<td>El Veñón</td>
<td>1.624</td>
<td>318</td>
<td></td>
<td>18,86%</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>11.429</td>
<td>1.844</td>
<td></td>
<td>14,23%</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>4.009</td>
<td>715</td>
<td></td>
<td>16,13%</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>893</td>
<td>82</td>
<td></td>
<td>10,60%</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>43.606</td>
<td>3.144</td>
<td></td>
<td>7,49%</td>
</tr>
</tbody>
</table>

De los 7 municipios analizados, el que mayor porcentaje de población extranjera tenía en 2020 era El Molar con un 25,03%, seguido de El Veñón, con un 18,86%.

Por su parte, el municipio con menor porcentaje de población extranjera empadronada era Tres Cantos, con un 7,49%.

Evolución y variación de la población extranjera por municipio

Tabla 99. Evolución y variación de la población extranjera por municipio. Instituto Nacional de Estadística de la Comunidad de Madrid, 2001 – 2020.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>2.576</td>
<td>141,27%</td>
<td>6.215</td>
<td>19,00%</td>
<td>7.396</td>
<td>-9,13%</td>
<td>6.721</td>
</tr>
<tr>
<td>El Molar</td>
<td>445</td>
<td>160,90%</td>
<td>1.161</td>
<td>94,23%</td>
<td>2.255</td>
<td>3,10%</td>
<td>2.325</td>
</tr>
<tr>
<td>El Veñón</td>
<td>129</td>
<td>58,91%</td>
<td>205</td>
<td>102,93%</td>
<td>416</td>
<td>-9,13%</td>
<td>378</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>664</td>
<td>105,57%</td>
<td>1.365</td>
<td>89,38%</td>
<td>2.585</td>
<td>-25,88%</td>
<td>1.916</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>216</td>
<td>240,74%</td>
<td>736</td>
<td>64,40%</td>
<td>1.210</td>
<td>-35,29%</td>
<td>783</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>21</td>
<td>152,38%</td>
<td>53</td>
<td>96,23%</td>
<td>104</td>
<td>9,62%</td>
<td>114</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>1.600</td>
<td>87,31%</td>
<td>2.997</td>
<td>9,51%</td>
<td>3.282</td>
<td>10,30%</td>
<td>3.620</td>
</tr>
</tbody>
</table>

Como se aprecia en la tabla anterior, desde el año 2001, en los 7 municipios analizados se ha incrementado la población extranjera empadronada, si bien, este incremento se ha
ralentizado a lo largo de los años, llegando incluso a revertirse entre 2011 y 2020 en algunos municipios.

El incremento más significativo de población extranjera (240,74%) se produjo en el municipio de Torrelaguna, en el periodo comprendido entre 2001 y 2006, en el que se incrementó el número de extranjeros empadronados de 216 a 736.

Por su parte, salvo El Molar, Torremocha del Jarama y Tres Cantos, el resto de municipios han sufrido pérdida de población extranjera en el periodo comprendido entre 2011 y 2020. Corresponde a Torrelaguna la mayor disminución con un -35,29%, seguido de San Agustín de Guadalix con un -25,88%.

Tasa de migración por municipio

La estadística del movimiento migratorio de la Comunidad de Madrid aporta información detallada acerca de los flujos migratorios cuyo origen o destino sea la propia Comunidad, descendiendo hasta el nivel municipal. La información de base procede de los ficheros elaborados por el INE a partir de los boletines de variaciones residenciales, en los cuales se reflejan las altas y bajas en los padrones municipales.

En la tabla siguiente se muestra la tasa de migración, esto es, la relación entre las emigraciones registradas un año respecto a la población media de dicho año, de los municipios analizados, para el periodo comprendido entre 2015 y 2019:

Tabla 100. Tasa de migración por municipio. Instituto de Estadística de la Comunidad de Madrid, 2019.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Año 2015</th>
<th>Año 2016</th>
<th>Año 2017</th>
<th>Año 2018</th>
<th>Año 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>8,97</td>
<td>14,39</td>
<td>19,52</td>
<td>25,78</td>
<td>24,69</td>
</tr>
<tr>
<td>El Molar</td>
<td>-13,19</td>
<td>31,59</td>
<td>17,43</td>
<td>32,43</td>
<td>31,89</td>
</tr>
<tr>
<td>El Vellón</td>
<td>6,66</td>
<td>-14,63</td>
<td>48,53</td>
<td>9,78</td>
<td>23,49</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>6,32</td>
<td>16,17</td>
<td>15,65</td>
<td>6,03</td>
<td>3,21</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>-7,94</td>
<td>4,90</td>
<td>12,95</td>
<td>18,84</td>
<td>11,13</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>-40,08</td>
<td>58,50</td>
<td>58,39</td>
<td>83,08</td>
<td>78,51</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>27,55</td>
<td>24,91</td>
<td>10,62</td>
<td>16,24</td>
<td>9,35</td>
</tr>
</tbody>
</table>

Como se aprecia en la tabla anterior, en Torremocha del Jarama y en El Molar la tasa de migración en el año 2015 fue negativa, es decir, la población, en lugar de abandonar estos municipios, volvió a ellos. Por contra, el mayor movimiento migratorio de abandono de un municipio se produjo, de nuevo en Torremocha del Jarama, en el año 2018, cuando la tasa de migración alcanzó un valor de 83,08%.
5.10.2 Indicadores socioeconómicos

Para la elaboración de este apartado se han recopilado los siguientes datos de la población residente en los términos municipales analizados:

- Producto Interior Bruto (PIB)
- Tasa de paro
- Afiliados a la Seguridad Social
- Declaraciones del IRPF
- Esta información se ha obtenido de las siguientes fuentes:
 - Instituto Nacional de Estadística (INE)
 - Instituto de Estadística de la Comunidad de Madrid
 - Ministerio de Trabajo, Migraciones y Seguridad Social
 - Agencia Tributaria de España

PRODUCTO INTERIOR BRUTO (PIB)

El PIB municipal se estima a partir de un conjunto de indicadores directos e indirectos con información municipalizada para los distintos sectores de actividad, que permiten territorializar el valor añadido de cada rama, respetando en todo caso la coherencia del total regional.

Los indicadores utilizados se basan principalmente en el colectivo empresarial (Base 2015), que proporciona la información correspondiente al empleo regional, así como su distribución territorial y sectorial, y las ratios de productividad obtenidos a través de la Contabilidad Regional (Base 2013). En algunas ramas particulares los indicadores relativos al empleo sectorial, teniendo en cuenta las fuentes en que se basa, no resultan muy útiles para la estimación del PIB sectorial. En tal caso se encuentra el sector primario, que para su distribución municipal junto con estas fuentes se utilizan otro tipo de indicadores propios del sector.

Por su parte también tiene un tratamiento especial la rama de actividades inmobiliarias en lo que respecta a la valoración de las rentas generadas por los inmuebles propios (servicios de alquiler de las viviendas ocupadas por sus propietarios) donde se utilizan indicadores municipales sobre el volumen de viviendas y el precio medio de ellas.
Producto Interior Bruto por municipio

Tabla 101. PIB municipal (Miles de €). Instituto de Estadística de la Comunidad de Madrid, 2018.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>884.494</td>
<td>931.273</td>
<td>1.098.292</td>
<td>1.118.032</td>
<td>26,40%</td>
</tr>
<tr>
<td>El Molar</td>
<td>105.020</td>
<td>100.434</td>
<td>100.731</td>
<td>103.497</td>
<td>-1,45%</td>
</tr>
<tr>
<td>El Vellón</td>
<td>18.703</td>
<td>17.182</td>
<td>17.071</td>
<td>18.312</td>
<td>-2,09%</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>263.195</td>
<td>281.483</td>
<td>302.648</td>
<td>321.200</td>
<td>22,04%</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>71.223</td>
<td>67.055</td>
<td>60.723</td>
<td>64.004</td>
<td>-10,14%</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>24.718</td>
<td>21.117</td>
<td>22.576</td>
<td>31.880</td>
<td>28,97%</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>2.587.246</td>
<td>2.676.039</td>
<td>2.856.279</td>
<td>2.986.542</td>
<td>15,43%</td>
</tr>
</tbody>
</table>

Como muestra la tabla anterior, en el periodo comprendido entre 2015 y 2018 se ha incrementado el PIB en los municipios de Colmenar Viejo, San Agustín de Guadalix, Torremocha del Jarama y Tres Cantos, mientras que en el resto de municipios ha disminuido. El mayor incremento se produjo en el municipio de Torremocha del Jarama con un 28,97%.

Producto Interior Bruto municipal per cápita

Tabla 102. PIB municipal per cápita (€). Instituto de Estadística de la Comunidad de Madrid, 2018.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>18.581</td>
<td>19.393</td>
<td>22.592</td>
<td>22.587</td>
<td>21,56%</td>
</tr>
<tr>
<td>El Molar</td>
<td>13.069</td>
<td>12.155</td>
<td>11.863</td>
<td>11.943</td>
<td>-8,62%</td>
</tr>
<tr>
<td>El Vellón</td>
<td>10.373</td>
<td>9.308</td>
<td>9.308</td>
<td>9.429</td>
<td>-9,10%</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>20.274</td>
<td>21.885</td>
<td>23.098</td>
<td>24.200</td>
<td>19,36%</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>14.875</td>
<td>14.276</td>
<td>12.887</td>
<td>13.549</td>
<td>-8,91%</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>26.074</td>
<td>23.308</td>
<td>23.966</td>
<td>32.697</td>
<td>25,40%</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>59.739</td>
<td>59.781</td>
<td>62.031</td>
<td>63.883</td>
<td>6,94%</td>
</tr>
</tbody>
</table>

La evolución del PIB per cápita es irregular en los 7 municipios analizados. En el periodo analizado, la mayor variación positiva del PIB per cápita se produjo en Torremocha del Jarama, con un 25,40%. Por su parte, la mayor disminución de PIB se produjo en El Vellón, con un -9,10%.

4 Base 2015.
Distribución del Producto Interior Bruto municipal según ramas de actividad

Tabla 103. PIB municipal según ramas de actividad (%). Instituto de Estadística de la Comunidad de Madrid, 2018.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Agricultura y ganadería</th>
<th>Minería, industria y energía</th>
<th>Construcción</th>
<th>Servicios de distribución y hostelería</th>
<th>Servicios a empresas y financieros</th>
<th>Otros servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>1,06</td>
<td>18,66</td>
<td>7,04</td>
<td>24,13</td>
<td>22,16</td>
<td>26,95</td>
</tr>
<tr>
<td>El Molar</td>
<td>1,19</td>
<td>4,08</td>
<td>12,00</td>
<td>30,89</td>
<td>29,06</td>
<td>22,77</td>
</tr>
<tr>
<td>El Vellón</td>
<td>2,72</td>
<td>9,99</td>
<td>10,87</td>
<td>21,13</td>
<td>29,66</td>
<td>25,62</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>0,35</td>
<td>30,40</td>
<td>3,70</td>
<td>32,40</td>
<td>20,25</td>
<td>12,90</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>1,08</td>
<td>6,31</td>
<td>8,37</td>
<td>30,50</td>
<td>27,42</td>
<td>26,33</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>1,55</td>
<td>8,60</td>
<td>2,58</td>
<td>9,70</td>
<td>49,14</td>
<td>28,42</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>0,08</td>
<td>24,72</td>
<td>3,15</td>
<td>16,90</td>
<td>47,45</td>
<td>7,71</td>
</tr>
</tbody>
</table>

Generalmente, en los municipios analizados, los mayores porcentajes de PIB corresponden a las actividades de servicios, mientras que los menores corresponden a las actividades de agricultura y ganadería.

TASA DE PARO

Tasa de paro por municipio

La tasa de paro se ha analizado a partir de los datos del Instituto de Estadística de la Comunidad de Madrid, correspondientes al año 2020. Se ha diferenciado por grandes grupos de edad y por sexo:

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Paro total registrado en 2020 (nº de personas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>2.572</td>
</tr>
<tr>
<td>El Molar</td>
<td>506</td>
</tr>
<tr>
<td>El Vellón</td>
<td>132</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>527</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>255</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>37</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>1.618</td>
</tr>
</tbody>
</table>

Como muestra la tabla anterior, en el año 2020, el mayor número de parados correspondió al municipio de Colmenar Viejo.

5 Base 2015.
Evolución y variación de la tasa de paro por municipio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>1.192</td>
<td>182,05%</td>
<td>3.362</td>
<td>6,45%</td>
<td>3.579</td>
<td>-28,14%</td>
<td>2.572</td>
</tr>
<tr>
<td>El Molar</td>
<td>160</td>
<td>300,00%</td>
<td>640</td>
<td>14,38%</td>
<td>732</td>
<td>-30,87%</td>
<td>506</td>
</tr>
<tr>
<td>El Vellón</td>
<td>51</td>
<td>221,57%</td>
<td>164</td>
<td>11,59%</td>
<td>183</td>
<td>-27,87%</td>
<td>132</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>285</td>
<td>151,23%</td>
<td>716</td>
<td>14,53%</td>
<td>820</td>
<td>-35,73%</td>
<td>527</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>132</td>
<td>213,64%</td>
<td>414</td>
<td>-4,11%</td>
<td>397</td>
<td>-35,77%</td>
<td>255</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>22</td>
<td>140,91%</td>
<td>53</td>
<td>11,32%</td>
<td>59</td>
<td>-37,29%</td>
<td>37</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>949</td>
<td>89,46%</td>
<td>1.798</td>
<td>14,68%</td>
<td>2.062</td>
<td>-21,53%</td>
<td>1.618</td>
</tr>
</tbody>
</table>

Como se aprecia en la tabla anterior, desde el año 2006, en los 7 municipios analizados se ha incrementado la tasa de paro, si bien, este incremento se ha ralentizado a lo largo de los años, llegando incluso a revertirse en el periodo comprendido entre 2015 y 2020.

El incremento más significativo de población parada (300,00%) se produjo en El Molar, en el periodo comprendido entre 2006 y 2010.

Por su parte, como se ha comentado, en el periodo comprendido entre 2015 y 2020, en todos los municipios ha disminuido la tasa de paro, correspondiendo a Torremocha del Jarama la mayor disminución con un -37,29%.

AFILIADOS A LA SEGURIDAD SOCIAL

Afiliados a la Seguridad Social por municipio

En la tabla siguiente se muestra el número total de afiliados a la Seguridad Social en los municipios analizados, así como la variación de dicho número en el periodo 2015-2020:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>El Molar</td>
<td>2.628</td>
<td>2.821</td>
<td>2.951</td>
<td>3.127</td>
<td>3.264</td>
<td>3.386</td>
<td>28.84%</td>
</tr>
<tr>
<td>El Vellón</td>
<td>530</td>
<td>557</td>
<td>571</td>
<td>612</td>
<td>611</td>
<td>669</td>
<td>26.23%</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>4.516</td>
<td>4.743</td>
<td>4.880</td>
<td>5.109</td>
<td>5.382</td>
<td>5.534</td>
<td>22.54%</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>1.535</td>
<td>1.606</td>
<td>1.657</td>
<td>1.768</td>
<td>1.840</td>
<td>1.855</td>
<td>20.85%</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>222</td>
<td>222</td>
<td>238</td>
<td>246</td>
<td>258</td>
<td>274</td>
<td>23.42%</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>17.095</td>
<td>17.675</td>
<td>18.259</td>
<td>18.892</td>
<td>19.579</td>
<td>20.098</td>
<td>17.57%</td>
</tr>
</tbody>
</table>

Como se aprecia en la tabla anterior, desde el año 2015, en los 7 municipios analizados, se ha incrementado el número de afiliados a la Seguridad Social. El mayor incremento se produjo en El Molar, con un 28,84%, seguido de El Vellón, con un 26,23%.

Afiliados a la Seguridad Social por regímenes y municipio

Se muestra a continuación el número total de afiliados a la Seguridad Social por regímenes, en los municipios analizados.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>General</th>
<th>Carbón</th>
<th>Mar</th>
<th>Agrario</th>
<th>Empleados del hogar</th>
<th>Autónomos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>8.539</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>460</td>
<td>2.839</td>
</tr>
<tr>
<td>El Molar</td>
<td>659</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>32</td>
<td>527</td>
</tr>
<tr>
<td>El Vellón</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>119</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>2.930</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>184</td>
<td>1.001</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>454</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>253</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>193</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>33.786</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>786</td>
<td>2.482</td>
</tr>
</tbody>
</table>

El mayor número de afiliados a la Seguridad Social corresponde al régimen General, seguido del régimen de Autónomos. En ninguno de los municipios analizados hay afiliados a la Seguridad Social en el régimen del Carbón o del Mar.

Afiliados a la Seguridad Social por rama de actividad y municipio

Mediante los datos publicados por las fuentes citadas sobre el número de afiliados a la Seguridad Social, se puede analizar en qué sectores o ramas de actividad se ocupa la población de los municipios analizados:

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Agricultura y ganadería</th>
<th>Minería, industria y energía</th>
<th>Servicios de distribución y hostelería</th>
<th>Construcción</th>
<th>Servicios a empresas y financieros</th>
<th>Inmobiliarias</th>
<th>Otros servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colmenar Viejo</td>
<td>185</td>
<td>2.151</td>
<td>4.798</td>
<td>1.302</td>
<td>1.481</td>
<td>72</td>
<td>2.839</td>
</tr>
<tr>
<td>El Molar</td>
<td>27</td>
<td>71</td>
<td>475</td>
<td>171</td>
<td>171</td>
<td>23</td>
<td>307</td>
</tr>
<tr>
<td>El Vellón</td>
<td>11</td>
<td>7</td>
<td>60</td>
<td>29</td>
<td>33</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>San Agustín de Guadalix</td>
<td>14</td>
<td>1.233</td>
<td>1.227</td>
<td>213</td>
<td>706</td>
<td>38</td>
<td>726</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>20</td>
<td>22</td>
<td>331</td>
<td>104</td>
<td>71</td>
<td>4</td>
<td>177</td>
</tr>
<tr>
<td>Torremocha del Jarama</td>
<td>8</td>
<td>9</td>
<td>28</td>
<td>19</td>
<td>13</td>
<td>3</td>
<td>172</td>
</tr>
<tr>
<td>Tres Cantos</td>
<td>73</td>
<td>5.532</td>
<td>7.051</td>
<td>1.337</td>
<td>19.297</td>
<td>115</td>
<td>3.771</td>
</tr>
</tbody>
</table>

Como muestra la tabla anterior, las ramas de actividad con mayor número de trabajadores son las relacionadas con los servicios a empresas y financieros y de distribución y hostelería. Las actividades del sector primario (agricultura y ganadería) y las inmobiliarias, son los sectores con menor número de población empleada en los municipios analizados.

DECLARACIONES DEL IRPF

Declaraciones del IRPF por tramo base imponible

A continuación, se analiza el número de declaraciones de la renta realizadas en el año 2018 (cifras más actualizadas disponibles) clasificadas por cada uno de los tramos base imponible:

| Tramos base imponible (TBI): TBI1 <- 6.010,01 €; TBI2 6.010,01 - 12.020 €; TBI3 12.020,01 - 18.030 €; TBI4 18.030,01 - 21.035 €; TBI5 21.035,01 - 30.050,61 €; TBI6 30.035,62 - 60.101,21 €; TBI7 > 60.101,21 € |
|-------------------------|-------------------------|-----------------------------|--|--------------|-----------------------------------|---------------|-----------------|
| Municipio | TBI1 | TBI2 | TBI3 | TBI4 | TBI5 | TBI6 | TBI7 | Total |
|-------------------------|-------------------------|-----------------------------|--|--------------|-----------------------------------|---------------|-----------------|
| El Molar | 858 | 562 | 672 | 360 | 663 | 606 | 130 | 3.851 |
| El Vellón | 224 | 139 | 160 | 86 | 189 | 133 | 14 | 945 |
| San Agustín de Guadalix | 1.042 | 610 | 762 | 373 | 1.071 | 1.532 | 799 | 6.189 |
| Torrelaguna | 452 | 295 | 372 | 176 | 377 | 392 | 33 | 2.097 |
| Torremocha del Jarama | 76 | 48 | 44 | 33 | 81 | 96 | 14 | 392 |

Página 293
<table>
<thead>
<tr>
<th>Municipio</th>
<th>TBI1</th>
<th>TBI2</th>
<th>TBI3</th>
<th>TBI4</th>
<th>TBI5</th>
<th>TBI6</th>
<th>TBI7</th>
<th>Total</th>
</tr>
</thead>
</table>

5.11 MEDIO TERRITORIAL

5.11.1 Planeamiento urbanístico

Desde un punto de vista urbanístico, la instalación de las plantas solares fotovoltaicas afecta a suelos de la Comunidad de Madrid y, por lo tanto, a su marco regulatorio en relación con la ordenación del territorio y la actividad urbanística, además de ser de cumplimiento la legislación estatal vigente, el Texto refundido de la Ley de Suelo y Rehabilitación Urbana, de 30 de octubre de 2015.

En la Comunidad de Madrid es de aplicación la Ley del Suelo, de 17 de julio de 2001 (LS 01). Las plantas se ubican términos municipales cuya actividad urbanística viene a su vez regulada por el planeamiento general correspondiente:

Los elementos de proyecto se ubican en términos municipales cuya actividad urbanística viene a su vez regulada por el planeamiento general correspondiente:

Tabla 110 Planeamiento urbanístico vigente en los municipios donde se implantarán los elementos de proyecto.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Planeamiento de aplicación</th>
<th>Fecha de aprobacion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TORREMOCHA DE JARAMA</td>
<td>Normas Subsidiarias de Planeamiento Municipal.</td>
<td>26 de junio de 1997</td>
</tr>
<tr>
<td>TORRELAGUNA</td>
<td>Normas Subsidiarias de Planeamiento Municipal.</td>
<td>10 de noviembre de 1994</td>
</tr>
<tr>
<td>EL VELLÓN</td>
<td>Normas Subsidiarias de Planeamiento Municipal.</td>
<td>13 de noviembre de 1976</td>
</tr>
<tr>
<td>EL MOLAR</td>
<td>Normas Subsidiarias de Planeamiento Municipal.</td>
<td>1 de agosto de 2002</td>
</tr>
<tr>
<td>SAN AGUSTÍN DE GUADALIX</td>
<td>Normas Subsidiarias de Planeamiento Municipal.</td>
<td>3 de junio de 1999</td>
</tr>
<tr>
<td>COLMENAR VIEJO</td>
<td>Plan General de Ordenación Urbana y Catálogo de Bienes a proteger</td>
<td>5 de julio de 2002</td>
</tr>
<tr>
<td>TRES CANTOS</td>
<td>Plan General de Ordenación Urbana</td>
<td>5 de julio de 2003</td>
</tr>
</tbody>
</table>

La clasificación de los suelos afectados del tramo de línea aérea es la de suelo no urbanizable en sus categorías de común y de suelos con algún régimen urbanístico de protección, compatible en todo caso con las infraestructuras e instalaciones previstas. Los suelos urbanos o urbanizables se proyectan en soterrado.
5.11.2 Montes de régimen especial

Según la Ley 16/1995, de 4 de mayo, Forestal y de Protección de la Naturaleza de la Comunidad de Madrid, son montes sujetos a régimen especial los declarados de Utilidad Pública, los Protectores, los Protegidos y los Preservados. El resto de los montes, cualquiera que sea su titularidad, se consideran sometidos a régimen general.

Montes de utilidad pública:

El ámbito de estudio incluye los siguientes Montes de Utilidad Pública de encinares arbóreos con pastos, retamares con manchas de pastos, eriales y encina; eriales con matorral, vegetación de ribera, cultivos de regadío en grandes vegas; y vegetación de ribera, choperas, olmedales y especies freatófitas en masa, cultivos de secano y regadíos en grandes vegas.

Tabla 111 Montes de Utilidad Pública presentes en el ámbito de estudio

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Denominación</th>
<th>Superficie total (ha)</th>
<th>Superficie dentro del ámbito (ha)</th>
<th>Deslin.</th>
<th>Amoj.</th>
<th>Incorporación al Catálogo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madrid</td>
<td>El Pardo</td>
<td>15.675,29</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>1932</td>
</tr>
<tr>
<td>Valdetorres de Jarama</td>
<td>Ribera del río Jarama en el término de Valdetorres</td>
<td>45,93</td>
<td>25</td>
<td>No</td>
<td>No</td>
<td>1960</td>
</tr>
<tr>
<td>El Molar</td>
<td>Ribera del río Jarama en el término de El Molar</td>
<td>49,08</td>
<td>22</td>
<td>No</td>
<td>No</td>
<td>1960</td>
</tr>
</tbody>
</table>

Ninguno de ellos resultaría coincidente con los elementos de proyecto.

Montes Protectores:

Como recoge la página web de la Comunidad de Madrid, en la actualidad, no existen montes de este tipo en su territorio.

Montes Protegidos:

Son los montes o terrenos forestales, cualquiera que sea su titularidad y régimen jurídico-administrativo, que constituyan o formen parte de Espacios Naturales Protegidos, regulados por lo dispuesto expresamente en sus normas de declaración y por los instrumentos de planificación, uso y gestión aprobados en desarrollo de las mismas.

La presencia de terrenos con esta clasificación se ha analizado en el capítulo 5.9 Espacios Naturales Protegidos.
Montes Preservados:

El ámbito de estudio incluye una superficie de 824 Ha de Monte Preservado de masas arbóreas, arbustivas u subarbustivas de encinar, alcornoque, enebro, sabino, coscojón y quejigal.

Dichas masas se distribuyen en el conjunto del ámbito de estudio, y no serían coincidentes con los elementos de proyecto.

5.11.3 Cotos de caza

Los cotos o terrenos acotados son terrenos contiguos susceptibles de aprovechamiento cinegético que hayan sido declarados como tal por resolución del Órgano competente. Actualmente en la Comunidad de Madrid solo hay cotos privados, de caza mayor y/o caza menor y menor de pelo.

En la siguiente tabla se recogen los cotos de caza presentes en el ámbito de estudio, representados en la figura incluida a continuación:

6 https://www.comunidad.madrid/servicios/urbanismo-medio-ambiente/cotos-caza
<table>
<thead>
<tr>
<th>Matrícula</th>
<th>Denominación</th>
<th>Tipo aprovechamiento</th>
<th>Superficie total (ha)</th>
<th>Superficie dentro del ámbito (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-00001</td>
<td>EL PARDO</td>
<td>MAYOR Y MENOR</td>
<td>14501</td>
<td>0,1</td>
</tr>
<tr>
<td>M-10910</td>
<td>MONTE VIEJO</td>
<td>MENOR DE PELO</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>M-10108</td>
<td>LOS BARRANCOS</td>
<td>MENOR DE PELO</td>
<td>141</td>
<td>141</td>
</tr>
<tr>
<td>M-10912</td>
<td>VALDELAGUA</td>
<td>MENOR DE PELO</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>M-10220</td>
<td>PUEBLAS ALTAS</td>
<td>MENOR</td>
<td>482</td>
<td>86</td>
</tr>
<tr>
<td>M-10065</td>
<td>LAS PUEBLAS</td>
<td>MENOR</td>
<td>241</td>
<td>7</td>
</tr>
<tr>
<td>M-10086</td>
<td>PEDREZUELA</td>
<td>MAYOR Y MENOR</td>
<td>2305</td>
<td>0,05</td>
</tr>
<tr>
<td>M-10001</td>
<td>CASTILLO DE VIOUELAS</td>
<td>MAYOR Y MENOR COMERCIAL</td>
<td>3075</td>
<td>75</td>
</tr>
<tr>
<td>M-10556</td>
<td>LAS BECERRAS</td>
<td>MENOR DE PELO</td>
<td>34</td>
<td>5</td>
</tr>
<tr>
<td>M-10904</td>
<td>CERRO DEL AGUILA</td>
<td>MENOR</td>
<td>1739</td>
<td>1232</td>
</tr>
<tr>
<td>M-10913</td>
<td>LA CAMORCHA</td>
<td>MENOR DE PELO</td>
<td>44</td>
<td>0,004</td>
</tr>
<tr>
<td>M-10298</td>
<td>VALDEPIELAGOS</td>
<td>MENOR</td>
<td>1366</td>
<td>59</td>
</tr>
<tr>
<td>M-10969</td>
<td>VENCOSILLA</td>
<td>MENOR DE PELO</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>M-10299</td>
<td>TALAMANCA</td>
<td>MENOR</td>
<td>2070</td>
<td>181</td>
</tr>
<tr>
<td>M-10560</td>
<td>LAS BECERRAS</td>
<td>MENOR</td>
<td>254</td>
<td>250</td>
</tr>
<tr>
<td>M-10180</td>
<td>LAS BECERRAS</td>
<td>MENOR DE PELO</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>M-10453</td>
<td>BALCON DE MADRID</td>
<td>MENOR DE PELO</td>
<td>107</td>
<td>27</td>
</tr>
<tr>
<td>M-10004</td>
<td>ALDEHUELA VIEJA</td>
<td>MENOR</td>
<td>403</td>
<td>403</td>
</tr>
<tr>
<td>M-10005</td>
<td>EL VELLON</td>
<td>MENOR</td>
<td>273</td>
<td>273</td>
</tr>
<tr>
<td>M-10616</td>
<td>LA ATALAYA</td>
<td>MAYOR Y MENOR</td>
<td>2996</td>
<td>1820</td>
</tr>
<tr>
<td>M-10433</td>
<td>CABEZA CANA</td>
<td>MENOR</td>
<td>1590</td>
<td>1271</td>
</tr>
<tr>
<td>M-11022</td>
<td>VALFONDO</td>
<td>MENOR DE PELO</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>M-10790</td>
<td>SAN ISIDRO</td>
<td>MAYOR Y MENOR</td>
<td>3400</td>
<td>1227</td>
</tr>
<tr>
<td>Matrícula</td>
<td>Denominación</td>
<td>Tipo aprovechamiento</td>
<td>Superficie total (ha)</td>
<td>Superficie dentro del ámbito (ha)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>M-10842</td>
<td>TORREMOCHA DEL JARAMA MENOR</td>
<td></td>
<td>1423</td>
<td>873</td>
</tr>
<tr>
<td>M-10003</td>
<td>CASA OFICIOS MENOR</td>
<td></td>
<td>286</td>
<td>282</td>
</tr>
<tr>
<td>M-10693</td>
<td>EL SEVILLANO MENOR</td>
<td></td>
<td>1483</td>
<td>136</td>
</tr>
<tr>
<td>M-10781</td>
<td>LAS CARRIZOSAS MAYOR Y MENOR</td>
<td></td>
<td>1076</td>
<td>882</td>
</tr>
<tr>
<td>M-10774</td>
<td>LA ENCINILLA MENOR</td>
<td></td>
<td>504</td>
<td>362</td>
</tr>
<tr>
<td>M-11002</td>
<td>LOS TINTOS MENOR DE PELO</td>
<td></td>
<td>170</td>
<td>5</td>
</tr>
<tr>
<td>M-10667</td>
<td>RIBATORRES MENOR</td>
<td></td>
<td>2630</td>
<td>2</td>
</tr>
<tr>
<td>M-10090</td>
<td>VALDEGOINO MENOR</td>
<td></td>
<td>487</td>
<td>256</td>
</tr>
<tr>
<td>M-10066</td>
<td>LOS PARRALES MENOR DE PELO</td>
<td></td>
<td>187</td>
<td>137</td>
</tr>
<tr>
<td>M-10248</td>
<td>SALOMON MENOR DE PELO</td>
<td></td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>M-10670</td>
<td>EL MOLAR MAYOR Y MENOR</td>
<td></td>
<td>4280</td>
<td>3433</td>
</tr>
</tbody>
</table>

Por su parte, en el ámbito de estudio no hay cotos de caza controlada.\(^7\)

\(^7\) Terrenos de aprovechamiento común que, por razones de protección, fomento, conservación y ordenado aprovechamiento de la riqueza cinegética, el control y regulación de la caza, está encomendado a la Administración competente directamente o a la sociedad de cazadores colaboradora.
5.11.4 Vías pecuarias

De acuerdo con el inventario de vías pecuarias de la Comunidad de Madrid, por el ámbito de estudio discurren las siguientes vías pecuarias:

Tabla 113 Vías pecuarias presentes en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Código</th>
<th>Denominación</th>
<th>Municipios*</th>
<th>Long. total (m)</th>
<th>Anchura (m)</th>
<th>Superficie ámbito (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2816805</td>
<td>Colada del Calvario</td>
<td>EL VELLÓN</td>
<td>4.500</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>280450H</td>
<td>Descansadero Salto del Lobo</td>
<td>COLMENAR VIEJO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2804502</td>
<td>Cordel de Valdeloshielos</td>
<td>COLMENAR VIEJO, TRES CANTOS</td>
<td>9.500</td>
<td>37.5</td>
<td>26</td>
</tr>
<tr>
<td>2812908</td>
<td>Colada de las Huelgas del Río Guadalix</td>
<td>SAN AGUSTÍN DE GUADALIX</td>
<td>7.000</td>
<td>variable</td>
<td>28</td>
</tr>
<tr>
<td>2808604</td>
<td>Colada de la Huelga del Taral</td>
<td>EL MOLAR</td>
<td>1.000</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>2816810</td>
<td>Descansadero Zorita</td>
<td>EL VELLÓN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281290A</td>
<td>Descansadero de El Tejar</td>
<td>SAN AGUSTÍN DE GUADALIX</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2804505</td>
<td>Vereda y Descansadero del Acércal</td>
<td>TRES CANTOS</td>
<td>1.000</td>
<td>variable</td>
<td>2</td>
</tr>
<tr>
<td>2816804</td>
<td>Colada de la Malacuera</td>
<td>EL VELLÓN</td>
<td>9.000</td>
<td>variable</td>
<td>21</td>
</tr>
<tr>
<td>280450E</td>
<td>Descansadero de Majada de las Vacas</td>
<td>COLMENAR VIEJO</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Figura 95 Cotos de caza presentes en el ámbito de estudio. Fuente: Infraestructuras de Datos Espaciales de la Comunidad de Madrid (IDEM)
<table>
<thead>
<tr>
<th>Código</th>
<th>Denominación</th>
<th>Municipios*</th>
<th>Long. total (m)</th>
<th>Anchura (m)</th>
<th>Superficie ámbito (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2815105</td>
<td>Colada del Camino de Madrid</td>
<td>TORRELAGUNA</td>
<td>4.000</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>2804504</td>
<td>Paso de Ganados del Agua de la Dehesa</td>
<td>COLMENAR VIEJO</td>
<td>2.000</td>
<td>20-80</td>
<td>0,016</td>
</tr>
<tr>
<td>2804520</td>
<td>Cordel de Valdemilanos y la Vinataea</td>
<td>COLMENAR VIEJO</td>
<td>8.000</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>2814506</td>
<td>Colada del Camino de Torrelaguna</td>
<td>TALAMANCA DE JARAMA</td>
<td>2.500</td>
<td>variable</td>
<td>0,3</td>
</tr>
<tr>
<td>2815303</td>
<td>Colada a la F brica</td>
<td>TORREMOCHA DE JARAMA</td>
<td>1.700</td>
<td>4 a 10</td>
<td>1</td>
</tr>
<tr>
<td>2812902</td>
<td>Vereda del Monte de Moncalvillo</td>
<td>SAN AGUSTÍN DE GUADALIX</td>
<td>2.500</td>
<td>20,75</td>
<td>0,018</td>
</tr>
<tr>
<td>2815106</td>
<td>Colada de Alfaro o del Paolo</td>
<td>TORRELAGUNA</td>
<td>12.000</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2816811</td>
<td>Descansadero Pea del Correjo</td>
<td>EL VELLÓN</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2814501</td>
<td>Colada del Camino Real de Madrid y de los Ordinarios</td>
<td>TALAMANCA DE JARAMA</td>
<td>3.800</td>
<td>4,16</td>
<td>0,22</td>
</tr>
<tr>
<td>2815104</td>
<td>Colada del Rebollosos</td>
<td>TORRELAGUNA</td>
<td>5.000</td>
<td>29,26</td>
<td>11</td>
</tr>
<tr>
<td>2804524</td>
<td>Cordel de Doana</td>
<td>TRES CANTOS</td>
<td>3.000</td>
<td>37,5</td>
<td>2</td>
</tr>
<tr>
<td>280450T</td>
<td>Descansadero Turcal de San Jorge</td>
<td>TRES CANTOS</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2808601</td>
<td>Colada del Camino de Velazquez</td>
<td>EL MOLAR</td>
<td>5.600</td>
<td>18,38</td>
<td>8</td>
</tr>
<tr>
<td>2804514</td>
<td>Cordel de las Carreteras de Miraflores y Madrid</td>
<td>COLMENAR VIEJO, TRES CANTOS</td>
<td>14.000</td>
<td>37,5</td>
<td>42</td>
</tr>
<tr>
<td>2808603</td>
<td>Colada del Cerro, Castilla o Caada de Segoviela</td>
<td>EL MOLAR</td>
<td>7.200</td>
<td>18,38</td>
<td>20</td>
</tr>
<tr>
<td>2816807</td>
<td>Colada del Camino de Madrid</td>
<td>EL VELLÓN</td>
<td>3.000</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>2808605</td>
<td>Portillo de Lengo</td>
<td>EL MOLAR</td>
<td>4.500</td>
<td>18,38</td>
<td>19</td>
</tr>
<tr>
<td>2816801</td>
<td>Cordel de las Quintas</td>
<td>EL VELLÓN</td>
<td>2.800</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>2804503</td>
<td>Colada de las Huelgas del Arroyo Tejada</td>
<td>COLMENAR VIEJO, TRES CANTOS</td>
<td>8.000</td>
<td>20 a 80</td>
<td>54</td>
</tr>
<tr>
<td>2816808</td>
<td>Colada del Rebollosos</td>
<td>EL VELLÓN</td>
<td>300</td>
<td>29,26</td>
<td>1</td>
</tr>
<tr>
<td>2812904</td>
<td>Colada de las Huelgas del Arroyo de Colmenar</td>
<td>SAN AGUSTÍN DEL GUADALIX</td>
<td>4.000</td>
<td>variable</td>
<td>17</td>
</tr>
<tr>
<td>2815302</td>
<td>Colada de Araguz</td>
<td>TORREMOCHA DE JARAMA</td>
<td>4.000</td>
<td>4 a 12</td>
<td>5</td>
</tr>
<tr>
<td>280450G</td>
<td>Descansadero de la Parrilla</td>
<td>COLMENAR VIEJO</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2814507</td>
<td>Colada de las Huelgas</td>
<td>TALAMANCA DE JARAMA</td>
<td>4.000</td>
<td>variable</td>
<td>4</td>
</tr>
<tr>
<td>2812909</td>
<td>Descansadero-Abrevadero del Ardal</td>
<td>SAN AGUSTÍN DEL GUADALIX</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2816405</td>
<td>Colada de Maroto</td>
<td>VALDETORRES DE JARAMA</td>
<td>6.300</td>
<td>17 a 80</td>
<td>0,09</td>
</tr>
<tr>
<td>2816806</td>
<td>Colada del Valladar</td>
<td>EL VELLÓN</td>
<td>2.000</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>2804513</td>
<td>Cordel de Valdepuebro</td>
<td>COLMENAR VIEJO</td>
<td>6.000</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>281290B</td>
<td>Descansadero Eras de Arriba</td>
<td>SAN AGUSTÍN DEL GUADALIX</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2808602</td>
<td>Huelga de Perilissen</td>
<td>EL MOLAR</td>
<td>500</td>
<td>20,89</td>
<td>0,18</td>
</tr>
<tr>
<td>Código</td>
<td>Denominación</td>
<td>Municipios*</td>
<td>Longitud total (m)</td>
<td>Anchura (m)</td>
<td>Superficie ámbito (Ha)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2804501</td>
<td>Vereda de las Tapias de Vi TRES CANTOS</td>
<td>COLMENAR VIEJO</td>
<td>20.900</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>2814502</td>
<td>Cañada de la Dehesa</td>
<td>TALAMANCA DE JARAMA</td>
<td>2.500</td>
<td>variable</td>
<td>2</td>
</tr>
<tr>
<td>2812907</td>
<td>Colada de las Huelgas del Arroyo de la Fresnera</td>
<td>SAN AGUSTIN DE GUADALIX</td>
<td>4.500</td>
<td>variable</td>
<td>34</td>
</tr>
<tr>
<td>2815108</td>
<td>Colada del Arroyo de Matachivos</td>
<td>TORRELAGUNA</td>
<td>2.500</td>
<td>6 a 13</td>
<td>1</td>
</tr>
<tr>
<td>2812901</td>
<td>Vereda de Valdelagua o del Camino Ancho</td>
<td>SAN AGUSTIN DE GUADALIX</td>
<td>3.000</td>
<td>16,72</td>
<td>6</td>
</tr>
</tbody>
</table>

*Municipios incluidos dentro del ámbito de estudio por los que discurre la vía pecuaria.

La superficie de vías pecuarias en el interior del ámbito es de, aproximadamente, 403,824 Ha.

Las vías pecuarias coincidentes con el proyecto serían:

- Colada del Camino de Madrid
- Colada de la Malacerda
- Colada del Calvario
- Colada del Camino del Vel
- Colada del Cerro
- Portillo de Lengo
- Colada de las Huelgas del Río Guadalix
- Vereda de Valdelagua o del Camino Ancho
- Colada de las Huelgas del Arroyo de la Fresnera
- Vereda de las Tapias de Ví
- Cordel de Valdemilanes y la Vinatea
- Cordel de las carreteras de Miraflores y Madrid
- Colada de las Huelgas del Arroyo Tejeda
- Cordel de la Dozana
5.11.5 Derechos mineros

Considerando la información aportada por el portal “CATASTRO MINERO” del Ministerio para la Transición Ecológica (MITECO)\(^8\), en el ámbito de estudio no hay derechos mineros en cualquier situación administrativa.

\(^8\) https://geoportal.minetur.gob.es/CatastroMinero
Figura 97 Localización de los derechos mineros más cercanos al ámbito de estudio. Fuente: MITERD

5.11.6 Infraestructuras y servicios

Se analiza a continuación la presencia de las siguientes infraestructuras y servicios en el ámbito de estudio:

- Infraestructuras viarias
- Infraestructuras ferroviarias
- Infraestructuras eléctricas
- Gasoductos
- Oleoductos
- Conducciones de agua

Infraestructuras viarias:

Dentro del ámbito de estudio se han identificado las siguientes infraestructuras viarias:

A-1, N-320, M-129, M-122, M-607
Todas ellas resultarían interceptadas en algún punto por la L/132kV GR Colimbo – Colectora la Cereal.

infraestructuras ferroviarias:

Por el ámbito discurre el trazado de la línea de alta velocidad Madrid-Segovia-Valladolid, en un tramo de 9,5 km, y el trazado de una línea de ferrocarril convencional en un tramo de 10,8 km. Ambas infraestructuras serían interceptadas por la L/132kV GR Colimbo – Colectora la
Figura 99 Infraestructuras viañas presentes en el ámbito. Fuente: CNIG.

Infraestructuras eléctricas:

Según la información cartográfica del Centro Nacional de Información Geográfica, por el ámbito de estudio discurren cuatro líneas eléctricas de alta tensión, tres de ellas de 220kV depotencia, y la cuarta de 400kV de potencia.
La L/132kV GR Colimbo – Colectora la Cereal, interceptaría dos de las L/220kV existentes.

Una de las interceptaciones se daría, además, en un punto en el que las dos infraestructuras existentes se localizan a pocos metros la una de la otra, sobre terreno con pendiente.
Gasoductos:

Por el ámbito de estudio discurren aproximadamente 4 y 5 km de dos gasoductos, que resultarían interceptados por la L/132kV GR Colimbo – Colectora la Cereal, en su parte norte y sur.

![Figura 102 Trazado de gasoductos que discurren por el ámbito de estudio. Fuente: CNIG](image)

5.11.7 Servidumbres aeronáuticas

El análisis de las servidumbres aeronáuticas civiles de España se ha realizado a partir de la información aportada por la Agencia Estatal de Seguridad Aérea (AESA. Ministerio de Fomento), donde se delimitan las zonas en las que se requiere informe previo favorable de la Agencia Estatal de Seguridad Aérea, de acuerdo a lo establecido en el Decreto 584/1972, de Servidumbres Aeronáuticas, así como mediante análisis de ortofoto.

El ámbito de estudio se ve afectado por las servidumbres aeronáuticas correspondientes a un helipuerto, situado al norte de la L/400kV Colectora la Cereal – La Cereal REE, el campo de ultraligeros de El Molar y el Aeropuerto Adolfo Suárez Madrid- Barajas, que afectan a la traza de la L/132kV GR Colimbo – Colectora la Cereal entre su P.K. 18 y P.K. 21.
5.12 PAISAJE

5.12.1 Alcance y metodología

El análisis del Paisaje tiene por objeto evaluar la incidencia visual de las actuaciones necesarias para la ejecución del proyecto que nos ocupa sobre la calidad paisajística de la zona afectada, y en su caso, habilitar las medidas de protección, restauración y rehabilitación pertinentes.

El análisis de Paisaje se centra en una caracterización del paisaje, definiendo las unidades que lo conforman, identificando los elementos paisajísticos en el ámbito de estudio y realizando una valoración de su incidencia visual que determine las interferencias que se dan entre el paisaje caracterizado y la actuación prevista.

Tomando como referencia el sentido territorial que sobre la cuestión paisajística se asume desde el Convenio Europeo del Paisaje (CEP, Consejo de Europa, 2000), la idea aportada de que todo territorio es paisaje, independientemente de su calidad y del aprecio social que merezca, unido a la definición de «paisaje» incorporada por el CEP como “cualquier parte del territorio, tal y como lo percibe la población, cuyo carácter sea el resultado de la acción y la interacción de factores naturales y/o humanos”, obliga a motivar cualquier estudio de esta variable bajo tres principios fundamentales: territorio, percepción y carácter.
El análisis de la incidencia paisajística que puede derivarse de la actuación que nos ocupa, se basa en un procedimiento metodológico acorde con los principios y conceptos aportados por el Convenio Europeo de Paisaje y con las propuestas metodológicas derivadas de la metodología de Evaluación del Carácter del Paisaje o LCA por su acrónimo inglés (Landscape Character Assessment)9 y la Guía para la Evaluación del Impacto Visual y Paisajístico (GLVIA3, Guidelines for Landscape and Visual Impact Assessment)10.

Estos instrumentos, que gozan de gran reconocimiento internacional y prestigio académico, han servido de marco de referencia teórica y práctica, mediante una aplicación de sus conceptos y principios de análisis e intervención, y a los que se suman aportaciones de otras corrientes o enfoques, así como otras ideas basadas en la experiencia adquirida.

Se da así cumplimiento a la Ley 21/2013, de evaluación ambiental en lo relativo a la inclusión del paisaje como un aspecto ambiental que puede verse afectado por una actuación proyectada. A este respecto, hay que observar que la variable paisaje ya ha sido tenida en cuenta en la selección, tanto de pasillos y localización de emplazamientos viables para PSFVs y subestaciones como para la traza viable sobre la que se ha diseñado el trazado definitivo de proyecto.

5.12.2 Identificación de ámbitos paisajísticos

Atendiendo a la información proporcionada por el documento «ANÁLISIS, DIAGNÓSTICO Y EVALUACIÓN DE LA CALIDAD DEL PAISAJE DE LA COMUNIDAD DE MADRID PARA EL ESTABLECIMIENTO DE CRITERIOS DE PROTECCIÓN Y ORDENACIÓN DEL TERRITORIO» publicado por la Dirección General de Urbanismo y Planificación Territorial de la Consejería de Medio Ambiente y Ordenación del Territorio en 2006, en el ámbito de estudio se identifican un total de 17 “unidades de paisaje” que se agrupan en 10 “grandes conjuntos paisajísticos”, es decir, agrupaciones de teselas de paisaje similares en su estructura y organización y que expresan, de manera sintética, la diversidad de los grandes conjuntos paisajísticos de la región, y que se construyen por agrupación de las propias unidades de paisaje.

10 Landscape Institute, Institute of Environmental Management & Assessment (IEMA), dirigido por Carys Swanwick, Universidad de Sheffield (2013).
Según se detalla en el citado documento, para la caracterización paisajística se ha procedido, en primer lugar, a identificar y cartografiar las denominadas "subunidades de paisaje", es decir, las configuraciones básicas de la diversidad del paisaje de la Comunidad de Madrid a la escala adoptada (1:50.000). En esta tarea se ha atendido prioritariamente a los principales elementos estructurantes del paisaje y, en un segundo plano, a consideraciones de tipo perceptivo en relación con las cuencas visuales.

Por su parte, la identificación y caracterización de los “unidades de paisaje” contempla las agrupaciones de ámbitos de paisaje similares en su estructura y organización y que expresan, de manera sintética, la diversidad de los grandes conjuntos paisajísticos de la región.

Finalmente, y al objeto de permitir un tratamiento conjunto, en relación con los criterios para la ordenación y gestión del paisaje, los tipos de paisaje han sido agrupados en “grandes conjuntos paisajísticos (GCP)” en los que se reconoce la afinidad de carácter necesaria para ello.

En concreto, los 10 “grandes conjuntos paisajísticos” presentes en el ámbito de estudio se distribuyen del siguiente modo, de menor a mayor extensión:
Tabla 114. Identificación de Grandes Conjuntos Paisajísticos

<table>
<thead>
<tr>
<th>Grandes Conjuntos Paisajísticos</th>
<th>Superficie (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campiñas</td>
<td>20.729</td>
</tr>
<tr>
<td>Páramos y llanos</td>
<td>15.762</td>
</tr>
<tr>
<td>Dehesas y montes de la cuenca sedimentaria</td>
<td>13.224</td>
</tr>
<tr>
<td>Navas y piedemontes</td>
<td>12.468</td>
</tr>
<tr>
<td>Sierras, cerros y vertientes serranas</td>
<td>9.047</td>
</tr>
<tr>
<td>Núcleos y conurbaciones urbanas</td>
<td>7.334</td>
</tr>
<tr>
<td>Encinares y dehesas serranos</td>
<td>6.157</td>
</tr>
<tr>
<td>Cuestas, taludes y escarpes de la cuenca sedimentaria</td>
<td>5.829</td>
</tr>
<tr>
<td>Gargantas</td>
<td>2.459</td>
</tr>
<tr>
<td>Vegas y véguillas</td>
<td>93</td>
</tr>
</tbody>
</table>

5.12.3 Identificación de las unidades de paisaje

Atendiendo a la clasificación antes expuesta, a continuación, se describen las unidades de paisaje presentes en el ámbito de trabajo, expresadas en orden de menor a mayor extensión:

![Figura 105. Delimitación de las Unidades de Paisaje sobre el ámbito de estudio. Fuente: Consejería de Medio Ambiente y Ordenación del Territorio de la Comunidad de Madrid. Elaboración propia.](image_url)

Tabla 115. Identificación de unidades de Paisaje

<table>
<thead>
<tr>
<th>Unidades de paisaje</th>
<th>Superficie (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campiñas minifundistas de la margen derecha del Jarama</td>
<td>15.037</td>
</tr>
</tbody>
</table>

Página 311
Unidades de paisaje

<table>
<thead>
<tr>
<th>Unidad de Paisaje</th>
<th>Superficie (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llanos escalonados de las márgenes del Jarama Medio</td>
<td>14.009</td>
</tr>
<tr>
<td>Dehesas montes y pastaderos de la cuenca sedimentaria</td>
<td>13.224</td>
</tr>
<tr>
<td>Pastizales de Colmenar - El Vellón</td>
<td>8.756</td>
</tr>
<tr>
<td>Núcleos y conurbaciones urbanas</td>
<td>7.334</td>
</tr>
<tr>
<td>Cerros y sierras del piedemonte del Atazar</td>
<td>5.869</td>
</tr>
<tr>
<td>Campiñas del Jarama - Henares</td>
<td>5.692</td>
</tr>
<tr>
<td>Escarpes de San Agustín - Torrelaguna</td>
<td>4.934</td>
</tr>
<tr>
<td>Dehesas del piedemonte</td>
<td>4.646</td>
</tr>
<tr>
<td>Piedemontes graníticos de La Cabrera - Lozoyuela</td>
<td>3.712</td>
</tr>
<tr>
<td>Gargantas del piedemonte</td>
<td>2.459</td>
</tr>
<tr>
<td>Páramo de Uceda</td>
<td>1.753</td>
</tr>
<tr>
<td>Encinares del escarpe del piedemonte</td>
<td>1.511</td>
</tr>
<tr>
<td>Sierras y valles de la Sierra de Guadarrama</td>
<td>955</td>
</tr>
<tr>
<td>Cuestas y taludes del Jarama Medio</td>
<td>895</td>
</tr>
<tr>
<td>Jarama Medio</td>
<td>93</td>
</tr>
</tbody>
</table>

5.12.4 Intervisibilidad general

El concepto de perceptibilidad tiene que ver con la accesibilidad visual de un punto del territorio desde el resto de puntos de su entorno. Se trata, por tanto, de una medida de lo visible o no que puede ser un territorio con independencia de la actuación que se quiera llevar a cabo en él.

Para el cálculo de la intervisibilidad general partimos del MDT-5m, al que añadimos capas de vegetación de porte arbóreo y edificaciones con sus respectivas alturas al objeto de modelizar el posible efecto pantalla de estos elementos. Una vez generado el nuevo modelo digital, establecemos sobre él una malla de puntos regular de 400 x 400 metros que representa la distribución de potenciales observadores sobre el territorio y que supone una densidad de unos 16 observadores por km². Los parámetros utilizados para dicho análisis tienen en cuenta una altura media de observador de 1,80 metros y la del objeto observado de 40 metros (altura común de un apoyo) y un radio máximo de alcance de la visión de 5 Km.

En los modelos de testeo realizados, se observa que el método utilizado es estable y convergente ya que, a pesar de que el número de posibles observadores es infinito, cabría pensar que a mayor densidad de malla, el resultado sería más óptimo; si bien esto es cierto, sucede que a partir de una determinada densidad, que será función de la superficie del ámbito, el número de observadores medido guarda una razón de proporcionalidad al tamaño de malla, por lo que la imagen real de la intervisibilidad no varía. De este modo, la intervisibilidad del ámbito de actuación es la siguiente:

Página 312
Como puede observarse, el mapa de intervisibilidad general presenta la mayor visibilidad en la zona de Llanos escalonados del Jarama ubicadas entre el núcleo de Tálibanca de Jarama y Fuente el Saz de Jarama.

5.12.5 Análisis de la calidad paisajística del ámbito de estudio

El análisis de la calidad paisajística del ámbito de estudio se ha realizado a partir de dos fuentes de información complementarias: las capas de información cartográfica relativas a la calidad y fragilidad visual del paisaje de la Comunidad de Madrid y una diagnosis de elaboración propia, realizada a partir del trabajo de campo y gabinete sobre aquellos aspectos que cualifican (o descualifican) las unidades de paisaje presentes (elementos significativos de carácter natural y antrópico, extensión relativa en la escena, representatividad en el paisaje alcarreño, consumo perceptivo, presencia de elementos distorsionantes…).

A partir de estas dos fuentes la calidad paisajística del ámbito de actuación se desarrolla en dos escalas; en primer lugar, se valora la calidad del paisaje de cada una de las unidades de paisaje presentes en el ámbito de estudio en relación a los siguientes factores:

- La extensión relativa de cada una de ellas en el ámbito de estudio
- La mayor o menor presencia de elementos significativos de carácter natural y/o antrópico en cada unidad.
- La representatividad de la unidad de paisaje en relación con los rasgos identitarios de esta comarca del sureste de Madrid de paisajes en transición entre los alcarreños y manchegos
- El consumo perceptivo global de cada unidad de paisaje
- La vulnerabilidad de las mismas.
- La mayor o menor presencia de elementos distorsionantes del paisaje

Y, en segundo lugar, el resultado obtenido se matiza con el análisis ponderado de los siguientes factores:

- La calidad visual del paisaje
- La fragilidad visual del paisaje
- La intervisibilidad general
- La presencia local de elementos singulares de carácter natural
- La presencia local de elementos singulares de carácter antropico

En base a estas premisas, el resultado del proceso metodológico es el siguiente mapa de calidad paisajística:

Como se observa en la anterior figura, la calidad del paisaje concentra sus mayores valores sobre la zona oeste del ámbito correspondiente a los ambientes más serranos del mismo, con especial mención a las unidades de paisaje de las “dehesas de piedemonte” y, sobre todo, a las “pequeñas sierras del piedemonte”, pero ninguna de estas unidades se ven afectadas por el proyecto; del mismo modo, el “Soto de Viñuelas”, ya en el término municipal de Madrid también queda fuera del ámbito de estudio de detalle del proyecto, y no tiene a priori intromisión visual por parte de la LEAT; sin embargo, la afección más destacable corresponde al recorrido de la línea por la unidad de “Escarpes de San Agustín – Torrelaguna”, considerada también de calidad “alta” y “muy alta”

![Figura 108. Escenario de la unidad “Escarpenes de San Agustín – Torrelaguna” por la que discurre la LEAT. La presencia de otra LEAT en dicha unidad puede agravar los efectos por acumulación. Fuente: elaboración propia.](image)

5.13 PATRIMONIO CULTURAL

Con fecha 17 de febrero de 2021 se solicitó a la Dirección General de Patrimonio Histórico de la Comunidad de Madrid el inventario de los yacimientos inventariados en los municipios afectados, siendo facilitada por dicha DGPC el 24 de febrero de 2021.

Los resultados se detallan a continuación.
5.13.1 Elementos del patrimonio identificados

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Municipio</th>
<th>Adscripción Cultural</th>
<th>Tipología</th>
<th>Coordenadas Utm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción Auxiliar del Canal de Y-II</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 458257 Y 4522401</td>
</tr>
<tr>
<td>Almenara de Valdeperote, del Canal de la Parra</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 458373 Y 4519643</td>
</tr>
<tr>
<td>Puente sobre el Canal de Cabarrús</td>
<td>Torremocha de Jarama</td>
<td>Siglo XVIII</td>
<td>Infraestructura hidráulica</td>
<td>X 457551 Y 4518291</td>
</tr>
<tr>
<td>Mirário</td>
<td>El Vellón</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>X 455900 Y 4515274</td>
</tr>
<tr>
<td>Sifón de los Yesos</td>
<td>El Vellón</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 454877 Y 4514017</td>
</tr>
<tr>
<td>Sillón del Morenillo</td>
<td>El Vellón y El Molar</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 452751 Y 4510481</td>
</tr>
<tr>
<td>Las Huertas</td>
<td>El Molar</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>X 451951 Y 4508183</td>
</tr>
<tr>
<td>Almenara de Tades</td>
<td>El Molar</td>
<td>Siglo XVI-XVII-XVIII-XIX-XX</td>
<td>Material en superficie</td>
<td>X 452287 Y 4507990</td>
</tr>
</tbody>
</table>

5.13.2 Bienes de Interés Cultural (BIC)

En la zona de estudio no se encuentra documentado ningún BIC.

6 IDENTIFICACIÓN Y EVALUACIÓN DE LOS POTENCIALES IMPACTOS DE LAS ALTERNATIVAS SELECCIONADAS

En este apartado se describen los impactos para cada factor ambiental, en los cuales se han definido los atributos de importancia en base a indicadores ambientales para la posterior valoración y caracterización de los impactos del proyecto.

Tras un primer apartado de descripción de la metodología utilizada para la cuantificación y valoración de los impactos, se procede a la identificación y cuantificación factor por factor, para finalizar valorando globalmente y sintetizando los resultados de la valoración ambiental.

6.1 METODOLOGÍA PARA LA CUANTIFICACIÓN Y VALORACIÓN DE LOS EFECTOS AMBIENTALES

Para cada factor ambiental se han identificado los posibles efectos (ver tabla a continuación) que pudieran significar impacto ambiental.
Tabla 116. Relación de los posibles efectos que pudieran afectar a los factores ambientales estudiados

<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>EFECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmósfera</td>
<td>Calidad del aire</td>
</tr>
<tr>
<td></td>
<td>Incremento de los niveles sonoros</td>
</tr>
<tr>
<td></td>
<td>Campos electromagnéticos</td>
</tr>
<tr>
<td></td>
<td>Contaminación lumínica</td>
</tr>
<tr>
<td></td>
<td>Cambio Climático</td>
</tr>
<tr>
<td>Geología</td>
<td>Efectos sobre los Puntos de Interés Geológico</td>
</tr>
<tr>
<td>Hidrología</td>
<td>Modificación o alteración de la red de drenaje natural</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de las aguas</td>
</tr>
<tr>
<td></td>
<td>Efectos sobre las aguas subterráneas</td>
</tr>
<tr>
<td></td>
<td>Efectos en el DPH</td>
</tr>
<tr>
<td>Suelos</td>
<td>Modificación del relieve y de procesos geomorfológicos</td>
</tr>
<tr>
<td></td>
<td>Pérdida del suelo</td>
</tr>
<tr>
<td></td>
<td>Erosión del suelo</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de los suelos</td>
</tr>
<tr>
<td>Vegetación, flora e HICs</td>
<td>Alteración de la cubierta vegetal</td>
</tr>
<tr>
<td></td>
<td>Degradación de la vegetación circundante</td>
</tr>
<tr>
<td></td>
<td>Efectos en la flora amenazada</td>
</tr>
<tr>
<td></td>
<td>Efectos en los HICs</td>
</tr>
<tr>
<td>Fauna</td>
<td>Molestias y perturbaciones</td>
</tr>
<tr>
<td></td>
<td>Alteración y pérdida de hábitats</td>
</tr>
<tr>
<td></td>
<td>Fragmentación y efecto barrera</td>
</tr>
<tr>
<td></td>
<td>Pérdida de individuos de especies sensibles</td>
</tr>
<tr>
<td>Espacios Naturales</td>
<td>Efectos sobre los espacios naturales protegidos</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>Actividad económica y empleo</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Uso ganadero y dominio público pecuario</td>
</tr>
<tr>
<td></td>
<td>Usos forestales</td>
</tr>
<tr>
<td></td>
<td>Usos cinegéticos</td>
</tr>
<tr>
<td></td>
<td>Usos mineros</td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>Efectos sobre las infraestructuras</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>Limitaciones y efectos al desarrollo urbanístico y afección</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Efectos sobre el paisaje</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>Efectos sobre los elementos del Patrimonio</td>
</tr>
</tbody>
</table>

Dado que el presente proyecto está desarrollado a nivel de anteproyecto, su cuantificación de impactos no podrá realizarse detalladamente hasta la fase de proyecto técnico de ejecución. En dicha fase será cuando se cuantifique la intensidad de los impactos, utilizando algoritmos basados en diferentes indicadores de impacto seleccionados específicamente para cada factor ambiental.

Estos indicadores se describirán con detalle en los apartados correspondientes a cada factor ambiental, concretamente: atmósfera, hidrología, suelos, vegetación, fauna, espacios
naturales, medio socioeconómico, usos del suelo, infraestructuras, planeamiento territorial, paisaje y patrimonio cultural.

En cada factor ambiental se elegirán indicadores o descriptores de los posibles efectos sobre los diferentes elementos del medio, distinguiendo lógicamente su calidad ambiental. Entre los indicadores principales por su grado de significación, se proponen los siguientes:

- Distancia (m) de los elementos del proyecto a núcleos urbanos y zonas habitadas.
- Número (n) de vanos y número y superficie (m²) de PSFV, LSMT, STs, apoyos y accesos en DPH, Zona de Servidumbre y Zona de Policía.
- Superficie (m²) de nueva ocupación de suelo, desglosando las diferentes actuaciones del proyecto (PSFV, LSMT, STs, y trazado de la línea de evacuación), complementado con otros descriptores como es la longitud (m) de tránsitos campo a través.
- Desbroce (m²) y/o el tránsito (m) ocasionado por las diferentes actuaciones del proyecto (PSFV, LSMT, STs, y trazado de la línea de evacuación), y el grado de conservación y proximidad al climax de las diferentes formaciones vegetales afectadas.
- Superficie total (m²) de formaciones vegetales sobrevoladas por el trazado en la calle de seguridad, en función de su compatibilidad con la normativa aplicable. Esta variable se ha considerado como descriptor, de manera complementaria a la anterior.
- Número (n), diámetro (cm) y altura (m) de pies arbóreos potencialmente afectados identificados en campo como potencialmente afectados por los elementos del proyecto.
- Desbroce (m²) y/o tránsito (m) ocasionado por los elementos del proyecto y sus accesos, distinguiendo formaciones tipos de HICs.
- Superficie total (m²) de HICs sobrevolados por el trazado en la calle de seguridad, considerado como descriptor, complementariamente al indicador anterior.
- Índices (I) de grado de sensibilidad de la avifauna a la presencia de tendidos eléctricos, que engloba el índice de grado de amenaza de las especies existentes y su riesgo de colisión.
- Número (n) de cruzamientos de infraestructuras de diferentes tipos y categorías con las líneas eléctricas.
- Superficie (m²) de los diferentes elementos del proyecto situados en lugares de alta calidad paisajística y una intervisibilidad ponderada total elevada.
- Presencia o ausencia (+/-) de impedimento en las normativas analizadas para la efectiva ejecución de la PSFV y la línea eléctrica por los distintos territorios que atraviesa.

- Superficie (m²) de afección a vías pecuarias por coincidencia de los elementos del proyecto. Número (n) de vanos que sobrevuelan vías pecuarias y superficie (m²) de vías pecuarias ocupada por cruce o tránsito de los accesos.

- Superficie (m²) de afección a montes preservados por coincidencia de los elementos del proyecto. Número (n) de vanos que sobrevuelan montes preservados y desbroces (m²).

- Superficie (m²) de afección a zonas con permisos mineros por coincidencia de los elementos del proyecto. Número (n) de vanos que sobrevuelan zonas con permisos mineros.

6.1.1 Criterios de importancia

Con objeto de caracterizar y valorar cuantitativamente los impactos, se han considerado criterios de importancia. Los criterios de importancia considerados han sido: signo, intensidad, extensión, relación causa-efecto, complejidad, persistencia, reversibilidad natural y recuperabilidad, siguiendo lo indicado en la legislación aplicable.

La importancia quedará definida por las características de los efectos, definido a partir de los siguientes atributos:

- **Significación**

Un efecto significativo es una alteración de carácter permanente o de larga duración de uno o varios factores ambientales. También se puede definir como aquel que se manifiesta como una modificación en el medio ambiente, de los recursos naturales, o de sus procesos fundamentales de funcionamiento.

Así pues, será **significativo** o **no significativo**. Se representará con un guion (-) en el caso de que sea inexistente.

- **Signo**

Un impacto de signo positivo es aquel admitido como tal, tanto por la comunidad técnica y científica como por la población en general, en el contexto de un análisis completo de los costes y beneficios genéricos y de las externalidades de la actuación contemplada.

Por el contrario, un impacto de signo negativo se traduce en pérdida de recurso o valor naturalístico, estético-cultural, paisajístico, de productividad ecológica, o en aumento de los perjuicios derivados de la contaminación, de la erosión o colmatación y demás riesgos
ambientales en discordancia con la estructura ecológico-geográfica, el carácter y personalidad de una localidad determinada.

Así pues, será negativo (-) cuando se traduzca en una pérdida del recurso o su valor y positivo (+) cuando suponga una mejora respecto a la situación preoperacional.

- Intensidad

Se refiere al nivel o grado de afección, o mejora si el signo del impacto es positivo, de las condiciones del medio.

Así distinguishimos:

Intensidad baja (1) cuando se afecte ligeramente al factor; media (3) cuando se vea afectado sensiblemente; y alta (5) cuando se destruya el recurso o su valor. Se incluyen las categorías mixtas entre las anteriores, baja-media (2) y media-alta (4), para situaciones intermedias.

La elección del grado de intensidad del impacto se ha estimado atendiendo a los valores de los indicadores relacionados en el apartado 6.1.1.

- Extensión

Localizado: El impacto se produce en uno o varios puntos específicos dentro del ámbito, sin ningún efecto en el resto del entorno. También llamada puntual en la bibliografía.

Extensa: El impacto no se produce en una localización precisa dentro del ámbito del proyecto, sino que se extiende de forma generalizada en una zona muy amplia o sin una posible delimitación del área afectada.

Parcial: Es una situación intermedia entre los anteriores.

Por tanto, será localizado (1) cuando se manifiesta en uno o varios emplazamientos puntuales dentro del ámbito del proyecto; extensa (5) cuando se extiende de forma generalizada y parcial (3) para la situación intermedia.

La elección del grado de la extensión del impacto se ha estimado atendiendo a los valores de los indicadores relacionados en el apartado 6.1.1 y al análisis espacial de las superficies afectadas.

- Relación causa-efecto

Si el impacto tiene un efecto inmediato sobre un factor se habla de efecto directo (5); por el contrario, si el efecto tiene lugar a través de la relación o sistema de relaciones más complejas desencadenadas por la afección de otros factores ambientales que final repercuten en este factor, entonces se define como efecto indirecto (1). Estos efectos también se llaman primarios y secundarios, respectivamente, según la bibliografía.
Complejidad

Simple: Aquel que se manifiesta sobre un solo componente ambiental, o cuyo modo de acción es individualizado, sin consecuencias en la inducción de nuevos efectos, ni en la de su acumulación, ni en la de su sinergia.

Acumulado: Aquel que al prolongarse en el tiempo la acción del agente inductor, incrementa progresivamente su gravedad, al carecerse de mecanismos de eliminación con efectividad temporal similar a la del incremento del agente causante del daño.

Sinérgico: Aquel que se produce cuando el efecto conjunto de la presencia simultánea de varios agentes supone una incidencia ambiental mayor que el efecto suma de las incidencias individuales contempladas aisladamente.

Será simple (1) cuando se manifiesta sobre un solo componente del medio; acumulativo (3) cuando incrementa progresivamente su gravedad; y sinérgico (5) cuando el efecto conjunto de la presencia simultánea de varios agentes supone una incidencia ambiental mayor que el efecto suma de las incidencias individuales contempladas aisladamente.

Persistencia

Permanente: Aquel que supone una alteración indefinida en el tiempo de factores de acción predominante en la estructura o en la función de los sistemas de relaciones ecológicas o ambientales presentes en el lugar.

Temporal: Aquel que supone alteración no permanente en el tiempo, con un plazo temporal de manifestación que puede estimarse o determinarse.

Será permanente (5) cuando suponga una alteración indefinida en el tiempo; y temporal (1) cuando la alteración no es indefinida.

Reversibilidad natural

Efecto reversible: Aquel en el que la alteración que supone puede ser asimilada por el entorno de forma medible, a medio plazo, debido al funcionamiento de los procesos naturales de la sucesión ecológica, y de los mecanismos de autodepuración del medio.

Efecto irreversible: Aquel que supone la imposibilidad, o la “dificultad extrema”, de retornar a la situación anterior a la acción que la produce.

Son reversibles (1) cuando se corrijan de forma natural o espontánea, sin necesidad de actuaciones humanas; es irreversible (5) en el caso contrario.

Recuperabilidad

Recuperable: Aquel en que la alteración que supone puede eliminarse, bien por la acción natural, bien por la acción humana, y, asimismo, aquel en que la alteración que supone puede ser reemplazable.
Irrecuperable: Aquel en que la alteración o pérdida que supone es imposible de reparar o restaurar, tanto por la acción natural como por la humana.

Son recuperables (1) cuando pueden corregirse mediante actuaciones humanas; son irrecuperables (5) en caso contrario.

6.1.2 Valoración global de los efectos

Como algoritmo para el cálculo del valor de Importancia (Im) en cada factor ambiental i, se ha utilizado la siguiente fórmula:

\[
\text{Importancia (Im)} = 3 \times \text{Intensidad} + 2 \times \text{Extensión} + \text{Complejidad} + \text{Causa-Efecto} + \text{Persistencia} + \text{Reversibilidad} + \text{Recuperabilidad}
\]

Nótese, que la intensidad y la extensión, criterios determinantes de la magnitud del impacto, son los dos criterios que tienen un mayor peso en la valoración de la importancia del impacto. Es por ello por lo que, para asignar su valor, nos hemos basado en los datos cuantitativos que han resultado en los indicadores y descriptor (apartado 6.1.1) de los efectos en cada factor ambiental.

A partir de este algoritmo, se ha calculado un valor de Importancia normalizado (ImN) en el conjunto de los i factores con objeto de facilitar la valoración de los mismos. Para ello, se le ha asignado un valor proporcional al máximo valor de importancia posible (Im máximo=50).

De esta manera, La normalización se ha realizado mediante la expresión:

\[
\text{ImN}_i = \left(\frac{\text{Im}_i}{\text{Im\,máximo}} \right)
\]

En la Matriz de Caracterización de Impactos basada en Atributos de Importancia se presenta el valor de Importancia (Imi) para cada factor ambiental, así como el valor de importancia normalizado (ImNi). Se obtiene así una matriz de valoración de impactos para cada factor ambiental, así como un valor global de impacto desde el punto de vista ambiental.

Finalmente, los impactos se pueden caracterizar según las siguientes categorías que establece la Ley 21/2013:

- Compatible: Aquel cuya recuperación es inmediata tras el cese de la actividad, y no precisa prácticas protectoras o correctoras.

- Moderado: Aquel cuya recuperación no precisa prácticas protectoras o correctoras intensivas, y en el que la consecución de las condiciones ambientales iniciales requiere cierto tiempo.

- Severo: Aquel en el que la recuperación de las condiciones del medio exige la adecuación de medidas protectoras o correctoras, y en el que, aun con esas medidas, aquella recuperación precisa un período de tiempo dilatado.
- Crítico: Aquel cuya magnitud es superior al umbral aceptable. Con él se produce una pérdida permanente de la calidad de las condiciones ambientales, sin posible recuperación, incluso con la adopción de medidas protectoras o correctoras.

Con el objeto de posibilitar una evaluación más detallada, se han considerado además dos categorías intermedias entre las anteriores (compatible-moderado y moderado-severo).

En base al valor de importancia de los impactos se ha asignado el carácter de estos para cada factor ambiental, considerando intervalos (ver tabla).

Tabla 117. Carácter de los impactos e importancia normalizada

<table>
<thead>
<tr>
<th>Carácter</th>
<th>Importancia normalizada (ImN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mayor que</td>
</tr>
<tr>
<td>CRITICO</td>
<td>0,80</td>
</tr>
<tr>
<td>SEVERO</td>
<td>0,70</td>
</tr>
<tr>
<td>MODERADO-SEVERO</td>
<td>0,60</td>
</tr>
<tr>
<td>MODERADO</td>
<td>0,50</td>
</tr>
<tr>
<td>COMPATIBLE-MODERADO</td>
<td>0,40</td>
</tr>
<tr>
<td>COMPATIBLE</td>
<td></td>
</tr>
</tbody>
</table>

Es interesante aclarar que los impactos no significativos se corresponderían teóricamente con el valor 0 y los impactos positivos los computamos con signo negativo, ya que los impactos negativos en el medio ambiente los estamos computando con signo positivo.

Por último, indicar que, para valorar los efectos globales sobre cada factor ambiental, se ha tomado como valor global el de aquel efecto que haya resultado de mayor magnitud, con el fin de quedar del lado de la seguridad.

6.2 EFECTOS SOBRE LA CALIDAD ATMOSFÉRICA

6.2.1 Calidad del aire

Los principales efectos que supondría la ejecución del proyecto sobre los niveles de contaminantes atmosféricos vendrán derivados de las emisiones producidas por los motores de combustión de vehículos y maquinaria durante la fase de construcción.

Los principales contaminantes emitidos, por lo tanto, serán aquellos producidos como resultado de la combustión de combustibles fósiles: CO₂, NOₓ, SO₂, CO y partículas.

De dichos contaminantes, y atendiendo al diagnóstico ejecutado en el Capítulo 5 del presente EsIA, podría suponer un empeoramiento en la calidad del aire del entorno la emisión de Óxidos de Nitrógeno (NOₓ), ya que se trata de un precursor del ozono troposférico (O₃), contaminante que registra valores por encima del umbral de protección para la salud en todas las estaciones de referencia, principalmente durante los meses de verano.
A continuación, se desglosan los efectos sobre la calidad del aire producidos, por un lado, por la ejecución de la PFV GR Colimbo y, por otro lado, por las líneas eléctricas y subestaciones de transformación proyectadas: L/132kV GR Colimbo – Colectora la Cereal (en su tramo aéreo y soterrado) y L/400kV Colectora la Cereal – La Cereal REE (en su tramo aéreo y soterrado), ST Colimbo y ST Colectora la Cereal.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

La maquinaria que supone unas mayores emisiones de gases de combustión y partículas en suspensión desarrollará su actividad principalmente durante la fase de movimiento de tierras (camiones, retroexcavadoras, máquinas giratorias, etc.), mientras que durante las fases de obra civil y montaje electromecánico habrá un menor trasiego de maquinaria y esta será menos contaminante.

La fase de movimiento de tierras será la de menor duración durante la ejecución de la PFV y la línea soterrada de media tensión (LSMT). Durante la fase de desmantelamiento y restauración de ambas infraestructuras, que tendrá lugar tras finalizar su periodo de vida útil, será necesario ejecutar también trabajos de movimiento de tierras, que implicarán el uso de maquinaria pesada, lo que aumenta el periodo de afección por emisiones atmosféricas del proyecto. Sin embargo, estos trabajos de movimiento de tierras tendrán poca entidad en el conjunto de la ejecución de las obras.

Además, toda la maquinaria utilizada deberá cumplir con lo establecido en el marcado CE, así como tener en vigor su Inspección Técnica de Vehículos (ITV).

Con respecto al polvo que generará el trabajo con maquinaria en el movimiento de tierras, así como su paso y el de otros vehículos a lo largo de toda la ejecución, se debe atender a las distancias a las que se situarán las acciones de obra de viviendas y otros espacios que puedan verse afectados.

Como se ha indicado en el capítulo correspondiente al inventario ambiental, la PFV se localiza en espacios naturales sin zonas urbanas a menos de 500 metros.

Durante la fase de funcionamiento, los tránsitos se reducirán a los necesarios para el acceso de trabajadores a las instalaciones, no suponiendo una emisión de gases superior a la existente en la actualidad en el entorno.

A lo largo de la fase de desmantelamiento, los efectos se esperan de gran similitud a los descritos para la fase de construcción, requiriendo de igual modo movimiento de tierras, que implicará el uso de maquinaria pesada y la generación de polvo en suspensión, con las posibles principales afecciones descritas.

Tanto durante la fase de construcción, como durante la fase de desmantelamiento, siendo aquellas fases con un mayor impacto sobre la calidad del aire, se aplicarán medidas de control en el conjunto de los tajos de obra para minimizar el impacto por emisión de polvo,
intensificándolas durante el periodo estival y durante periodos de estabilidad atmosférica e inversión térmica.

Tabla 118. Atributos de la importancia del impacto en la calidad del aire en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Calidad del aire</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Baja</td>
<td>-</td>
<td>Baja</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizado</td>
<td>-</td>
<td>Localizado</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>Simple</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>-</td>
<td>Reversible</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0,28</td>
<td>0</td>
<td>0,28</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST):

En la construcción de las líneas eléctricas, dada la breve duración temporal de las obras en cada punto de actuación y las condiciones favorables para la dispersión de contaminantes por el viento, el nivel de deterioro previsible de la calidad del aire debido a la actuación se estima como muy bajo.

En el caso de las subestaciones, la maquinaria estará presente durante un plazo de tiempo mayor que en los apoyos de las líneas eléctricas, si bien la mayor parte de la maquinaria con mayores emisiones de gases de combustión desarrollará su actividad en la fase de movimiento de tierras (camiones, retroexcavadoras, máquinas giratorias, etc.), que es la fase de menor duración, mientras que en las fases de obra civil y montaje electromecánico habrá un trasiego mucho menor de maquinaria y menos contaminante.

Las acciones previstas de obra en las que se hará uso de maquinaria pesada serán las siguientes:

- Excavaciones y cimentaciones.
- Rellenos y explanaciones.
- Transporte y acopio de materiales para las subestaciones eléctricas. Los acopios se realizarán en el interior de las plataformas.
- Apertura de nuevos accesos, acondicionamiento de caminos existentes, tramos con adecuación y circulación “campo a través”.

- Acopio de materiales, que incluye el transporte y depósito de los requeridos en el izado de los apoyos. El acopio de materiales se realizará a pie de obra en última instancia. De forma previa, la recepción del material será gestionada en alguna instalación cercana, minimizando la ocupación.

- Montaje, izado y tendido: se trata de la actuación en la que está implicada mayor número de maquinaria pesada, con grúas de gran tonelaje y/o camiones pluma.

- Retirada de tierras, residuos y rehabilitación de daños.

Con respecto al polvo que generará el trabajo con maquinaria en el movimiento de tierras, así como su paso y el de otros vehículos a lo largo de la fase de construcción de las líneas eléctricas, se debe atender a las distancias a las que se situarán las acciones de obra de viviendas y otros espacios que puedan verse afectados.

Como queda recogido en el capítulo 5 del presente EsIA, la mayor parte del proyecto se localiza en espacios naturales sin zonas urbanas cercanas. No obstante, a lo largo del trazado de las líneas eléctricas proyectadas, se encuentran, a menos de 500 metros de los elementos de proyecto, áreas residenciales dispersas, así como zonas de uso terciario e industrial, que podrán verse afectadas por las emisiones de polvo producidas durante las obras.

En el caso de las ST, no se localizan viviendas en sus inmediaciones, o zonas con otros usos del suelo, que puedan verse afectadas por emisión de contaminantes atmosféricos.

Durante la fase de funcionamiento, los tránsitos se reducirán a los necesarios para el acceso de trabajadores a las instalaciones, no suponiendo una emisión de gases superior a la existente en la actualidad en el entorno.

A lo largo de la fase de desmantelamiento, los efectos se esperan de gran similitud a los descritos para la fase de construcción, requiriendo de igual modo movimiento de tierras, que implicará el uso de maquinaria pesada y la generación de polvo en suspensión, con las posibles principales afecciones descritas.

De este modo, a lo largo, tanto de la fase de construcción, como la de desmantelamiento, se aplicarán medidas de control en el conjunto de los tajos de obra, intensificándose estos en aquellos espacios cercanos a viviendas u otros espacios que puedan verse afectados por la emisión de polvo en suspensión, principalmente durante el periodo estival y durante periodos de estabilidad atmosférica e inversión térmica.
Tabla 119. Atributos de la importancia del impacto en la calidad del aire en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Calidad del aire</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>-</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>-</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>Simple</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>-</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,28</td>
<td>0</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2 Incremento de los niveles sonoros

En este apartado se analizan los posibles incrementos de los niveles sonoros ocasionados en las fases de construcción, de funcionamiento y de desmantelamiento.

El análisis del incremento de los niveles sonoros en el entorno del proyecto, atiende a la distancia a la que se localizan los elementos de proyecto de viviendas, zonas de usos sensibles y otros usos del suelo, de acuerdo al Real Decreto 1367/2007, de 19 de octubre, por el que se desarrolla la Ley 37/2003, de 17 de noviembre, del Ruido, en lo referente a zonificación acústica, objetivos de calidad y emisiones acústicas, considerando una distancia límite de 300 metros para el análisis.

A continuación, se desglosan los efectos sobre la calidad del aire, producidos por la ejecución de la PFV y LSMT, así como por las LE y ST proyectadas.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Fase de construcción:

Durante la fase de construcción de la PFV y su LSMT, las emisiones acústicas se producirán de manera puntual durante los trabajos que impliquen uso de maquinaria.

La fase más ruidosa se espera que sea la de hincado de los módulos de los seguidores fotovoltaicos.
Tomando como escenario el más desfavorable, se considera la realización de estos trabajos por hincadoras tipo Sandvik DP 1100 que, atendiendo a su marcado CE, generan 129 dB(A) de emisión acústica.

Se asume que en cada una de las implantaciones deberán trabajar de manera simultánea dos (2) hincadoras, lo que generará unos valores máximos de potencia sonora de 132 dB(A) en cada una de ellas.

Durante la fase de construcción, se espera de igual modo que se produzcan emisiones acústicas de altos niveles durante la fase de movimiento de tierras y materiales, así como durante las excavaciones y acondicionamiento del terreno. Estas acciones se llevarán a cabo por maquinaria de distinta tipología (pala mixta, martillo compresor, camiones, máquina giratoria, máquina compresora), que producirán unos valores máximos de potencia sonora estimados en 105 dB(A).

Manteniéndonos en el escenario más desfavorable para realizar el análisis, se considera que los trabajos de instalación de los módulos en las PFV coincidirán con los trabajos del resto de maquinaria, estimando unos valores máximos de potencia sonora mediante suma logarítmica de 132 dB(A).

Para la valoración del impacto debe tenerse en cuenta también que el funcionamiento de dicha maquinaria quedará condicionado por las siguientes directrices:

- Los trabajos se realizarán en periodo diurno, evitando trabajos nocturnos, que implicarían un mayor impacto, dada la sensibilidad acústica de este periodo.

- La maquinaria empleada deberá cumplir con lo establecido en el Real Decreto 212/2002, de 22 de febrero, por el que se regulan las emisiones sonoras en el entorno debidas a determinadas máquinas de uso al aire libre, así como con el Real Decreto 524/2006, de 28 de abril, por el que se modifica el anterior.

- La maquinaria empleada deberá cumplir con lo establecido en su marcado CE y tener en vigor su ITV.

No se han inventariado zonas de uso sensible de acuerdo a la Tabla A del Anexo II del RD 1367/2007 a menos de 300 metros de las PFV, y las viviendas más cercanas a la misma se localizan a más de 800 metros, en el casco urbano de Torremocha de Jarama.

De este modo, no se espera que durante la ejecución de los trabajos de construcción y montaje de la PFV y su LSMT se perciban niveles de ruido equivalente por encima de los indicados en los Objetivos de Calidad Acústica para áreas residenciales.

No obstante, situándose la PFV en un entorno natural, será necesaria la aplicación de medidas de control y gestión del ruido, que minimicen el impacto sobre el mismo por aumento de niveles de ruido de fondo.
Fase de funcionamiento:

Durante la fase de funcionamiento de la PFV, los únicos elementos de las instalaciones que pueden generar ruido son los inversores de corriente y el transformador, que suponen una inmisión inferior a los 45 dB(A), por lo que la emisión de ruido al entorno resulta despreciable.

Durante esta fase, se tendrán que realizar labores de mantenimiento en el parque fotovoltaico. Dichos trabajos se realizan de forma esporádica e intermitente en el tiempo, por lo que el ruido producido por el tránsito de vehículos que irá asociado a los mismos será muy bajo.

Fase de desmantelamiento:

Una vez finalizado el periodo de vida útil de la PFV, en caso de no realizarse una reposición de planta, se procederá al desmantelamiento y retirada de todos los equipos, restaurando los terrenos a las condiciones anteriores a la construcción del parque.

Los trabajos de desmontaje se realizarán con maquinaria pesada, siendo aquella de mayor generación de potencia sonora la que se utilizará para la retirada de las cimentaciones y su relleno.

Se estima el uso de dos (2) retroexcavadoras, por lo que, atendiendo a las especificaciones técnicas indicadas en el marcado CE (emisión de 93 dB(A) por cada retroexcavadora), mediante suma logarítmica se estiman unas emisiones de 96 dB(A).

Del mismo modo que durante la fase de construcción, no se espera que durante el desmantelamiento de la PFV y su LSMT se perciban niveles de ruido equivalente por encima de los indicados en los Objetivos de Calidad Acústica para áreas residenciales, pero será necesaria la aplicación de medidas de control y gestión del ruido, que minimicen el impacto sobre el entorno natural por aumento de niveles de ruido de fondo.

Tabla 120. Atributos de la importancia del impacto sobre los niveles sonoros en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Niveles sonoros</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>-</td>
<td>Baja</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>-</td>
<td>Localizado</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>Simple</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>-</td>
<td>Reversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td>Niveles sonoros</td>
<td>Atributos de Importancia</td>
<td>Construcción</td>
<td>Funcionamiento</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>20</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,44</td>
<td>0</td>
<td>0,28</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Fase de construcción:

Durante la fase de construcción de las líneas eléctricas y las ST, el posible efecto por aumento de los niveles sonoros, se reduce básicamente a la época de realización de la fase de movimiento de tierras, en la que el uso de maquinaria pesada supone la generación de un ruido apreciable de carácter discontinuo y temporal. El funcionamiento de la maquinaria pesada, tanto para el movimiento de tierras y materiales como para la excavación y acondicionamiento del terreno, provocará ruidos y vibraciones con niveles elevados, relativamente uniformes y de carácter temporal. El tráfico de camiones, por su parte, puede suponer incrementos periódicos en los niveles sonoros.

El análisis debe realizarse atendiendo a los efectos puntuales y temporales asociados al funcionamiento de la maquinaria. En la construcción intervendrá maquinaria de obras públicas emisora de elevados niveles sonoros, estimados entre 70 y 90 dB (A).

Tomando como escenario el más desfavorable, se considera una presencia de dos (2) máquinas en cada apoyo, así como en ambas ST, con una emisión de 90 dB(A) cada una durante la fase de movimiento de tierras, que se considera aquella de mayor impacto acústico durante la fase de construcción, lo que supondrá una potencia sonora mediante suma logarítmica de 93 dB(A) en cada apoyo.

Por su parte, en los tramos soterrados de la L/132kV GR Colimbo – Colectora la Cereal y la L/400kV Colectora la Cereal – La Cereal REE, se considera la presencia de dos (2) máquinas por tramo de excavación, con una emisión, de 90 dB(A) cada una durante la fase de construcción, lo que supondrá una potencia sonora mediante suma logarítmica de 93 dB(A) en cada tramo.

Para la valoración del impacto debe tenerse en cuenta también que el funcionamiento de dicha maquinaria quedará condicionado por las siguientes directrices:

- Los trabajos se realizarán en periodo diurno, evitando trabajos nocturnos, que implicarían un mayor impacto, dada la sensibilidad acústica de este periodo.

- La maquinaria empleada deberá cumplir con lo establecido en el Real Decreto 212/2002, de 22 de febrero, por el que se regulan las emisiones sonoras en el entorno.
debidas a determinadas máquinas de uso al aire libre, así como con el Real Decreto 524/2006, de 28 de abril, por el que se modifica el anterior.

- La maquinaria empleada deberá cumplir con lo establecido en su marcado CE y tener en vigor su ITV.

Dado que los proyectos de la L/132kV GR Colimbo – Colectora la Cereal y de la L/400kV Colectora la Cereal – La Cereal REE se encuentran en fase de definición básica, en la que no se aporta información relativa a los apoyos de las LE, no pueden estudiarse las distancias a las que se encontrarán las viviendas dispersas inventariadas en el Capítulo 5 del presente EslA, de modo que en esta fase no puede definirse en detalle el impacto acústico generado por la construcción de ambas líneas.

No obstante, mediante análisis ortofoto, se han inventariado viviendas y zonas de uso industrial y terciario localizadas a menos de 300 metros de las trazas proyectadas:

- Viviendas situadas a entre 90 y 200 metros de la L/132kV GR Colimbo – Colectora la Cereal (OCA periodo día 65 dBA para un tipo de área acústica a de acuerdo con laTabla A del Anexo II del RD 1367/2007).

- Edificaciones de uso industrial situadas a entre 100 y 200 metros de la L/132kV GR Colimbo – Colectora la Cereal, y a entre 200 y 300 metros de la L/400 kV Colectora la Cereal – La Cereal REE (OCA periodo día 75 dBA para un tipo de área acústica b de acuerdo con laTabla A del Anexo II del RD 1367/2007).

- Edificaciones de uso terciario de uso recreativo situadas a entre 70 y 300 metros de la L/132kV GR Colimbo – Colectora la Cereal (OCA periodo día 70 dBA para un tipo de área acústica c de acuerdo con laTabla A del Anexo II del RD 1367/2007).

Teniendo solo en cuenta la atenuación por divergencia de una fuente esférica omnidireccional (no se valoran otras atenuaciones como orografía del terreno y fuentes de ruido intermedias), conforme a la Ley del cuadrado de la distancia, según la cual “la intensidad acústica es inversamente proporcional al cuadrado de la distancia de la fuente (considerada puntual)”, el nivel de presión acústica en estos espacios durante el periodo día, se reduciría en función de la distancia a la fuente sonora, según la siguiente tabla:
De acuerdo a lo indicado, los niveles de ruido equivalente percibidos durante el periodo día en los espacios definidos anteriormente, serán:

- Las viviendas percibirán niveles de ruido equivalente inferiores a 65 dBA.
- Las edificaciones de uso industrial percibirán niveles de ruido equivalente inferiores a 75 dBA.
- Las edificaciones de uso terciario percibirán niveles de ruido equivalente inferiores a los 70 dBA.

De este modo, inicialmente, no se espera que se generen molestias sobre la población por aumento de los niveles acústicos durante la fase de construcción de ambas líneas eléctricas, ni de las ST proyectadas. No obstante, la ejecución de las obras elevará los niveles acústicos del entorno, por lo que el efecto se considera significativo.

Fase de funcionamiento:

Por lo que se refiere a las emisiones de ruido de las líneas eléctricas en fase de funcionamiento, estas pueden ser de dos tipos: efecto corona y ruido eólico.

El efecto corona se genera cuando el conductor adquiere un potencial suficientemente elevado para dar lugar a un campo eléctrico radial, produciéndose así corrientes de fuga de los conductores; parte de la energía disipada lo hace de forma audible (también forma un halo

11 http://www.tecnico.support.com/elec/taulesconsulta/so/variacion-db.htm
luminoso), consistente en un crujido acompañado por un zumbido de baja frecuencia (100 MHz) y baja intensidad (entre 10 y 50 dB). Las pequeñas irregularidades que se generan en la superficie de los conductores, por acumulación de partículas, polvo, contaminación y condensación de gotas de agua, favorecen que en esos puntos se eleve el potencial.

Por otro lado, la oposición de los elementos de las líneas al paso del viento puede ser una fuente significativa de ruido en puntos en los que el viento es frecuente e intenso. Este ruido eólico es difícil de predecir por su naturaleza y ocurre con cierta frecuencia. En función de la naturaleza del viento pueden alcanzarse niveles sonoros de más de 50 dB, aunque al ser una fuente natural la que lo genera, suele tener mejor aceptación por la población que aquellos que tienen lugar a partir de una fuente artificial.

Cuando la humedad relativa es elevada y especialmente durante los episodios de lluvias, el efecto corona se vuelve más intenso, situación que da lugar al máximo de emisión sonora. Sin embargo, generalmente queda enmascarado por la misma lluvia, que provoca un nivel acústico superior. En condiciones de niebla, con las que se podría percibir el ruido con mayor facilidad, la existencia de ésta frenará la propagación del ruido, es decir, el nivel sonoro es más intenso en el entorno inmediato de las líneas, pero se deja de percibir a menor distancia.

A continuación, se adjunta una tabla en la que se presentan los valores de ruido emitidos por líneas eléctricas de alta tensión (400 kV) estimados a 25 m de distancia en función de distintas condiciones atmosféricas.

<table>
<thead>
<tr>
<th>Tabla 122 Niveles de ruido emitidos por líneas eléctricas. Fuente: REE, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condiciones climáticas</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Buen tiempo</td>
</tr>
<tr>
<td>Bajo lluvia</td>
</tr>
<tr>
<td>Con niebla</td>
</tr>
</tbody>
</table>

Matizando los datos anteriores, cabe mencionar que, en condiciones de lluvia ligera, el valor estimado del nivel sonoro a 15, 30, 50 y 100 metros del plano medio de las líneas no sobrepasa los 46, 45, 43 y 38 dB(A), respectivamente. En condiciones de lluvia fuerte estos valores se verían incrementados en unos 5 dB(A) aproximadamente, aunque en este caso el propio ruido de la lluvia anularía la percepción del ruido producido por el efecto corona.

No se han inventariado viviendas u otros espacios, situados a menos de 25 metros de las trazas de las líneas eléctricas estudiadas, por lo que, inicialmente, se considera que, durante su fase de funcionamiento, no se espera que varíen los niveles de ruido de fondo del entorno de manera significativa.

Con respecto a las subestaciones eléctricas, durante su fase de funcionamiento, la situación es distinta de la fase de construcción, ya que el ruido que se genera en la subestación posee
un nivel permanente, una vez hayan entrado en funcionamiento, debido al ruido provocado por los transformadores y demás aparataje con que cuenta la subestación.

Según datos obtenidos en estudios de gabinete y comprobados en campo, en instalaciones en funcionamiento, los transformadores, de los tipos utilizados por RED ELÉCTRICA, provocan unos niveles de presión sonora en el entorno inmediato de los aparatos entre los 75-80 dB(A) con los ventiladores apagados, y en torno a los 80-85 dB(A) con los ventiladores en funcionamiento, medidos en la proximidad inmediata (a 1 metro de distancia). Como es lógico, el nivel de ruido resultante será distinto para cada subestación y modelo de la misma, ya que, para el caso de las subestaciones blindadas, donde los transformadores se encuentran en el interior del edificio, esta afectación es menor. Igualmente deberá tenerse en cuenta el número de transformadores y la disposición espacial de estos, así como los elementos del entorno inmediato, comunes en todas las subestaciones, como son los muros de contención de incendios, casetas de comunicaciones y el resto de la aparamenta. Todos estos factores, intervienen en el nivel de ruido resultante que recibe un receptor situado a determinada distancia en el espacio.

Hay que señalar que el ruido procedente de transformadores eléctricos se debe sobre todo al sonido producido por la cuba y los ventiladores, ambas fuentes emiten un ruido de baja frecuencia sobre todo en la banda de los 100 a los 250Hz. Este ruido procedente de los transformadores tiene un fuerte carácter tonal de baja frecuencia.

No se han inventariado viviendas u otras edificaciones a distancias inferiores a los 300 metros de las ST proyectadas.

Fase de desmantelamiento:

En el desmantelamiento de las infraestructuras eléctricas proyectadas (subestaciones y líneas eléctricas), será necesario el uso del mismo tipo de maquinaria que en la fase de construcción, por lo que los valores de intensidad y extensión serán los mismos que en esta fase.

En conclusión, los efectos sobre los niveles sonoros por el desarrollo de las LE y ST serían:
Tabla 123. Atributos de la importancia del impacto sobre los niveles sonoros en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Niveles sonoros</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>显著/非显著</td>
<td>显著</td>
<td>非显著</td>
<td>显著</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>-</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>Simple</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>-</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,28</td>
<td>0</td>
<td>0,28</td>
<td></td>
</tr>
</tbody>
</table>

VALORACIÓN: COMPATIBLE NO SIGNIFICATIVO COMPATIBLE

6.2.3 Contaminación luminica

De acuerdo a la Ley 34/2007 de calidad del aire y protección de la atmósfera, se define la Contaminación Lumínica como “el resplandor luminoso nocturno o brillo producido por la difusión y reflexión de la luz en los gases, aerosoles y partículas en suspensión en la atmósfera, que altera las condiciones naturales de las horas nocturnas y dificultan las observaciones astronómicas de los objetos celestes, debiendo distinguirse el brillo natural, atribuible a la radiación de fuentes u objetos celestes y a la luminiscencia de las capas altas de la atmósfera, del resplandor luminoso debido a las fuentes de luz instaladas en el alumbrado exterior”.

Esta definición se traduce, en que una iluminación inadecuada o excesiva, por su resplandor o alcance, puede tener variados efectos negativos sobre el medio ambiente, además de implicar un uso irracional de la energía.

Entre los principales impactos producidos por la contaminación luminica, están la pérdida en la calidad de residencia, y la pérdida de la visión del cielo estrellado, principalmente debido a los focos o proyectores de gran potencia que se utilizan en el alumbrado que, debido a la inclinación con la que suelen instalarse, envían parte de su flujo directamente sobre el horizonte.
Los elementos de proyecto susceptibles de generar contaminación lumínica son la PFV GR Colimbo y las ST Colimbo y Colectora la Cereal.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

El impacto lumínico de la PFV se generará únicamente durante la fase de funcionamiento, ya que los trabajos de construcción y desmantelamiento se ejecutarán con luz solar.

La PFV será diseñada atendiendo al contenido del Real Decreto Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, y dispondrá de un punto de luz de emergencia de carácter autónomo que señalizará el centro de transformación de acuerdo a la prescripción dictada en el apartado 6.2 Alumbrado de socorro, recogido en la ITC-RAT 14 Instalaciones eléctricas de exterior que forma parte del Reglamento de Alta Tensión.

El sistema de iluminación perimetral de la planta consistirá en dos subsistemas: iluminación estándar y sorpresiva. La primera de ellas proveerá la iluminación necesaria en condiciones de normales de operación de la planta, mientras que la sorpresiva se activará en condiciones de vigilancia y seguridad.

La iluminación estará formada principalmente por el conjunto de báculos, iluminarias y cableado de fuerza y tierra de protección necesario para conseguir una iluminación mínima de 5 lux en el caso de la estándar y de 15 lux en el caso de la sorpresiva.

La vivienda más cercana a la PFV se sitúa a más de 800 metros de la misma, por lo que no se espera que la iluminación de la planta suponga un impacto significativo sobre la calidad de residencia del entorno. Sin embargo, la planta solar fotovoltaica se situará en un entorno natural, por lo que su funcionamiento podrá suponer molestias sobre el mismo por alteración del nivel lumínico nocturno. No obstante, teniendo en cuenta que el diseño de la PFV cumplirá con la normativa vigente en materia de iluminación, minimizando la emisión lumínica al exterior, el efecto se considera compatible.

Tabla 124. Atributos de la importancia del impacto por contaminación lumínica en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Contaminación lumínica</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>Directo</td>
<td>-</td>
</tr>
</tbody>
</table>

Página 336
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Las subestaciones proyectadas serán diseñadas atendiendo al contenido del Real Decreto Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, y dispondrá de un punto de luz de emergencia de carácter autónomo que señalará el centro de transformación de acuerdo a la prescripción dictada en el apartado 6.2 Alumbrado de socorro, recogido en la ITC-RAT 14 Instalaciones eléctricas de exterior que forma parte del Reglamento de Alta Tensión.

Atendiendo a estos criterios, se considera que la subestación podrá suponer una pérdida de calidad de residencia y de visión del cielo estrellado en aquellas viviendas localizadas a menos de 200 metros.

Ambas subestaciones se situarán en un entorno natural, sin viviendas a menos de 200 metros de las mismas, por lo que no supondrán una pérdida de calidad de residencia. No obstante, el funcionamiento de estas ST supondrá una alteración del nivel lumínico nocturno, afectando a la calidad del entorno natural en el que se situará. No obstante, teniendo en cuenta que el diseño de las ST cumplirá con la normativa vigente en materia de iluminación, minimizando la emisión lumínica al exterior, el efecto se considera compatible.

Tabla 125. Atributos de la importancia del impacto por contaminación lumínica en fase de construcción, de funcionamiento y desmantelamiento para St y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminación lumínica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atributos de Importancia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0,36</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALORACIÓN</th>
<th>NO SIGNIFICATIVO</th>
<th>COMPATIBLE</th>
<th>POSITIVO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contaminación lumínica</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>Negativo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Contaminación luminica

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensión</td>
<td>-</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0,36</td>
<td>-</td>
</tr>
</tbody>
</table>

| VALORACIÓN | NO SIGNIFICATIVO | COMPATIBLE | POSITIVO |

<table>
<thead>
<tr>
<th>6.2.4 Efectos sobre el Cambio Climático</th>
</tr>
</thead>
<tbody>
<tr>
<td>De acuerdo con lo establecido en el Protocolo de Kioto de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), aprobado en 1997, se consideran gases de efecto invernadero al Dióxido de carbono (CO$_2$), Metano (CH$_4$), Óxido nitroso (N$_2$O), Hidrofluorocarbonos (HFC), Perfluorocarbonos (PFC) y Hexafluoruro de azufre (SF$_6$).</td>
</tr>
<tr>
<td>Atendiendo al contenido del Informe Anual de la Unión Española Fotovoltaica (UNEF) del año 2019, la energía fotovoltaica contribuye positivamente a la reducción de emisiones en el sector eléctrico por su carácter renovable y sus casi nulas emisiones directas.</td>
</tr>
<tr>
<td>La huella ambiental del sector fotovoltaico durante el año 2018 supuso, teniendo en cuenta su huella directa e indirecta, 1.406 kt CO$_2$-eq, cifra que, en comparación con las emisiones que se evitan al poder prescindir de fuentes no renovables, no se considera elevada.</td>
</tr>
<tr>
<td>De este modo, si los GWh producidos en el año 2018 por la energía fotovoltaica hubieran sido generados a través de combustión directa de gas en centrales de ciclo combinado, las emisiones del mix eléctrico se hubieran incrementado hasta 3,1 MTCO$_2$.</td>
</tr>
</tbody>
</table>

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

La implantación de la PFV GR Colimbo evitará la emisión de gases contaminantes a la atmósfera. No obstante, para valorar la magnitud del impacto, debe tenerse en cuenta también que, principalmente durante las fases de construcción y desmantelamiento de planta y su LSMT, aunque también durante la fase de funcionamiento, se emitirán gases de efecto invernadero (GEI) procedentes de la combustión de combustibles fósiles en los motores de vehículos y maquinaria, principalmente CO$_2$. |
| Sin embargo, la implantación de la PFV proyectada, supondrá la integración de las energías renovables en el territorio, lo que contribuirá en mayor medida a la reducción de emisiones de GEI (CO$_2$), que, al aumento de las emisiones. |
Con respecto a la fase de desmantelamiento, supondrá la retirada de unidades energéticas procedentes de la energía renovable, pudiendo verse sustituidas estas por unidades energéticas producidas mediante fuentes de energía convencionales, lo cual supondría un efecto negativo sobre el cambio climático.

Tabla 126. Atributos de la importancia del impacto en el Cambio Climático en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Cambio climático</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
<td>No Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>Positivo</td>
<td>Negativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>Baja</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>Extenso</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>Indirecto</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>Sinérgico</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>Permanente</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>Irreversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>-</td>
<td>0,6</td>
</tr>
</tbody>
</table>

VALORACIÓN

- NO SIGNIFICATIVO
- POSITIVO
- MODERADO

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

La implantación de una línea de nueva construcción tiene una huella de carbono en emisiones GEI de unas 250 tCO$_2$/km de línea.

De este modo, el conjunto de Tramos de Línea que conforman el proyecto, con una longitud aproximada de 40,691 Km, supondrán una emisión de 10.172,75 toneladas de CO$_2$.

El dato preciso de emisiones no puede calcularse detalladamente en esta fase ya que se necesita el desarrollo completo del proyecto de ejecución.

El circuito 2 de la L/132kV GR Colimbo – Colectora la Cereal se desarrolla para transportar la energía producida en GR Colimbo hasta la ST Colectora la Cereal, desde donde será trasladada, junto a la energía generada por las plantas fotovoltaicas GR Porrón, GR Martineta, GR Calamón y GR Bisbita (que no son objeto del presente EsIA), hasta la ST La Cereal de REE, lo que supondrá una integración de las energías renovables en el consumo eléctrico de España.
Para valorar la magnitud del impacto, debe tenerse en cuenta también que, principalmente durante las fases de construcción y desmantelamiento de las líneas eléctricas, se emitirán gases de efecto invernadero (GEI) procedentes de la combustión de combustibles fósiles en los motores de vehículos y maquinaria, principalmente CO₂.

Debe tenerse en cuenta, del mismo modo, que el desmantelamiento de las infraestructuras supondrá la supresión del aporte de la energía generada por las plantas solares fotovoltaicas a la red eléctrica general, lo que tendría un efecto negativo si esta no es sustituida por otras energías renovables.

Por su parte, para el análisis de los efectos sobre el cambio climático del desarrollo de las Subestaciones, debe tenerse en cuenta, que las mismas contarán con elementos que requieren el uso de hexafluoruro de azufre (SF₆).

El hexafluoruro de azufre (SF₆) es un gas que se emplea en el aislamiento de las celdas por las siguientes características: alto poder dieléctrico, excelente capacidad de extinción de arco, alta estabilidad química y no toxicidad.

El SF₆, (puro) es un gas químico y biológicamente inerte a temperatura ambiente. No tiene olor, color, sabor y no es tóxico, ni combustible ni inflamable. Pero sí tiene un gran efecto invernadero.

El problema de los gases de efecto invernadero es su potente efecto de calentamiento. La potencia calorífica de las sustancias se mide en GWP (Global Warming Potential). El SF₆ tiene un valor de 23.900. Esto significa que cada kilo que se emite a la atmósfera equivale a 23.900 kg de CO₂.

El gas contenido en estos equipos es introducido de manera totalmente controlada y segura utilizando equipos específicos en los citados compartimentos estancos, y el fabricante del equipo asegura que no existen fugas del gas durante toda la vida útil de los equipos. En caso de mantenimiento de los equipos que requiera la apertura de algún compartimento con SF₆, el proceso de vaciado es similar al de llenado, no existiendo fugas de SF₆ al exterior.

El gas contenido en celdas blindadas de SF₆, restringido generalmente a la cámara de corte de los interruptores, no es manipulado nunca en la subestación. Estos equipos vienen ya preparados desde fábrica con la cantidad de gas necesaria introducida en la cámara del interruptor, no realizándose nunca su apertura en la subestación, ni tan siquiera para labores de mantenimiento, y estando asegurada por parte del fabricante la estanqueidad total del contenedor del gas. Adicionalmente, las celdas blindadas de MT utilizan una cantidad de gas muy pequeña, pues son equipos de tamaño muy reducido en el que consecuentemente, la masa de gas que se introduce no es relevante a efectos medioambientales.

Asimismo, se dará cumplimiento al Real Decreto 115/2017, de 17 de febrero, por el que se regula la comercialización y manipulación de gases fluorados y equipos basados en los
mismos, así como la certificación de los profesionales que los utilizan y por el que se establecen los requisitos técnicos para las instalaciones que desarrollen actividades que emitan gases fluorados.

Por todo esto, la probabilidad de liberación de este gas a la atmósfera es prácticamente inexistente tanto en la fase de construcción como en las de funcionamiento y desmantelamiento. Al igual que las líneas eléctricas, la implantación de las subestaciones va a significar igualmente una integración eficiente de las energías renovables en el ámbito de estudio, que contribuirá a la disminución de las emisiones de CO2 y del resto de gases de efecto invernadero.

Tabla 127. Atributos de la importancia del impacto en el Cambio Climático en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Cambio climático</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>-</td>
<td>Positivo</td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>Baja</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>Localizado</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>Acumulativo</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>Permanente</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>Reversible</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>0</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>-</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>POSITIVO</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>
6.2.5 Valoración final del impacto potencial sobre la atmósfera

En este apartado de valoración final, se analiza la información de los apartados anteriores relativa a los diferentes posibles efectos del proyecto sobre la atmósfera.

Para valorar los efectos globales sobre el factor atmósfera, se toma como criterio elegir como valor global el de aquel efecto que haya resultado de mayor magnitud, tratándose este del criterio más conservador (ver tabla).

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Según los resultados mostrados, los efectos globales en la atmósfera producidos por la PFV y su LSMT, resultan compatibles en las fases de construcción y funcionamiento, obteniéndose un impacto moderado sobre la atmósfera en su fase desmantelamiento, derivado de la retirada del aporte de energía producida de manera renovable a la red eléctrica española.

Aunque en las fases de construcción y desmantelamiento pueda haber efectos negativos sobre la atmósfera, estos serán de intensidad baja y pueden ser corregidos con las medidas habituales de buenas prácticas en obra y la aplicación de medidas específicas de control de emisiones de polvo y acústicas, principalmente.

El funcionamiento de la PFV, y su contribución a la generación de energía renovable, permitirá disminuir la huella de carbono de la producción energética, suponiendo un efecto positivo para el cambio climático. No obstante, estos efectos positivos, en un contexto global como ha de entenderse el cambio climático, suponen tan solo una pequeña mejora, considerándose el efecto global sobre la atmósfera en fase funcionamiento de la PFV como compatible, condicionado por su impacto lumínico sobre el medio.

Tabla 128. Efectos globales sobre la atmósfera en fase de construcción, funcionamiento y desmantelamiento para PFV. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA ATMÓSFERA</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad del aire</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>Niveles sonoros</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>Contaminación lumínica</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Cambio climático</td>
<td>NO SIGNIFICATIVO</td>
<td>POSITIVO</td>
<td>MODERADO</td>
<td></td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA ATMÓSFERA</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>MODERADO</td>
<td></td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)
De acuerdo a los resultados mostrados, los efectos globales en la atmósfera producidos por la implantación de las líneas eléctricas y las subestaciones proyectadas, son compatibles, tanto en fase de construcción, como en fase de funcionamiento y desmantelamiento.

Aunque en las fases de construcción y desmantelamiento pueda haber efectos negativos sobre la atmósfera, estos serán de intensidad baja y pueden ser corregidos con las medidas habituales de buenas prácticas en obra.

El funcionamiento, las líneas eléctricas contribuirán a la integración de las energías renovables en la red de consumo, lo que supondrá un efecto positivo para el cambio climático, ya que permitirá disminuir la huella de carbono de la producción energética. No obstante, estos efectos positivos en un contexto global como ha de entenderse el cambio climático, suponen tan solo una pequeña mejora, considerándose el efecto global sobre la atmósfera en fase funcionamiento de las LE y las ST como compatible, condicionado por el impacto lumínico de las ST sobre el medio.

Asimismo, la fase de desmantelamiento, supondrá la supresión del aporte de la energía renovable generada a la red eléctrica general, lo que puede traducirse como un efecto negativo, aunque compatible, pudiendo transportarse dicha energía mediante otras conexiones.

Tabla 129. Efectos globales sobre la atmósfera en fase de construcción, funcionamiento y desmantelamiento para LE y ST. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA ATMÓSFERA</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad del aire</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>Niveles sonoros</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>Contaminación lumínica</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Cambio climático</td>
<td>NO SIGNIFICATIVO</td>
<td>POSITIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA ATMÓSFERA</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
</tbody>
</table>
6.2.6 Efectos sobre los campos electromagnéticos

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

A diferencia de lo que ocurre con las líneas eléctricas y las subestaciones, la PFV no genera campos electromagnéticos significativos que pudieran afectar a la salud.

Tabla 130. Atributos de la importancia del efecto por campos electromagnéticos, ocasionado por la PFV. Se indica el valor numérico de la importancia del efecto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Campos electromagnéticos</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No significativo</td>
<td>No significativo</td>
<td>No significativo</td>
</tr>
<tr>
<td>Signo</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LEAT) y Subestaciones eléctricas de Transformación (ST)

En este apartado se abordan los siguientes aspectos, con objeto de valorar los impactos por campos electromagnéticos de las líneas eléctricas y las subestaciones:

- Efectos en la salud de los campos electromagnéticos.
- Marco legal en materia de campos electromagnéticos.
- Niveles de referencia.
- Estimación de los campos electromagnéticos ocasionados por las líneas eléctricas y las subestaciones.
- Presencia de núcleos urbanos e inventario de edificaciones próximas.
- Valoración del impacto por campos electromagnéticos.
Efectos generales de los campos electromagnéticos en la salud

Actualmente estamos sometidos a numerosos tipos de campos electromagnéticos de origen artificial: radiofrecuencias utilizadas en la telefonía móvil, ondas de radio y televisión, sistemas antirrobo, detectores de metales, radares, mandos a distancia, comunicación inalámbrica y un largo etcétera.

Todos ellos forman parte del 'espectro electromagnético' y se diferencian en su frecuencia, que determina sus características físicas y, por lo tanto, los efectos biológicos que pueden producir en los organismos expuestos.

A muy altas frecuencias la energía que transmite una onda electromagnética es tan elevada que puede llegar a dañar el material genético de la célula -el ADN-, siendo capaz de iniciar un proceso cancerígeno; éste es el caso de los rayos X. A las radiaciones situadas en esta zona del espectro se les conoce como 'ionizantes'.

Sin embargo, el sistema eléctrico europeo funciona a una frecuencia extremadamente baja (50 Hz), dentro de la región de las radiaciones no ionizantes del espectro, por lo que transmiten muy poca energía. Además, a frecuencias tan bajas el campo electromagnético no puede desplazarse (como lo hacen, por ejemplo, las ondas de radio), lo que implica que desaparece a corta distancia de la fuente que lo genera.

Al igual que cualquier otro equipo que funcione con energía eléctrica, su intensidad dependerá de diversos factores, como el voltaje, potencia eléctrica que transporta, geometría del apoyo, número de conductores, distancia de los cables al suelo, etc.

La preocupación por la salud humana y los factores que pudieran influir en ella han hecho que desde los años 60, pero sobre todo desde finales de los años 70, se hayan llevado a cabo multitud de estudios sobre si los campos eléctricos y magnéticos generados por las instalaciones eléctricas suponen algún tipo de riesgo para la salud. En conjunto, las investigaciones sobre efectos biológicos de los campos electromagnéticos han generado más de 25.000 artículos científicos (datos de la Organización Mundial de la Salud) lo que posiblemente les convierte en el agente más estudiado de la historia.

Marco legal en materia de campos electromagnéticos

El Real Decreto 123/2017, de 24 de febrero, por el que se aprueba el Reglamento sobre el uso del dominio público radioeléctrico, que tiene por objeto el desarrollo de la Ley 9/2014, de 9 de mayo, General de Telecomunicaciones (Ley General de Telecomunicaciones), en lo relativo al uso del dominio público radioeléctrico. En conformidad con lo establecido en el apartado b del artículo 61 de la Ley 9/2014, de 9 de mayo, General de Telecomunicaciones, se incorpora a este reglamento el procedimiento de control e inspección de los niveles únicos de emisión radioeléctrica tolerable y que no supongan un peligro para la salud pública, con la correspondiente actualización tecnológica de los servicios radioeléctricos, así como un título
relativo a la protección del dominio público radioeléctrico, que incluye la normativa sobre establecimiento de limitaciones y servidumbres, hasta ahora incluidos dentro del Real Decreto 1066/2001.

El Real Decreto 1066/2001, de 28 de septiembre, por el que se aprueba el reglamento que establece condiciones de protección del dominio público radioeléctrico, restricciones a las emisiones radioeléctricas y medidas de protección sanitaria frente a emisiones radioeléctricas, recogió en su texto estos mismos valores recomendados por la “International Commission on Non-Ionizing Radiation Protection” (a partir de ahora, ICNIRP), como niveles de referencia. Aclarar que, lo dicho anteriormente es aplicable para el rango de la radiofrecuencia, si bien los valores de la ICNIRP son relevantes, ya que incluyen también los valores límite para frecuencias de 50Hz de las líneas eléctricas que aquí nos ocupan. Estos valores de la ICNIRP son los que recoge la Recomendación del Consejo Europeo relativa a la exposición del público en general a campos electromagnéticos (0 Hz a 300 GHz), 1999/519/CE, publicada en el Diario Oficial de las Comunidades Europeas en julio de 1999.

Por otra parte, el Real Decreto 337/2014 de 9 de mayo (BOE 9/6/2014), por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, que incluye en la Instrucción Técnica ITC-RAT 14, “Instalaciones eléctricas de interior”, un apartado 4.7 titulado “Limitación de los campos magnéticos en la proximidad de instalaciones de alta tensión”, en el que se incluyen valores límite.

Niveles de referencia

Como punto de partida, indicar que el marco legal de referencia en materia de evaluación de impacto y de campos electromagnéticos fue expuesto en el apartado anterior.

El principio de precaución del artículo 3 de la Ley 33/2011 de 4 de octubre, General de Salud Pública establece que la existencia de indicios fundados de una posible afectación grave de la salud de la población, aun cuando hubiera incertidumbre científica sobre el carácter del riesgo, determinará la cesación, prohibición o limitación de la actividad sobre la que concurran.

La Recomendación de la Unión Europea para el público en general (1999/519/CE), basada en la guía de ICNIRP de 1998, establece como parámetros básicos:

- ‘Restricción Básica’, parámetro que no se debe superar. Para 50 Hz es una Densidad de Corriente Inducida de 2 mA/m² en el sistema nervioso central.
- ‘Niveles de Referencia’, valores de campo externo por debajo de los cuales se cumple la restricción básica. Para 50 Hz son 5 kV/m (campo eléctrico) y 100 µT (campo magnético), por debajo de los cuales se asegura el cumplimiento de esta Restricción.
Tras su aprobación en julio de 1999 por el Consejo de Ministros de Sanidad de la Unión Europea, en España se aplica la Recomendación del Consejo Europeo relativa a la exposición del público en general a campos electromagnéticos (0 Hz a 300 GHz) 1999/519/CE.

En el informe de ICNIRP “Guidelines for limiting to time-varying electric and magnetic fields” de 2010, se establecen, como niveles de referencia de exposición variable para población en general los 200 µT para rangos de frecuencia entre los 25 y 400 Hz, mientras que para exposiciones a largo plazo recoge lo siguiente:

CONSIDERATIONS REGARDING POSSIBLE LONG-TERM EFFECTS

As noted above, epidemiological studies have consistently found that everyday chronic low-intensity (above 0.3–0.4 µT) power frequency magnetic field exposure is associated with an increased risk of childhood leukemia. IARC has classified such fields as possibly carcinogenic. However, a causal relationship between magnetic fields and childhood leukemia has not been established nor have any other long-term effects been established. The absence of established causality means that this effect cannot be addressed in the basic restrictions. However, risk management advice, including considerations on precautionary measures, has been given by WHO (2007a and b) and other entities.

Por ello, siguiendo el principio de precaución de la Ley 33/2011 mencionado anteriormente, así como estas evidencias epidemiológicas referidas en el párrafo anterior, a pesar de que los niveles de referencia recogidos en la legislación son menos restrictivos, consideraremos 0,3µT como nivel de referencia en este estudio en lo relativo a campo magnético.

Estimación de los campos electromagnéticos ocasionados por las líneas eléctricas

En este apartado se incluye una estimación de campos electromagnéticos de los elementos que constituyen el proyecto, dado que carecemos de cálculos directos.

Las estimaciones realizadas se refieren tanto para el campo magnético y el campo eléctrico máximos.

- **Estimaciones de campo magnético máximos**

El campo magnético generado por la línea considera la disposición geométrica de los conductores y la intensidad máxima de la línea.

El valor máximo del campo magnético se encuentra bajo los conductores. Según los modelos de la Asociación Española de la Industria Eléctrica (UNESA), el valor máximo a 1 m sobre el nivel del terreno suele ser aproximadamente de unos 15µT para líneas de 400kV y 2µT para líneas eléctricas a 132kV.
Tabla 131. Campo eléctrico y magnético para diferentes tipos de líneas. Fuente: UNESA.

<table>
<thead>
<tr>
<th>Tensión (kV)</th>
<th>Campo magnético de 50 Hz (µT)</th>
<th>Campo eléctrico (kV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bajo conductores</td>
<td>A 30 m</td>
</tr>
<tr>
<td>400</td>
<td>0,4-15</td>
<td>0,1-3</td>
</tr>
<tr>
<td>220</td>
<td>0,4-6</td>
<td>0,1-1,5</td>
</tr>
<tr>
<td>132</td>
<td>0,5-2</td>
<td>0,1-1</td>
</tr>
<tr>
<td>66</td>
<td>0,2-0,5</td>
<td><0,1</td>
</tr>
</tbody>
</table>

A medida que aumenta la distancia a la línea, el campo magnético disminuye considerablemente, con una tendencia asintótica a un valor nulo. Los modelos suelen dar como estimación aproximada, valores inferiores a 0,3µT aproximadamente a partir de los 60-65 m a 30% de carga y a los 95-100 m, a 100% de carga para las líneas de 400kV, mientras que en las líneas de 132kV a partir de los 30 m los valores oscilan entre 0,1 y 1 µT.

- **Valores de campo eléctrico máximos**

El campo eléctrico se estima considerando el conductor recto e infinito. Según los modelos habitualmente utilizados, el campo transversal en estas condiciones queda por debajo del valor de referencia (5 kV/m), ya que alcanza el valor máximo (a un metro de altura sobre el terreno) de unos 3,5 kV/m aproximadamente a 10 m desde el eje para líneas de 400kV, mientras que en líneas de 132 kV el valor máximo (bajo conductores) es de 0,8 kV.

Estimación de los campos electromagnéticos ocasionados por las subestaciones

En el interior de una subestación, la zona donde está toda la aparatación eléctrica y el paso está restringido únicamente a trabajadores, los niveles de campo eléctrico y magnético pueden llegar a ser algo superiores a los generados por las líneas. Sin embargo, disminuyen aún más rápidamente al alejarnos, por lo que fuera de la subestación, en sitios accesibles al público, serán incluso inferiores a los que generan las propias líneas eléctricas de entrada y salida. Por lo tanto, se puede afirmar que las instalaciones eléctricas de alta tensión cumplen la recomendación europea, pues el público no estará expuesto a campos electromagnéticos por encima de los recomendados en sitios donde pueda permanecer mucho tiempo.

En concreto los valores más elevados en el perímetro de la subestación se localizan bajo las líneas eléctricas que entran y salen de éstas, ya que son las propias líneas las que contribuyen como fuente principal de campo eléctrico y magnético en el perímetro de las subestaciones.

En el plan de medidas de 2004 de Red Eléctrica de España los resultados de las mediciones realizadas en el perímetro de las subestaciones fueron los siguientes:
Tabla 132. Mediciones de los campos eléctrico y magnético en el perímetro de las subestaciones. Fuente: UNESA.

<table>
<thead>
<tr>
<th></th>
<th>Campo eléctrico (kV/m)</th>
<th>Campo magnético (µT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(En el perímetro de la subestación)</td>
<td></td>
</tr>
<tr>
<td>Subestaciones de 200 kV</td>
<td>0,0 – 0,7</td>
<td>0,0 – 1,0</td>
</tr>
<tr>
<td>Subestaciones de 400 kV</td>
<td>0,0 – 3,5</td>
<td>0,0 – 4,0</td>
</tr>
</tbody>
</table>

En el caso de las subestaciones blindadas en edificio, los valores de campo registrados en su perímetro son aún mucho más bajos. El campo eléctrico es apantallado por el propio edificio, siendo las líneas de entrada y de salida en la subestación la única fuente que genera campo eléctrico en las inmediaciones de la misma. Respecto al campo magnético, los valores registrados en el borde de la subestación son también inferiores a los de aquellas con configuración convencional debido a que al encontrarse todos sus elementos más próximos entre sí se genera una mayor cancelación del campo magnético que producen. En resumen, fuera de la subestación, los valores de campo eléctrico y magnético existentes son los generados por las propias líneas de entrada y salida.

Conclusiones sobre las estimaciones de los campos electromagnéticos

Como primera conclusión de este apartado relativo a las estimaciones de los campos electromagnéticos ocasionados por el proyecto, podemos afirmar que las líneas tienen, de manera comparativa, mayores efectos que las subestaciones.

Asimismo, los valores por debajo del nivel de referencia, en particular los 0,3µT de campo magnético (que son los limitantes dado que los eléctricos no superan nunca el nivel de referencia) se consiguen en líneas eléctricas de 400kV aproximadamente a partir de los 100 m, considerando a 100% de carga en la línea y a partir de los 30 m en líneas de 132kV el valor oscila entre 0,1 y 1 µT.

- **Presencia de núcleos urbanos**

En el ámbito de estudio de 2.000 m se encuentran presentes varios municipios: Tres Cantos, Madrid, El Molar, Algete, Pedrezuela, Torrelaguna, Torremocha de Jarama, Colmenar Viejo, San Agustín de Guadalix, Talamanca de Jarama, Valdepiélago, Valdetorres de Jarama y El Vellón.

En estos términos, encontramos núcleos urbanos principales dentro del ámbito de estudio:

Tabla 133. Distancia de los núcleos urbanos incluidos en el ámbito de 2 km a las LEATs y ST del proyecto. Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Núcleo urbano</th>
<th>Distancia (km)</th>
<th>Elemento del proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torremocha del Jarama</td>
<td>2,5</td>
<td>ST Colimbo</td>
</tr>
<tr>
<td>Torrelaguna</td>
<td>1,73</td>
<td>L/132kV GR Colimbo-Colectora La Cereal</td>
</tr>
</tbody>
</table>
Por lo tanto, todos los núcleos urbanos presentes en el ámbito se encuentran lejos de los 100m de posible franja de afección por CEM excepto el Polígono Industrial Sur, cerca de Valdelagua, que es atravesado por el tramo soterrado de la L/132kV GR Colimbo-Colectora La Cereal.

- **Inventario de edificaciones próximas**

Se ha realizado el inventario de todas las edificaciones situadas en un corredor de 100 m de anchura a cada lado del trazado de ambas líneas, por quedar del lado de la seguridad. Como resultado del barrido del citado corredor de 100m se encontraron las siguientes edificaciones:

Tabla 134. Edificaciones incluidas en el corredor de 100m de la L/132kV GR Colimbo-Colectora La Cereal. Fuente: Elaboración propia.

Nº	Coordenada X	Coordenada Y	Tipología	Distancia (m)	Referencia
1	452420,95	4507331,81	Agrario	81,89	28086A00800241
2	452442,39	4507335,78	Agrario	60,70	28086A00800241
3	452172,25	4505359,47	Agrario	49,80	Sin identificar en catastro
4	449280,67	4501641,87	Agrario	64,50	28129A00600013
5	449279,88	4501607,74	Agrario	30,29	28129A00600013
6	449031,70	4501610,00	Industrial. Euro Pool System España	21,00*	9008903VL4091N
7	448894,95	4501577,42	Industrial. Mitsubishi Motors España	38,86*	9008902VL4091N
8	448871,40	4501576,45	Industrial. Mitsubishi Motors España	57,28*	9008902VL4091N
9	449049,76	4501465,83	Industrial	45,22*	9205901VL4091N
10	449002,99	4501472,60	Industrial	40,24*	9205901VL4091N
11	449002,99	4501461,96	Industrial	54,05*	9205901VL4091N
12	449002,99	4501447,77	Industrial	63,50*	9205901VL4091N
13	448962,35	4501454,22	Industrial	37,32*	9205901VL4091N
14	448950,74	4501444,54	Industrial	59,56*	9205901VL4091N
15	448942,36	4501438,09	Industrial	64,00*	9205901VL4091N
16	448935,26	4501460,67	Industrial	33,45*	9205901VL4091N
17	443661,31	4500591,29	Agrario	52,10	28045A01400006

* Distancia al tramo soterrado.
Tabla 135. Edificaciones incluidas en el corredor de 100m de la L/400kV Colectora La Cereal-La Cereal (REE). Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Tipología</th>
<th>Distancia (m)</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>442039,94</td>
<td>4500529,91</td>
<td>Agrario</td>
<td>93,00</td>
<td>28045A03800059</td>
</tr>
<tr>
<td>2</td>
<td>440738,06</td>
<td>4500412,57</td>
<td>Agrario</td>
<td>65,91</td>
<td>Sin identificar en catastro</td>
</tr>
<tr>
<td>3</td>
<td>440740,70</td>
<td>4500390,08</td>
<td>Agrario</td>
<td>85,54</td>
<td>Sin identificar en catastro</td>
</tr>
<tr>
<td>4</td>
<td>439571,24</td>
<td>4499769,36</td>
<td>Agrario</td>
<td>79,07</td>
<td>28045A03900019</td>
</tr>
<tr>
<td>5</td>
<td>439512,50</td>
<td>4499776,77</td>
<td>Agrario</td>
<td>65,12</td>
<td>28045A03900019</td>
</tr>
<tr>
<td>6</td>
<td>438222,39</td>
<td>4499694,75</td>
<td>Agrario</td>
<td>73,30</td>
<td>28045A04200065</td>
</tr>
</tbody>
</table>

Valoración del impacto

Considerando las estimaciones de los campos electromagnéticos, la distancia a núcleos urbanos y el inventario de las edificaciones próximas, se desprende lo siguiente:

En cuanto a las estimaciones de los campos electromagnéticos:

- El campo magnético generado por la línea a 132kV GR Colimbo-Colectora La Cereal desciende a valores de entre 0,1 y 1µT a partir de los 30 m al eje de la línea, por tanto, a más de esta distancia respecto del eje se considera que queda garantizada la ausencia de efectos significativos en la salud (ya que 0,3µT es el nivel de referencia considerado en este estudio).

- El campo magnético generado por la línea a 400kV Colectora La Cereal-La Cereal (REE) desciende de 0,3µT del nivel de referencia considerado en este estudio, a partir de los 95-100 m al eje de la línea a carga máxima (100%), por tanto, a más de 100 m distancia respecto del eje queda totalmente garantizada la ausencia de efectos significativos en la salud.

- Es interesante indicar que estos valores son siempre muy inferiores a los niveles de referencia de 100µT, y más aún respecto a los 200µT, considerados en la revisión de ICNIRP de 2010.

En cuanto a las poblaciones, núcleos y asentamientos concentrados o diseminados:

- El asentamiento urbano de población más cercano, se encuentra a una distancia muy superior de 100m a los apoyos más próximos.

En cuanto a las edificaciones próximas:

- Se han identificado 17 edificaciones en el corredor de 100m revisado para la L/132kV GR Colimbo-Colectora La Cereal. De estas 17 edificaciones no existe ninguna vivienda ni edificación de uso residencial, siendo 6 de uso agrícola (naves y almacenes) y 11 de uso industrial. Estas últimas serían coincidentes todas con el tramo soterrado de la línea eléctrica. De todas ellas, sólo 1 (Edificio de Euro Pool
System España) estaría situada a menos de 30 m de distancia del eje de la línea, 5 estarían entre 30 y 50 m y el resto a más de 50 m de distancia.

- Se han identificado 6 edificaciones de uso agrario (naves y almacenes) en el corredor de 100m revisado para la L/400kV Colectora La Cereal – La Cereal (REE).

En virtud de lo anterior, y teniendo en cuenta que no hay ninguna vivienda ni edificación de tipo residencial en la banda de 100m de ancho a cada lado de las líneas eléctricas y que las edificaciones de uso industrial coincidentes con dicha banda se corresponden con el tramo soterrado de la línea a 132kV GR Colimbo-Colectora La Cereal, se considera que ni las líneas eléctricas, ni tampoco las subestaciones, generarán efectos electromagnéticos incompatibles con la salud en las zonas de presencia habitual de personas más cercanas a ella de acuerdo a la normativa vigente.

Este análisis preliminar cualitativo descarta la presencia de riesgos significativos, por lo que no es necesario completarlo con análisis de mayor profundidad.

Aclarar que los impactos por campos electromagnéticos sólo pueden considerarse en fase de funcionamiento ya que son nulos en fase de construcción.

Asimismo, la caracterización de los efectos por campos electromagnéticos en fase de funcionamiento es: (signo) negativo, (intensidad) baja, (extensión) localizada, (relación causa-efecto) directo, (complexidad) acumulativo, (persistencia) permanente; (reversibilidad natural) reversible y (recuperabilidad) recuperable. El impacto global en por campos electromagnéticos se valora como compatible.

Tabla 136. Atributos de la importancia del efecto por campos electromagnéticos, ocasionado por las líneas eléctricas y subestaciones. Se indica el valor numérico de la importancia del efecto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Campos electromagnéticos</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>Negativo</td>
<td>-</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>Localizado</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>Directo</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>Acumulativo</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>Permanente</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>Reversible</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>Recuperable</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0,40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>
6.3 EFECTOS SOBRE LA GEOLOGÍA

Considerando los Lugares de Interés Geológico como aquellos espacios en los que se dan características geológicas distintivas y muy especiales, los efectos sobre la geología se analizan teniendo en cuenta la afeción sobre los Lugares de Interés Geológico recogidos en el Inventario Español de Lugares de Interés Geológico (IELIG).

6.3.1 Efectos sobre los Lugares de Interés Geológico

En el ámbito de estudio se localizan dos LIG:

- TM007 “Yacimiento del Mioceno inferior de la Encinilla”
- TM013 “Falla de El Molar”

A continuación, se estudia la afeción sobre los mismos por el desarrollo de la PFV y su LSMT, así como por el desarrollo de las LE y las ST proyectadas.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Tanto el TM013, como el TM007, se localizan alejados del área de implantación de la PFV GR Colimbo, por lo que no se espera que se produzcan efectos sobre los mismos durante la fase de construcción de la planta, así como durante su fase de funcionamiento o desmantelamiento.

Tabla 137. Atributos de la importancia del impacto en la geología en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Geología</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
</tbody>
</table>
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Con respecto a las líneas eléctricas proyectadas, el TM007 resulta coincidente con 2.800 metros de la traza L/132kV GR Colimbo – Colectora La Cereal, tal y como se aprecia en la siguiente figura.

![Figura 109 Interacción entre la traza de la L/132kV GR Colimbo - Colectora la Cereal con el LIG TM007.](image)

Dado que los proyectos de la L/132kV GR Colimbo – Colectora la Cereal y de la L/400kV Colectora La Cereal – La Cereal REE se encuentran en fase de definición básica, en la que no se aporta información relativa a los apoyos de las LE, no puede definirse la afección real que podrá darse sobre el TM007, derivada principalmente de las excavaciones y los movimientos de tierra necesarios para las cimentaciones de los apoyos y la ejecución de sus plataformas de trabajo, así como lo posibles accesos de nueva construcción requeridos.

Con el fin de determinar la afección real se realizará una prospección arqueológica superficial de carácter intensivo en estos 2.800 metros, y se evitará la localización de apoyos y accesos fuera de áreas sensibles.
Tabla 138. Atributos de la importancia del impacto en la geología en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Geología</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>Localizado</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>Directo</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>Simple</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>Permanente</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>Irreversible</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
</tbody>
</table>

6.3.2 Valoración final del efecto potencial sobre la geología

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

De acuerdo a lo indicado anteriormente, no se esperan efectos significativos sobre los Lugares de Interés Geológico debido al desarrollo de la PFV GR colimbo en ninguna de sus fases.

Tabla 139. Efectos globales sobre la geología en fase de construcción, funcionamiento y desmantelamiento para PFV.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA GEOLOGÍA</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construcción</td>
</tr>
<tr>
<td>Lugares de Interés Geológico</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA HIDROLOGÍA</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Sin embargo, la L/132kV GR Colimbo – Colectora La Cereal, resulta coincidente en 2.800 metros con el LIG TM007, por lo que las fases de construcción y funcionamiento de la LE se considera que generarán efectos de carácter compatible-moderado sobre la geología, mientras que su desmantelamiento tendrá un efecto compatible. De manera preventiva, se realizarán prospecciones superficiales previas para evitar la afección al LIG.
Tabla 140. Efectos globales del impacto en la geología en fase de construcción, funcionamiento y desmantelamiento para ST y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA GEOLOGÍA</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construcción</td>
</tr>
<tr>
<td>Lugares de Interés Geológico</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA GEOLOGÍA</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
</tbody>
</table>

6.4 EFECTOS SOBRE LA HIDROLOGÍA

En relación a la hidrología, es necesario valorar los efectos sobre el drenaje natural, debido a los movimientos de tierra que se generarán durante la fase de construcción, y que podrían provocar la alteración de la red de drenaje por arrastre de sólidos en suspensión.

Por otro lado, se evalúa también el impacto sobre la calidad de las aguas que podrían derivarse de las alteraciones de los recursos hídricos superficiales debido a la contaminación accidental de los mismos, por acumulación de escombros o residuos líquidos o sólidos con motivo de la realización de las obras en las proximidades de los cauces existentes en la zona.

Asimismo, en el presente apartado se valoran los posibles efectos que el proyecto pudiera ocasionar sobre las aguas subterráneas, por lixiviado de contaminantes a capas profundas del suelo.

Por último, se analizan los posibles efectos del proyecto sobre el Dominio Público Hidráulico y sus zonas de protección, y a la vegetación asociada a estas zonas.

6.4.1 Alteración de la red de drenaje natural

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Durante la fase de construcción de la planta solar fotovoltaica GR Colimbo se llevarán a cabo una serie de actuaciones en el medio, como excavaciones y movimientos de tierras, que producirán una modificación del terreno, dando lugar a un cambio en las condiciones de escorrentía.

La planta solar fotovoltaica dispondrá de una red de drenaje que se encargará de encauzar las posibles escorrentías en momentos de lluvias torrenciales, por lo que se considera que los efectos sobre la red de drenaje natural serán compatibles tanto en fase de construcción como en fase de funcionamiento y positivos en fase de desmantelamiento.
Tabla 141. Atributos de la importancia del impacto en la red de drenaje natural en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>20</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,4</td>
<td>0,4</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Durante la fase de construcción de la ST Colimbo, la ST Colectora La Cereal, la línea eléctrica a 132 kV GR Colimbo – Colectora La Cereal y la línea eléctrica a 400kV Colectora La Cereal – La Cereal REE, se llevarán a cabo una serie de actuaciones en el medio, como excavaciones y movimientos de tierras, que producirán una modificación del terreno, dando lugar a un cambio en las condiciones de escorrentía.

En el caso de las ST objeto de proyecto, las zonas de actuación se ubican en áreas con relieve llano, sin líneas de drenaje definidas, donde la escorrentía existente en las parcelas se considera muy poco activa y de carácter difuso.

Asimismo, debido a que las subestaciones eléctricas dispondrán de una red de drenaje que se encargará de encauzar las posibles escorrentías en momentos de lluvias torrenciales y que los movimientos de tierras y la alteración geomorfológica asociada se reducirán a la ubicación de las plataformas, se considera que los efectos sobre la red de drenaje natural no serán significativos.

En el caso de la línea eléctrica a 132 kV GR Colimbo – Colectora La Cereal y la línea eléctrica a 400kV Colectora La Cereal – La Cereal REE, los movimientos de tierra se limitarán, por un lado, a la excavación de las cimentaciones de los apoyos, y a la apertura de accesos a los apoyos (cuyo efecto será evaluado en fase de proyecto técnico con los apoyos y accesos
definidos) y por otro a la excavación de las zanjas para los pasos soterrados del río Guadalix y del arroyo Tejada.

Las obras necesarias para la ejecución del tramo soterrado de la línea eléctrica a 132 kV GR Colimbo – Colectora La Cereal bajo el río Guadalix, y del tramo soterrado de la L400kV Colectora La Cereal-La Cereal REE bajo el arroyo Tejada, generarán un elevado volumen de excedentes de excavación, para lo cual habrá que implementar una serie de medidas preventivas y correctoras que aseguren la fijación de las vaguadas existentes a ambos lados de los cauces y se respete de esta forma el drenaje natural de las mismas, de tal manera que no se generen afecciones sobre los cauces. Por tanto, se considera que la actuación puede afectar de forma moderada a la red de drenaje natural y/o a su geomorfología en la fase de construcción, compatible-moderado en fase de funcionamiento y positivo en la fase de desmantelamiento. La aplicación de las medidas preventivas y correctoras reducirá los efectos.

Tabla 142. Atributos de la importancia del impacto en la red de drenaje natural en fase de construcción, de funcionamiento y desmantelamiento para ST y LEAT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Red de drenaje natural</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>Baja-Media</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>26</td>
<td>23</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0.52</td>
<td>0.46</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

VALORACIÓN MODERADO | COMPATIBLE-MODERADO | POSITIVO
6.4.2 Alteración de la calidad de las aguas (Arrastre de sólidos y vertidos accidentales)

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

La alteración de la calidad de las aguas se puede dar por dos causas:

- Arrastre de sólidos o sedimentos.
- Contaminación de cursos de agua superficial o como consecuencia de vertidos accidentales.

En relación al arrastre de sólidos es posible que, si no se aplican medidas preventivas en la fase de movimientos de tierras, se produzcan afecciones sobre la calidad de las aguas superficiales del cauce innominado situado entre dos parcelas de la PFV GR Colimbo que transcurre por una zona en la que, si bien la diferencia de pendiente existente en ellas se presenta de forma paralela a dicho cauce (de oeste a este), al toparse aguas abajo con una carretera con disposición norte-sur, todo el posible arrastre de sedimentos de la zona se vertería hacia el paso de agua bajo la carretera.

Figura 110. Localización de la PFV GR Colimbo sobre terrenos de cultivo y arbolado presente en las orillas del cauce innominado (a la derecha de la imagen).

Respecto a vertidos accidentales, la presencia de maquinaria en las cercanías de cursos de agua conlleva un riesgo de accidentes asociado que puede derivar en vertidos de aceites e hidrocarburos u hormigón.

Sin embargo, no se prevén afecciones por pérdidas de aceite o combustible, ya que se considera que la ocurrencia de esta circunstancia es accidental, de baja probabilidad y de fácil prevención con la aplicación de medidas preventivas.
Tabla 143. Atributos de la importancia del impacto en la calidad de las aguas en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja-Media</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>24</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,48</td>
<td>0,4</td>
<td>-</td>
</tr>
</tbody>
</table>

VALORACIÓN

COMPATIBLE-MODERADO COMPATIBLE POSITIVO

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

En el caso de las ST Colimbo y ST Colectora La Cereal, del tramo aéreo de la línea eléctrica a 132 kV GR Colimbo-Colectora La Cereal y del tramo aéreo de la línea eléctrica a 400kV Colectora La Cereal-La Cereal REE, no se prevé que se produzcan afecciones significativas sobre la calidad de las aguas superficiales y subterráneas, debidas a su localización.

Tampoco se prevén afecciones por pérdidas de aceite o combustible, ya que se considera como un hecho accidental de muy baja probabilidad. Por ello, en caso de vertido accidental, son susceptibles de aplicación tanto medidas minimizadoras como correctoras y, en cualquier caso, el vertido sería de escasa dimensión y reducido a las inmediaciones de los depósitos de las propias máquinas. La ocurrencia de esta circunstancia es accidental, de baja probabilidad y de fácil prevención con la aplicación de medidas preventivas. Asimismo, el uso de maquinaria pesada determina la compactación del suelo, hecho que contribuye a minimizar este riesgo.

Sin embargo, se estima que la intensidad y la magnitud de las obras necesarias para la ejecución del tramo soterrado de la línea eléctrica a 132 kV GR Colimbo – Colectora La Cereal bajo el río Guadalix y del tramo soterrado de la L400kV Colectora La Cereal-La Cereal REE bajo el arroyo Tejada, conllevarán la generación de un elevado volumen de excedentes de excavación, para lo cual habrá que implementar una serie de medidas preventivas y correctoras que aseguren la fijación de las vaguadas existentes a ambos lados de los cauces,
de tal manera que no se generen afecciones sobre la calidad de las aguas debido al lixiviado de excedentes de excavación ni por aporte de sedimentos a los cauces.

Asimismo, una vez que se disponga del Proyecto técnico de ejecución (apoyos, localización de las hincas, localización de cámaras de empalme y accesos) se podrá evaluar realmente los efectos sobre la potencial afección a la calidad de las aguas. Además, con este grado de definición del proyecto se dispondrá del volumen concreto de los excedentes de excavación a generar y su tipología. A este respecto, será necesario implementar en el plan de gestión de residuos la gestión de los excedentes de excavación a través de gestor autorizado, dando cumplimiento a los requerimientos y especificaciones de la legislación medioambiental existente en materia de residuos.

Por todo esto, se estima que la afección sobre la calidad de las aguas si no se llevan a cabo medidas preventivas y correctoras sería para la fase de construcción moderada-severa, compatible para la fase de funcionamiento y positiva para la fase de desmantelamiento.

Tabla 144. Atributos de la importancia del impacto en la calidad de las aguas en fase de construcción, de funcionamiento y desmantelamiento para ST y LEAT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Calidad de las aguas</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td></td>
<td>Negativo</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td></td>
<td>Alta</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td></td>
<td>Localizado</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td></td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td></td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td></td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td></td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td></td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>32</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,64</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALORACIÓN

- MODERADO - SEVERO
- COMPATIBLE
- POSITIVO

6.4.3 Afección a aguas subterráneas

Hidrogeológicamente, 24,18 ha de la PFV GR Colimbo, coinciden con la masa de agua subterránea 030.024 “Aluvial del Jarama: Guadalajara-Madrid” y 6,62 ha de dicha PFV y 7,39 km de la L132kV GR Colimbo-Colectora La Cereal con la masa de agua 030.004 “Torrelaguna”.

Página 361
La ST Colectora la Cereal, la L400kV Colectora La Cereal-La Cereal REE y 19,75 km de la L132kV GR Colimbo-Colectora la Cereal se encuentran sobre la masa de agua subterránea 030.010 “Madrid: Manzanares-Jarama”.

Las unidades pueden considerarse como acuíferos multicapa en los que la permeabilidad se concentra fundamentalmente en los tramos calcáreos, mientras que los detríticos son de media-baja permeabilidad.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Se considera que la construcción de la PFV GR Colimbo, no producirá afecciones significativas sobre las aguas subterráneas, ya que el emplazamiento del proyecto se sitúa fundamentalmente sobre materiales detríticos de permeabilidad media-baja, por lo que se considera el impacto como compatible.

En el caso de la LSMT, la línea cruza de forma soterrada un arroyo innominado. Para llevar a cabo el soterramiento de la línea mediante perforación dirigida será necesaria la realización de un Estudio hidrogeológico específico de tal manera que el soterramiento se lleve a cabo asegurando la no afección del cauce ni de sus recursos hídricos superficiales y subterráneos, por lo que el impacto se ha considerado como moderado en la fase de construcción, compatible en la fase de funcionamiento y positivo en la fase de desmantelamiento.

Tabla 145. Atributos de la importancia del impacto en las aguas subterráneas en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Aguas subterráneas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
</tr>
<tr>
<td>Significativo/No significativo</td>
</tr>
<tr>
<td>Signo</td>
</tr>
<tr>
<td>Intensidad</td>
</tr>
<tr>
<td>Extensión</td>
</tr>
<tr>
<td>Causa-efecto</td>
</tr>
<tr>
<td>Complejidad</td>
</tr>
<tr>
<td>Persistencia</td>
</tr>
<tr>
<td>Reversibilidad</td>
</tr>
<tr>
<td>Recuperabilidad</td>
</tr>
<tr>
<td>Importancia (Im)</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
</tr>
<tr>
<td>VALORACIÓN</td>
</tr>
</tbody>
</table>
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Se considera que la construcción de las subestaciones y las líneas eléctricas aéreas contempladas en el proyecto no producirán afecciones significativas sobre las aguas subterráneas, ya que el emplazamiento del proyecto se sitúa fundamentalmente sobre materiales detriticos de permeabilidad media-baja, por lo que se considera el impacto como compatible.

En el caso del tramo soterrado de la L132kV GR Colimbo-Colectora La Cereal, la línea cruza de forma soterrada el cauce del río Guadalix y en el caso del tramo soterrado de la L400kV Colectora La Cereal-La Cereal REE la línea cruza de forma soterrada el cauce del arroyo Tejada. Para llevar a cabo el soterramiento de las líneas mediante perforación dirigida será necesaria la realización de un Estudio hidrogeológico específico de tal manera que el soterramiento se lleve a cabo asegurando la no afección de los cauces ni de sus recursos hídricos superficiales y subterráneos.

Debido a la magnitud de la obra necesaria para llevar a cabo los tramos soterrados bajo el río Guadalix y bajo el arroyo Tejada, se estima que las afecciones podrían tener un impacto moderado en la fase de construcción.

Tabla 146. Atributos de la importancia del impacto en las aguas subterráneas en fase de construcción, de funcionamiento y desmantelamiento para ST y LEAT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Agua subterráneas</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>26</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,52</td>
<td>0,4</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.4.4 Efectos en el Dominio Público Hidráulico y sus zonas de protección

OCUPACIÓN DEL DOMINIO PÚBLICO HIDRÁULICO
Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

En relación con la superficie planteada en el proyecto para la instalación de la PFV GR Colimbo, no existe coincidencia con el DPH ni zona de servidumbre de ninguno de los cauces presentes en el ámbito de estudio, pero sí existe coincidencia de 3,30 ha de la misma con la zona de policía de un cauce innominado.

En relación a la LSMT de la PFV GR Colimbo, al cruzar de forma soterrada el arroyo innominado presente en su trazado, se considera que no habrá afección ni en el DPH ni en su zona de servidumbre. Sin embargo, sí habrá ocupación del tramo coincidente con la zona de policía donde además será necesario el acopio de los excedentes de excavación procedentes de la apertura de la zanja y excedentes de excavación extraídos del soterramiento bajo el cauce innominado anteriormente citado.

En estas superficies se aplicarán medidas preventivas para evitar posibles vertidos de aceite y otras sustancias contaminantes al suelo, como la impermeabilización y aislamiento de las zonas de trabajo o la prohibición de almacenamiento de este tipo de sustancias en obra y las superficies afectadas serán restauradas a su estado original una vez terminada la fase de construcción.

Debido a que la PFV GR Colimbo se localiza sobre terrenos de cultivo, se estima que no habrá afección a vegetación natural asociada a cauces. En el caso de la LSMT tampoco se estiman afecciones a la vegetación de ribera del cauce innominado ya que las hincas para el paso soterrado mediante perforación dirigida se llevarán a cabo en la zona de policía, en zonas ocupadas por cultivos agrícolas.
Por todo ello, se considera que la construcción de la planta solar fotovoltaica tendrá un efecto moderado con el DPH y sus zonas de protección en la fase de construcción:

Tabla 147. Atributos de la importancia del impacto en el DPH y sus zonas de protección en fase de construcción, de funcionamiento y desmantelamiento para PFV. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>26</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,52</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Lineas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

En resumen, las afecciones que la línea y subestación eléctricas pueden simplificarse en los siguientes tipos:

- Ocupación del Dominio Público Hidráulico y sus zonas de protección por cruce de conductores.
- Obras en Dominio Público Hidráulico y sus zonas de protección por instalación de apoyos y acondicionamiento de los accesos hasta ellos.
- Corta de árboles en el Dominio Público Hidráulico y sus zonas de protección para despejar la campa de montaje de los apoyos, para practicar los accesos o para mantener las distancias de seguridad eléctrica de la vegetación a los conductores.
Ocupación del dominio público hidráulico por cruce de conductores

Según la delimitación del dominio público hidráulico, en lo concerniente a los cruzamientos de las líneas eléctricas objeto del proyecto con cauces, se han identificado 59 cruces de conductores sobre cauces públicos:

Tabla 148. Cruces de la L/132kV GR Colimbo - Colectora La Cereal.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>455433,33</td>
<td>4514705,42</td>
<td>Arroyo de San Vicente</td>
</tr>
<tr>
<td>2</td>
<td>455206,54</td>
<td>4514659,28</td>
<td>Innominado</td>
</tr>
<tr>
<td>3</td>
<td>455074,70</td>
<td>4514632,80</td>
<td>Innominado</td>
</tr>
<tr>
<td>4</td>
<td>453302,10</td>
<td>4514069,20</td>
<td>Arroyo de la Solana</td>
</tr>
<tr>
<td>5</td>
<td>453100,20</td>
<td>4513653,90</td>
<td>Arroyo Valdenmedio</td>
</tr>
<tr>
<td>6</td>
<td>452960,00</td>
<td>4513215,40</td>
<td>Arroyo de las Praderas</td>
</tr>
<tr>
<td>7</td>
<td>452887,30</td>
<td>4512951,80</td>
<td>Innominado</td>
</tr>
<tr>
<td>8</td>
<td>452837,69</td>
<td>4512773,34</td>
<td>Innominado</td>
</tr>
<tr>
<td>9</td>
<td>452770,74</td>
<td>4512528,38</td>
<td>Arroyo de la Zurita</td>
</tr>
<tr>
<td>10</td>
<td>452732,72</td>
<td>4512387,68</td>
<td>Innominado</td>
</tr>
<tr>
<td>11</td>
<td>452663,30</td>
<td>4512134,90</td>
<td>Innominado</td>
</tr>
<tr>
<td>12</td>
<td>452622,67</td>
<td>4511986,62</td>
<td>Innominado</td>
</tr>
<tr>
<td>13</td>
<td>452583,53</td>
<td>4511843,44</td>
<td>Arroyo de Valdemayón</td>
</tr>
<tr>
<td>14</td>
<td>452428,20</td>
<td>4510887,30</td>
<td>Innominado</td>
</tr>
<tr>
<td>15</td>
<td>452421,40</td>
<td>4510754,30</td>
<td>Arroyo del Morenillo</td>
</tr>
<tr>
<td>16</td>
<td>452408,60</td>
<td>4510386,30</td>
<td>Arroyo de la Hocecilla</td>
</tr>
<tr>
<td>17</td>
<td>452597,20</td>
<td>4509942,60</td>
<td>Innominado</td>
</tr>
<tr>
<td>18</td>
<td>452606,20</td>
<td>4509469,20</td>
<td>Arroyo de la Fuente del Toro</td>
</tr>
<tr>
<td>19</td>
<td>452603,67</td>
<td>450947,02</td>
<td>Arroyo de la Fuente de la Cerca</td>
</tr>
<tr>
<td>20</td>
<td>452293,60</td>
<td>4509120,00</td>
<td>Arroyo de la Calera</td>
</tr>
<tr>
<td>21</td>
<td>452082,90</td>
<td>4508385,00</td>
<td>Innominado</td>
</tr>
<tr>
<td>22</td>
<td>452142,30</td>
<td>4508210,90</td>
<td>Innominado</td>
</tr>
<tr>
<td>23</td>
<td>452489,73</td>
<td>4507378,26</td>
<td>Arroyo de Valdearenas</td>
</tr>
<tr>
<td>24</td>
<td>452540,48</td>
<td>4507043,33</td>
<td>Innominado</td>
</tr>
<tr>
<td>25</td>
<td>452404,01</td>
<td>4506520,89</td>
<td>Innominado</td>
</tr>
<tr>
<td>26</td>
<td>452291,09</td>
<td>4506088,60</td>
<td>Arroyo de la Casita</td>
</tr>
<tr>
<td>27</td>
<td>452225,43</td>
<td>4505837,24</td>
<td>Innominado</td>
</tr>
<tr>
<td>28</td>
<td>452235,40</td>
<td>4505308,10</td>
<td>Innominado</td>
</tr>
<tr>
<td>29</td>
<td>451262,69</td>
<td>4502770,30</td>
<td>Arroyo de los Cañitos</td>
</tr>
<tr>
<td>30</td>
<td>450965,30</td>
<td>4502264,40</td>
<td>Innominado</td>
</tr>
<tr>
<td>31</td>
<td>450678,82</td>
<td>4501947,93</td>
<td>Barranco de Valdeñigo</td>
</tr>
<tr>
<td>32</td>
<td>450274,20</td>
<td>4501727,40</td>
<td>Arroyo de los Cañitos</td>
</tr>
<tr>
<td>33</td>
<td>449198,80</td>
<td>4501558,70</td>
<td>Río Guadalix*</td>
</tr>
<tr>
<td>34</td>
<td>446858,67</td>
<td>4501202,01</td>
<td>Innominado</td>
</tr>
<tr>
<td>35</td>
<td>446594,70</td>
<td>4501139,10</td>
<td>Innominado</td>
</tr>
<tr>
<td>36</td>
<td>445851,61</td>
<td>4500943,43</td>
<td>Arroyo de la Fresneda</td>
</tr>
<tr>
<td>Nº</td>
<td>Coordenada X</td>
<td>Coordenada Y</td>
<td>Cauce</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>37</td>
<td>444304,43</td>
<td>4500669,54</td>
<td>Innominado</td>
</tr>
<tr>
<td>38</td>
<td>444174,93</td>
<td>4500654,70</td>
<td>Innominado</td>
</tr>
<tr>
<td>39</td>
<td>443659,74</td>
<td>4500530,31</td>
<td>Arroyo de las Cañas de la Parrilla</td>
</tr>
<tr>
<td>40</td>
<td>443501,31</td>
<td>4500459,85</td>
<td>Arroyo del Gitano</td>
</tr>
</tbody>
</table>

* Cruzos soterrados

Tabla 149. Cruces de la L/400kV Colectora La Cereal - La Cereal REE con cauces.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>443308,16</td>
<td>4500431,43</td>
<td>Arroyo del Gitano</td>
</tr>
<tr>
<td>2</td>
<td>441470,59</td>
<td>4500443,69</td>
<td>Arroyo de Navacabera</td>
</tr>
<tr>
<td>3</td>
<td>441220,46</td>
<td>4500459,16</td>
<td>Innominado</td>
</tr>
<tr>
<td>4</td>
<td>440886,78</td>
<td>4500483,38</td>
<td>Arroyo de Salobral</td>
</tr>
<tr>
<td>5</td>
<td>440666,00</td>
<td>4500434,99</td>
<td>Arroyo de la Colada</td>
</tr>
<tr>
<td>6</td>
<td>440404,51</td>
<td>4500149,97</td>
<td>Arroyo de Ollera</td>
</tr>
<tr>
<td>7</td>
<td>440252,13</td>
<td>4499988,04</td>
<td>Arroyo de Salobral</td>
</tr>
<tr>
<td>8</td>
<td>439448,76</td>
<td>4499850,97</td>
<td>Innominado</td>
</tr>
<tr>
<td>9</td>
<td>438794,04</td>
<td>4499817,01</td>
<td>Innominado</td>
</tr>
<tr>
<td>10</td>
<td>438760,07</td>
<td>4499815,25</td>
<td>Innominado</td>
</tr>
<tr>
<td>11</td>
<td>437956,14</td>
<td>4499628,23</td>
<td>Arroyo de las Casillas</td>
</tr>
<tr>
<td>12</td>
<td>437508,04</td>
<td>4498705,04</td>
<td>Innominado</td>
</tr>
<tr>
<td>13</td>
<td>437495,38</td>
<td>4498602,91</td>
<td>Arroyo de las Casillas</td>
</tr>
<tr>
<td>14</td>
<td>437213,40</td>
<td>4497814,44</td>
<td>Arroyo Tejada</td>
</tr>
<tr>
<td>15</td>
<td>436946,02</td>
<td>4497401,86</td>
<td>Arroyo de la Canaleja</td>
</tr>
<tr>
<td>16</td>
<td>436204,19</td>
<td>4496719,79</td>
<td>Arroyo de Buitre</td>
</tr>
<tr>
<td>17</td>
<td>436104,06</td>
<td>4496491,88</td>
<td>Innominado</td>
</tr>
<tr>
<td>18</td>
<td>436110,67</td>
<td>4495728,72</td>
<td>Arroyo de Navalcapallo</td>
</tr>
<tr>
<td>19</td>
<td>437714,59</td>
<td>4494732,69</td>
<td>Arroyo Tejada</td>
</tr>
</tbody>
</table>

* Cruzos soterrados

El proyecto garantiza que los cruzamientos aéreos cumplen con la distancia mínima señalada por el RDPH.

Se prevé que estos cruzamientos no generarán efectos en sí mismos sobre los cauces ya que el tendido se realizará a mano.

Las posibles afecciones del tendido de cableado sobre cauces se centrarán en las incompatibilidades que surjan con la vegetación presente en esas zonas. Estas afecciones se detallan en el apartado de efectos sobre la vegetación.
Obras en dominio público hidráulico y sus zonas de protección

La evaluación sobre el DPH y zona de servidumbre se evaluará sobre el proyecto técnico de ejecución, una vez se tengan definidos los apoyos, hincas, cámaras de empalmes y accesos definidos.

DPH y Zona de servidumbre

El diseño de la traza ha tenido en cuenta la viabilidad de localizar apoyos fuera de dominio público hidráulico y sus zonas de protección.

Si no es posible evitar el diseño de accesos en estas zonas, se primarán los accesos existentes y de tipo campo a través frente a los de nueva construcción.

Zona de policía

En relación con las subestaciones eléctricas planteadas en el proyecto, existe coincidencia de 0,37 ha de la ST Colectora La Cereal con la zona de policía de un cauce innominado.

En lo concerniente a la línea eléctrica a 132kV GR Colimbo - Colectora La Cereal, ésta sobrevolará 41,23 km de zonas de policía de arroyos presentes en el ámbito de estudio y cruzará 211 m de la zona de policía del río Guadalix en su tramo soterrado y la L/400kV Colectora La Cereal – La Cereal REE sobrevolará 1,51 km de zonas de policía de diferentes arroyos en su tramo aéreo y cruzará 200 m de la zona del arroyo Tejada en su tramo soterrado.

Figura 111. Localización de la zona de cruce soterrado del río Guadalix.

En el caso de los cruces soterrados bajo el río Guadalix y el arroyo Tejada, para llevarlos a cabo será necesario generar un elevado volumen de excedentes de tierra y será necesario el
uso de maquinaria pesada de gran tonelaje, lo que producirá afecciones en la zona de policía del río y del arroyo. Asimismo, será necesaria la realización de un Estudio hidrogeológico específico de tal manera que el soterramiento mediante perforación dirigida se lleve a cabo asegurando la no afección del cauce ni de sus recursos hídricos superficiales y subterráneos ni del DPH y zona de servidumbre.

Efectos sobre la vegetación asociada a DPH y zonas de protección

Para caracterizar los efectos esperados sobre la vegetación natural ubicada en DPH o en zona de policía de cauces, es necesario diferenciar entre la localizada bajo la calle de seguridad de la línea y la presente en accesos y en los apoyos.

En relación a los efectos sobre la vegetación natural presente en la calle de seguridad de las líneas eléctricas a 132 kV y 400kV, coincidente con DPH o sus zonas de protección, estarían localizados en los siguientes cruces:

Tabla 150. Cruces de la L/132kV GR Colimbo – Colectora La Cereal con cauces con vegetación natural.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coord. X</th>
<th>Coord. Y</th>
<th>Cauce</th>
<th>Vegetación MFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>455433,33</td>
<td>4514705,42</td>
<td>Arroyo de San Vicente</td>
<td>Choperas y plataneras de producción</td>
</tr>
<tr>
<td>4</td>
<td>453302,10</td>
<td>4514069,20</td>
<td>Arroyo de la Solana</td>
<td>Bosques mixtos de frondosas autóctonas</td>
</tr>
<tr>
<td>5</td>
<td>453100,20</td>
<td>4513653,90</td>
<td>Arroyo Valdenmedio</td>
<td>Herbazal-Pastizal</td>
</tr>
<tr>
<td>6</td>
<td>452960,00</td>
<td>4513215,40</td>
<td>Arroyo de las Praderas</td>
<td>Arbustados</td>
</tr>
<tr>
<td>7</td>
<td>452887,30</td>
<td>4512951,80</td>
<td>Innominado</td>
<td>Pastizal-matorral</td>
</tr>
<tr>
<td>8</td>
<td>452837,69</td>
<td>4512773,34</td>
<td>Innominado</td>
<td>Pastizal-matorral</td>
</tr>
<tr>
<td>9</td>
<td>452770,74</td>
<td>4512528,38</td>
<td>Arroyo de la Zurita</td>
<td>Arbustados</td>
</tr>
<tr>
<td>10</td>
<td>452732,72</td>
<td>4512387,68</td>
<td>Innominado</td>
<td>Arbustados</td>
</tr>
<tr>
<td>11</td>
<td>452663,30</td>
<td>4512134,90</td>
<td>Innominado</td>
<td>Encinares</td>
</tr>
<tr>
<td>12</td>
<td>452622,67</td>
<td>4511986,62</td>
<td>Innominado</td>
<td>Arbustados</td>
</tr>
<tr>
<td>13</td>
<td>452583,53</td>
<td>4511843,44</td>
<td>Arroyo de Valdemayón</td>
<td>Arbustados</td>
</tr>
<tr>
<td>14</td>
<td>452428,20</td>
<td>4510887,30</td>
<td>Innominado</td>
<td>Pastizal-matorral</td>
</tr>
<tr>
<td>15</td>
<td>452421,40</td>
<td>4510754,30</td>
<td>Arroyo del Morenillo</td>
<td>Encinares (Quercus ilex)</td>
</tr>
<tr>
<td>16</td>
<td>452408,60</td>
<td>4510386,30</td>
<td>Arroyo de la Hocecilla</td>
<td>Pastizal-matorral</td>
</tr>
<tr>
<td>17</td>
<td>452597,20</td>
<td>4509942,60</td>
<td>Innominado</td>
<td>Herbazal-Pastizal</td>
</tr>
<tr>
<td>18</td>
<td>452606,20</td>
<td>4509469,20</td>
<td>Arroyo de la Fuente del Toro</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>19</td>
<td>452603,67</td>
<td>4509447,02</td>
<td>Arroyo de la Fuente de la Cerca</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>20</td>
<td>452293,60</td>
<td>4509120,00</td>
<td>Arroyo de la Calera</td>
<td>Herbazal-Pastizal</td>
</tr>
<tr>
<td>21</td>
<td>452082,90</td>
<td>4508385,00</td>
<td>Innominado</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>22</td>
<td>452142,30</td>
<td>4508210,90</td>
<td>Innominado</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>23</td>
<td>452489,73</td>
<td>4507378,26</td>
<td>Arroyo de Valdearenas</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>25</td>
<td>452404,01</td>
<td>4506520,89</td>
<td>Innominado</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>Nº</td>
<td>Coord. X</td>
<td>Coord. Y</td>
<td>Cauce</td>
<td>Vegetación MFE</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>26</td>
<td>452291,09</td>
<td>4506088,60</td>
<td>Arroyo de la Casita</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>27</td>
<td>452225,43</td>
<td>4505837,24</td>
<td>Innominado</td>
<td>Pastizal-matorral</td>
</tr>
<tr>
<td>28</td>
<td>452235,40</td>
<td>4505308,10</td>
<td>Innominado</td>
<td>Pastizal-matorral</td>
</tr>
<tr>
<td>29</td>
<td>451262,69</td>
<td>4502770,30</td>
<td>Arroyo de los Cañítos</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>30</td>
<td>449198,80</td>
<td>4501558,70</td>
<td>Río Guadalix</td>
<td>Bosque ribereño*</td>
</tr>
<tr>
<td>31</td>
<td>445851,61</td>
<td>4500943,43</td>
<td>Arroyo de la Fresneda</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>32</td>
<td>443044,43</td>
<td>4500669,54</td>
<td>Innominado</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>33</td>
<td>444174,93</td>
<td>4500654,70</td>
<td>Innominado</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>34</td>
<td>443659,74</td>
<td>4500530,31</td>
<td>Arroyo de las Cañas de la Parrilla</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>35</td>
<td>443501,31</td>
<td>4500459,85</td>
<td>Arroyo del Gitano</td>
<td>Matorral con arbolado disperso</td>
</tr>
</tbody>
</table>

* Cruce soterrado

Tabla 151. Cruces de la L/400kV Colectora La Cereal - La Cereal REE con cauces.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Coord. X</th>
<th>Coord. Y</th>
<th>Cauce</th>
<th>Vegetación MFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>443308,16</td>
<td>4500431,43</td>
<td>Arroyo del Gitano</td>
<td>Matorral con arbolado disperso</td>
</tr>
<tr>
<td>2</td>
<td>441470,59</td>
<td>4500443,69</td>
<td>Arroyo de Navacabera</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>3</td>
<td>441220,46</td>
<td>4500459,16</td>
<td>Innominado</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>4</td>
<td>440886,78</td>
<td>4500483,38</td>
<td>Arroyo de Salobral</td>
<td>Encinares (Quercus ilex)</td>
</tr>
<tr>
<td>5</td>
<td>440666,00</td>
<td>4500434,99</td>
<td>Arroyo de la Colada</td>
<td>Encinares (Quercus ilex)</td>
</tr>
<tr>
<td>6</td>
<td>440404,51</td>
<td>4500149,97</td>
<td>Arroyo de Ollera</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>7</td>
<td>440252,13</td>
<td>4499888,04</td>
<td>Arroyo de Salobral</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>8</td>
<td>439448,76</td>
<td>4499850,97</td>
<td>Innominado</td>
<td>Herbazal-pastizal con dehesa hueca</td>
</tr>
<tr>
<td>9</td>
<td>438794,04</td>
<td>4499817,01</td>
<td>Innominado</td>
<td>Herbazal-pastizal con dehesa hueca</td>
</tr>
<tr>
<td>10</td>
<td>438760,07</td>
<td>4499815,25</td>
<td>Innominado</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>11</td>
<td>437956,14</td>
<td>4499628,23</td>
<td>Arroyo de las Casillas</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>12</td>
<td>437508,04</td>
<td>4498705,04</td>
<td>Innominado</td>
<td>Dehesas</td>
</tr>
<tr>
<td>13</td>
<td>437495,38</td>
<td>4498602,91</td>
<td>Arroyo de las Casillas</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>14</td>
<td>437213,40</td>
<td>4497814,44</td>
<td>Arroyo Tejada</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>15</td>
<td>436946,02</td>
<td>4497401,86</td>
<td>Arroyo de la Canaleja</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>16</td>
<td>436204,19</td>
<td>4496719,79</td>
<td>Arroyo de Buitre</td>
<td>Bosque ribereño</td>
</tr>
<tr>
<td>17</td>
<td>436104,06</td>
<td>4496491,88</td>
<td>Innominado</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>18</td>
<td>436110,67</td>
<td>4495728,72</td>
<td>Arroyo de Navalcapallo</td>
<td>Herbazal-pastizal</td>
</tr>
<tr>
<td>19</td>
<td>437714,59</td>
<td>4494732,69</td>
<td>Arroyo Tejada</td>
<td>Choperas y plataneras de producción*</td>
</tr>
</tbody>
</table>

De estos vanos, habría vegetación arbórea de rápido crecimiento en los cruces nº 1, 4, 18, 19, 21, 22, 23, 24, 25, 26 y 33 de la L/132kV GR Colimbo - Colectora La Cereal y en los cruces nº 2, 6, 7, 10, 13, 14, 15, 16 y 19 de la L/400kV Colectora La Cereal - La Cereal REE, ya que
en el resto de ellos la especie arbórea es la encina (especie compatible con la calle de seguridad).

Figura 112. Vegetación natural de ribera presente en el Arroyo de Buitre.

En estos cruces es posible que sea necesaria la tala o poda de algunos ejemplares de *Fraxinus angustifolia, Populus alba, Salix alba y Ulmus minor* por ser incompatibles con las líneas eléctricas.

En los casos del cruce soterrado de la L/132kV GR Colimbo-Colectora La Cereal con el río Guadalix y del cruce soterrado de la L/400kV Colectora La Cereal - La Cereal REE bajo el arroyo Tejada, se estima que no será necesario llevar a cabo ningún tratamiento sobre la vegetación existente en la calle de seguridad, por lo que no habría afecciones directas sobre la vegetación de ribera asociada al mismo.

En relación a la afección de la vegetación asociada a DPH y sus zonas de protección por los apoyos y accesos, se podrá evaluar realmente una vez que se disponga del Proyecto técnico de ejecución (apoyos, localización de las hincas, localización de cámaras de empalme y accesos).
Valoración del impacto potencial en DPH y sus zonas de protección

Los efectos sobre el DPH y sus zonas de protección tendrán una extensión localizada en el espacio ya que ninguna infraestructura estará ubicada en DPH ni zona de servidumbre de arroyos y sólo 0,37 ha de la ST Colectora La Cereal coincide con zona de policía.

Por otra parte, las líneas eléctricas presentan 59 cruzamientos con cauces, sobrevuelan 42,74 km de zonas de policía y cruzan de forma soterrada 411 m de la zona de policía del río Guadalix.

Los cruzamientos soterrados del río Guadalix por parte de la L/132kV GR Colimbo-Colectora La Cereal y del arroyo Tejada por parte de la L/400kV Colectora La Cereal - La Cereal REE generarán una afección por la apertura de las zanjas y por la generación y acopio temporal de excedentes de excavación en las zonas de policía. Se estima que será necesario el desarrollo de un Estudio hidrogeológico específico de tal manera que se asegure la no afección del cauce ni de sus recursos hídricos superficiales y subterráneos ni del DPH y zona de servidumbre.

En relación con la afección a vegetación, aunque 51 de los 59 cruces con cauces son coincidentes con vegetación natural, tan sólo 20 de ellos presentan especies de vegetación arbórea de rápido crecimiento en los que se podría necesitar eliminar o podar algún ejemplar presente en la calle de seguridad coincidente con DPH y sus zonas de protección.

Por lo tanto, se estima sobre el proyecto básico, que la afección tanto a la calidad de las aguas como a la vegetación asociada al entorno de los cauces será moderada.

Entre los indicadores considerados para la caracterización de la importancia de los impactos se han considerado, principalmente, los cruzamientos de las LEAT con cauces, la longitud de LEAT coincidente con zona de policía, ocupación por obras de la zona de policía y superficie de ST en DPH, Zona de Servidumbre y Zona de Policía.

Los resultados obtenidos del análisis de estos indicadores fueron, básicamente, los siguientes:

- **DPH y/o Zona de servidumbre**
 - 59 cruces de las Líneas eléctricas con cauces que cumplen con las distancias mínimas establecidas por el RDPH.
 - 0 ha de la superficie de las ST con DPH y Zona de servidumbre de cauces.

- **Zona de Policía**
 - 0,37 ha de la superficie de la ST Colectora La Cereal coincidente con Zona de policía.
 - 42,74 km de sobrevuelo de LEAT de zonas de policía.
- 211 m de cruce soterrado de la zona de policía del río Guadalix y 200 m de cruce soterrado de la zona de policía del arroyo Tejada y ocupación de zona de policía debidas a las obras de soterramiento del cableado.

Considerando las cifras de estos indicadores, podemos decir que, en fase de construcción la intensidad de los impactos es moderada, en fase de funcionamiento compatible y en fase de desmantelamiento positiva.

Tabla 152. Atributos de la importancia del impacto en el DPH y sus zonas de protección en fase de construcción, de funcionamiento y desmantelamiento para SET y LEAT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>26</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,52</td>
<td>0,4</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.4.5 Valoración del impacto potencial en la Hidrología

En este apartado de valoración final, se analiza la información de los apartados anteriores relativa a los diferentes posibles efectos del proyecto sobre la hidrología. Para valorar los efectos globales sobre este factor, se toma como criterio elegir como valor global el de aquel efecto que haya resultado de mayor magnitud, con el fin de quedar del lado de la seguridad (ver tabla). Como anteriormente se ha expuesto la valoración se realiza sobre los datos del proyecto básico. Tras la definición de los apoyos, hincas, cámaras de empalme y accesos se realizará una evaluación detallada. A este respecto, es necesario la aplicación de medidas de diseño y preventivas para evitar en la medida de lo posible potenciales efectos sobre esta materia.

Respecto a la escorrentía superficial, en el caso de la PSF GR Colimbo, al tener tan escasa entidad y una situación residual entre infraestructuras ya construidas con sistemas de drenaje, se considera al impacto como compatible. Sin embargo, en el caso de las líneas eléctricas, la
afección se ha valorado como moderada debido a la intensidad de las obras asociadas a los cruzamientos soterrados del río Guadalix y del arroyo Tejada.

En relación a la alteración de la calidad de las aguas por arrastre de sólidos y/o vertidos accidentales, aunque en general la ausencia de pendientes importantes en los terrenos afectados conlleva un reducido riesgo de erosión y consecuente arrastre de sedimentos, en el caso de la PFV GR Colimbo, se ha considerado el impacto potencial como compatible-moderado debido a la cercanía de un cauce innombrado entre dos de las parcelas de la PFV. Asimismo, aunque será necesario tener definidos los elementos del proyecto (apoyos y accesos) para su evaluación real, se ha considerado el impacto como moderado-severo en el caso de las líneas eléctricas debido a que para llevar a cabo los cruces soterrados del río Guadalix y arroyo Tejada será necesario el uso de maquinaria pesada y se generará un elevado volumen de excedentes de excavación. Estas afeciones pueden verse reducidas con una buena gestión de residuos, una buena gestión de la presencia de la maquinaria y las diversas medidas preventivas y correctoras que se plantean en este estudio.

Asimismo, aunque el emplazamiento del proyecto se sitúa fundamentalmente sobre materiales detríticos de permeabilidad media-baja y la ocurrencia de accidentes y vertidos es muy baja, la afeción se ha valorado como moderada tanto en el caso de la LSMT de la PFV GR Colimbo como en las líneas eléctricas debido a que en todos los casos el proyecto contempla cruzamientos soterrados mediante perforación dirigida de cauces, por lo que será necesario el desarrollo de Estudios hidrogeológicos que aseguren la no afeción de los recursos hídricos de dichos cauces.

Por último, los efectos sobre el DPH y sus zonas de protección quedarían limitados a la zona de Policía, con la ocupación permanente de 3,3 ha por parte de la PFV GR Colimbo, el cruce soterrado de un cauce innombrado por parte de la LSMT de la PFV GR Colimbo, la ocupación permanente de 0,37 ha de la ST Colectora La Cereal, el cruce de 59 cauces presentes en el ámbito de estudio, el sobrevuelo de 42,74 km de LEATs en zona de Policía, el cruce soterrado de 211 m de la zona de Policía del río Guadalix y el cruce soterrado de 200 m de la zona de Policía del arroyo Tejada, por lo que, tanto para la PSFV como para las LEATs el impacto se considera moderado.
Tabla 153. Atributos de la importancia del impacto en la hidrología en fase de construcción, funcionamiento y desmantelamiento para PFV. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA HIDROLOGÍA</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modificación o alteración de la red de drenaje natural</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Alteración de la calidad de las aguas</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Efectos sobre las aguas subterráneas</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Efectos en el DPH</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA HIDROLOGÍA</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 154. Atributos de la importancia del impacto en la hidrología en fase de construcción, funcionamiento y desmantelamiento para SET y LEAT. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA HIDROLOGÍA</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modificación o alteración de la red de drenaje natural</td>
<td>MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Alteración de la calidad de las aguas</td>
<td>MODERADO-SEVERO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Efectos sobre las aguas subterráneas</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Efectos en el DPH</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA HIDROLOGÍA</td>
<td>MODERADO-SEVERO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>
6.5 EFEKTOS SOBRE LOS SUELOS

Como paso previo a evaluar los efectos potenciales sobre los suelos, se identifican las acciones del proyecto que pudieran causar efectos sobre los suelos, distinguiendo aquellas acciones ligadas a las plantas solares fotovoltaicas y acciones ligadas a la línea eléctrica y las subestaciones, aunque muchas de ellas son comunes a ambas.

Acciones del proyecto relacionadas con las PSFVs y la LSMT causantes de efectos sobre los suelos

Las acciones del proyecto que pueden tener efectos sobre los suelos son:

- Movimientos de tierras para la explanación y acondicionamiento del terreno.
- Construcción de los caminos de acceso y de los viales interiores de las plantas fotovoltaicas.
- Establecimiento de campas de trabajo.
- Excavación de:
 - las cimentaciones de los paneles solares, en caso de que fuera necesario, ya que van por hincado.
 - las cimentaciones de los Centros de Transformación.
 - las zanjas de las canalizaciones para el cableado.
 - los postes para el vallado perimetral.
- Tránsito de vehículos y maquinaria.
- Generación de materiales y de residuos.

Todas ellas son características de la fase de construcción, siendo las dos últimas también características de la fase de explotación.

Por último, las acciones del proyecto que pueden tener efectos sobre los suelos en fase de desmantelamiento son, además del tránsito de vehículos y maquinaria y la generación de materiales y de residuos, las operaciones propias de desmantelamiento como el desmontaje y la restitución de accesos.

Acciones del proyecto relacionadas con la línea eléctrica y las subestaciones causantes de efectos sobre los suelos

Los principales efectos sobre las características del suelo provocados por la línea aérea se originarán como consecuencia de la apertura de los accesos y de la campa, para poder realizar las tareas de obra civil, excavación y cimentación, y montaje e izado de apoyos y de tendido de cables. Estas actuaciones podrían provocar la modificación de las características físicas y químicas del suelo, lo que en algunos casos podría causar alteraciones de baja
magnitud, que podrán ser minimizadas con la aplicación de medidas preventivas y correctoras. Los mayores efectos sobre el suelo se producirán con la apertura de nuevos caminos a construir, especialmente en aquellos que nuevos caminos que se encuentren en zonas con mayores pendientes.

El proyecto contempla que, como regla general para acceder a los puntos donde quedarán ubicados los apoyos, se utilizará la red existente de carreteras y caminos. En algunos casos, sin embargo, habrá que resolver el acceso con la apertura de nuevos caminos, o adecuar los existentes.

La utilización de la red de caminos existentes para acceder hasta la base de los apoyos supone un impacto sobre el suelo mínimo. En este caso, los efectos serían similares a los que produciría el paso de cualquier otro tipo de camión, por lo que serían impactos de baja magnitud.

Hay que resaltar los efectos correspondientes al tramo soterrado entre ST REE La Cereal hasta el cruce del arroyo de Tejada, así como el tramo soterrado para el cruce del ZEC Río Guadalix, que se reflejarán en los movimientos de tierra necesarios para la zanja donde se aloja y excedentes de material excavado, aspectos que serán abordados con más detalle en fase de proyecto técnico.

Identificación de los efectos potenciales sobre el suelo

Los efectos potenciales que se producirían sobre el suelo son los siguientes:

- Modificación del relieve, por los movimientos de tierras para la explanación y acondicionamiento del terreno, y posible alteración de los procesos geomorfológicos
- Ocupación y pérdida del suelo por las acciones de excavación y cimentación
- Incremento de los procesos erosivos por desbroce y la apertura de accesos interiores a la PFV y accesos a los apoyos y a las subestaciones transformadora.

Alteración de la calidad de los suelos, tanto por compactación debido al tránsito de la maquinaria y uso de materiales y equipos, como por posibles episodios de contaminación del suelo, que pudiera ocasionar un accidente o por una mala gestión de los materiales utilizados y generados durante las obras.

6.5.1 Modificación del relieve y alteración de los procesos geomorfológicos

Antes de valorar los efectos del proyecto en la modificación del relieve y los procesos geomorfológicos, indicar que será en la fase de proyecto técnico cuando se dispongan de datos detallados para valorar estos impactos relativos a los volúmenes de movimiento de tierras y balances para conocer los excedentes y estimar los impactos indirectos por la necesidad de vertederos. Estas necesidades de vertedero, en su caso, tendrán que ser
abordadas en un “Estudio específico de gestión de RCDs y necesidades de vertedero del proyecto”.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Como ya se ha comentado, la afección sobre la morfología del terreno se deberá principalmente a los movimientos de tierra explanación y acondicionamiento del terreno, así como los asociados a las excavaciones y cimentaciones.

El movimiento de tierras para la construcción de la instalación consistirá en:

- Explanación y acondicionamiento del terreno, lo que implica la realización de excavaciones, rellenos, compactación y, dado el caso, estabilidad mediante taludes.
- Ejecución de los accesos a la planta.
- Excavaciones puntuales para postes del cerramiento.
- Ejecución de viales interiores y perimetral con un firme apto para el tránsito de vehículos.
- Realización de las cimentaciones para estructuras y soportes. Inclusión de las hincas y pilares de los seguidores.
- Canalizaciones de media tensión en zanjas. Las zanjas tendrán un ancho de 400 mm en el caso de albergar un circuito de MT, de 600 mm en el caso de albergar dos y de 1000 mm en el caso de albergar tres líneas de MT.
- Canalización de la línea subterránea en media tensión a 30 kV que conectarán cada uno de los centros de transformación que conforman la planta con la futura Subestación elevadora que se construirá en el interior del recinto vallado de la planta fotovoltaica.

Según proyecto, los trabajos de acondicionamiento del terreno consistirán en primer lugar en el desbroce y limpieza del terreno (se describe en el apartado siguiente). Al tratarse de un terreno con una orografía adecuada, no será necesario realizar importantes movimientos de tierras, sino tan sólo una ligera explanación del terreno. Como la pendiente existente es relativamente suave, se mantendrá el relieve y solamente se realizará un alisado suave, especialmente en la zona de unión entre parcelas.

Como resumen del movimiento de tierras, a continuación (ver tabla), se describen los volúmenes de movimientos de tierra de terreno con medios mecánicos, carga sobre camión y transporte a zona de extendido dentro de la obra.
Tabla 155. Movimientos de tierra (m3) del terreno en la PFV GR Colimbo.

<table>
<thead>
<tr>
<th>PFV GR COLIMBO</th>
<th>Movimientos de tierra (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total de excavación</td>
<td>13.439</td>
</tr>
<tr>
<td>Total material de préstamos y rellenos</td>
<td>12.095</td>
</tr>
<tr>
<td>Balance de tierra (excavación – relleno)</td>
<td>1.344</td>
</tr>
</tbody>
</table>

Habrá generación de tierras de excavación (13.439m3), aunque la mayor parte de este volumen se reutilizará en obra (12.095m3) por lo que los excedentes sobrantes que será necesario gestionar a través de gestor autorizado (1.344m3) son el 10% de lo excavado.

Se realizarán explicaciones, previa retirada de tierra vegetal, en áreas de caminos, centros eléctricos, áreas de construcciones móviles, aparcamiento y acopio, áreas de centros de transformación e inversores. También se hará una nivelación, desbroce y limpieza de terreno de la zona de seguidores y caminos por medios mecánicos.

Las alteraciones geomorfológicas ocasionadas como consecuencia de los movimientos de tierras necesarios para la instalación son reducidas, dado el escaso relieve y pendiente de la parcela. Por ello, no se esperan alteraciones geomorfológicas de gran importancia.

No obstante, como se ha comentado anteriormente, será en la fase de proyecto técnico, en el “Estudio específico de gestión de RCDs y necesidades de vertedero del proyecto”, cuando se dispongan de datos detallados para valorar estos impactos relativos a los volúmenes de movimiento de tierras y balances, tanto de la PFV como de la LSMT.

Así pues, considerando estos indicadores en la siguiente tabla se caracterizan los atributos de la importancia del impacto en la modificación del relieve y alteración de procesos geomorfológicos (ver tabla a continuación). Se observa que se identifican efectos significativos en construcción, que no existirán en fase de funcionamiento. En fase de desmantelamiento se incurre de nuevo en movimiento de tierras, pero se restituye el relieve original, por lo que su efecto global es positivo.

Tabla 156. Atributos de la importancia del impacto por modificación del relieve en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Modificación del relieve y alteración de procesos geomorfológicos</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Modificación del relieve y alteración de procesos geomorfológicos

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension</td>
<td>Localizado</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>28</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,56</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE-MODERADO</td>
<td>NO SIGNIFICATIVO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

La afección sobre la morfología del terreno debido a la parte aérea de la línea eléctrica será debido principalmente a los movimientos de tierra asociados a la apertura de nuevos accesos en las zonas de mayor pendiente, y a los asociados a las excavaciones y cimentaciones de los apoyos, aunque en menor medida, puesto que la necesidad de realizar movimientos de tierra en estos casos es menor. No obstante, los movimientos de tierra y los excedentes son de mayor cuantía en los tramos soterrados (ver tablas).

Tabla 157. Excedentes de tierras (m3) del terreno en la línea L/132 kV GR Colimbo – Colectora La Cereal.

<table>
<thead>
<tr>
<th>Líneas eléctricas</th>
<th>Excedente (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/132 kV GR Colimbo – Colectora La Cereal</td>
<td></td>
</tr>
<tr>
<td>Excedentes del tramo aéreo</td>
<td>462,0</td>
</tr>
<tr>
<td>Excedentes del tramo soterrado (0,6km)</td>
<td>3.110,7</td>
</tr>
<tr>
<td>Excedentes de tierra L/132 kV GR Colimbo – Colectora La Cereal</td>
<td>3.572,7</td>
</tr>
<tr>
<td>L/400 kV Colectora La Cereal – La Cereal REE</td>
<td></td>
</tr>
<tr>
<td>Excedentes del tramo aéreo</td>
<td>321,8</td>
</tr>
<tr>
<td>Excedentes del tramo soterrado (1,4km)</td>
<td>1.520,5</td>
</tr>
<tr>
<td>Excedentes de tierra L/132 kV GR Colimbo – Colectora La Cereal</td>
<td>1.842,3</td>
</tr>
<tr>
<td>Total excedentes en Líneas eléctricas</td>
<td>5.415,0</td>
</tr>
</tbody>
</table>
Asimismo, se prevén volúmenes significativos de movimiento de tierras de la excavación de tierras en la hinca para el cruce del arroyo Tejada, en el tramo final soterrado de 1,4km de L/400 kV Colectora La Cereal – La Cereal REE para cruzar dicho arroyo y llegar hasta la ST La Cereal de REE, que tendrán como consecuencia movimientos y excedentes de tierras. También se generarán movimientos de tierras y excedentes en la construcción de la hinca para cruzar la autovía A-1 y el del río Guadalix cuyo cauce discurre encajado con una diferencia de cota considerable respecto a dicha autovía.

Por otra parte, también habrá considerables movimientos de tierra en la explanación de las subestaciones, lo que también dará lugar a excedentes de tierra (ver tabla).

Tabla 158. Excedentes de tierras (m3) de la ST Colimbo y ST Colectora La Cereal.

<table>
<thead>
<tr>
<th>Subestaciones</th>
<th>Excedente (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excedentes de tierra ST Colimbo</td>
<td>518,6</td>
</tr>
<tr>
<td>Excedentes de tierra ST Colectora La Cereal</td>
<td>618,6</td>
</tr>
<tr>
<td>Total excedentes en Subestaciones</td>
<td>1.137,2</td>
</tr>
</tbody>
</table>

Se identifican efectos significativos en construcción, que no existirán en fase de funcionamiento. En fase de desmantelamiento se incurre de nuevo en movimiento de tierras, pero su efecto global es positivo, ya que se restituye el relieve original.

Así pues, considerando estos indicadores en la siguiente tabla se caracterizan los atributos de la importancia del impacto en la modificación del relieve y alteración de procesos geomorfológicos (ver tabla a continuación).

Tabla 159. Atributos de la importancia del impacto por modificación del relieve en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media-Alta</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Modificación del relieve y alteración de procesos geomorfológicos

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importancia (Im)</td>
<td>28</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,62</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

VALORACIÓN

| | MODERADO-SEVERO | NO SIGNIFICATIVO | POSITIVO |

No obstante, será en el “Estudio específico de gestión de RCDs y necesidades de vertedero del proyecto”, a realizar en la fase de proyecto técnico, cuando se dispongan de datos detallados para valorar estos impactos relativos a los volúmenes de movimiento de tierras y balances de las subestaciones y del tramo de línea eléctrica soterrada. El correcto diseño del proyecto técnico de ejecución podrá reducir los potenciales efectos previstos.

6.5.2 Ocupación y pérdida de suelos

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

El área de la implantación donde se construirá la instalación fotovoltaica está constituida por el terreno que quedará delimitado por los recintos vallados. Existen siete recintos separados rodeados por su correspondiente vallado. La superficie disponible total dentro de esos vallados es de 30,78 has (ver tabla).

Al área de implantación, se le ha considerado como superficie con alteración temporal del horizonte edáfico (zanjas, caminos, plataformas de caminos, hincas, CTs, etc.), siendo el área de afectación permanente (14,80 has) (ver tabla).

Tabla 160. Superficie total de implantación y superficies de ocupación con afectación a horizonte edáfico temporal y permanente de la PSFV GR Colimbo. Asimismo, se indica la superficie bajo el vuelo de los módulos.

<table>
<thead>
<tr>
<th>Ocupación PFV COLIMBO</th>
<th>Superficies (has)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área de implantación</td>
<td>30,78</td>
</tr>
<tr>
<td>Área de alteración permanente del horizonte edáfico</td>
<td>14,80</td>
</tr>
<tr>
<td>Área total bajo el vuelo de los paneles (módulos)</td>
<td>11,85</td>
</tr>
</tbody>
</table>

Por otra parte, hay que considerar que, aunque existe una amplia zona de ocupación de elementos del parque, la superficie concreta de instalación de módulos, es decir, el suelo bajo el vuelo de los paneles solares es de 11,85 has (ver tabla).

Por otra parte, hay que considerar la afectación temporal al suelo exterior a los límites de la PFV correspondiente a la zanja de la canalización de la línea subterránea en media tensión a 30 kV que conectará cada uno de los centros de transformación que conforman la planta con la futura Subestación elevadora que se construirá en el interior del recinto vallado de la
planta fotovoltaica. Calculando que serán unos 559,2m fuera del vallado en una franja de 3m de ancho, por lo que abarcará una superficie de 1677,6m², es decir 0,1678has (ver tabla).

<table>
<thead>
<tr>
<th>Ocupación LSMT 30 kV exterior a la PSV</th>
<th>Superficies (has)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área de afección temporal de la zanja de la LSMT</td>
<td>0,1678</td>
</tr>
</tbody>
</table>

Recapitulando los efectos de las PFVs y su LSMT, se han identificado 30,78 has de suelo cuyos procesos naturales serán alterados temporalmente por la PFV y 0,17has por la LSMT, en total 30,95 has; y, por otra parte, 14,80has de horizontes edáficos también alterados y con efectos durante toda la fase funcionamiento de la PFV.

Considerando todo ello, en la siguiente tabla se caracterizan los atributos de la importancia del impacto en la ocupación y pérdida del suelo (ver tabla a continuación). Se establece una intensidad del impacto media – baja durante la fase de construcción y baja durante la fase de funcionamiento. Se observa que en la fase de funcionamiento ya se ha perdido todo el suelo que fue desbrozado en construcción, pero queda el efecto por la ocupación permanente de las instalaciones.

Tabla 161. Atributos de la importancia del impacto por ocupación y pérdida de suelo en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Ocupación y pérdida de suelos</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media - Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Parcial</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Imi)</td>
<td>29</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImNi)</td>
<td>0,58</td>
<td>0,52</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

En este apartado de ocupación y pérdida de suelos, se distingue entre línea y las subestaciones.

La ocupación definitiva del suelo como consecuencia de la construcción de la línea estará limitada a la superficie ocupada en la apertura de los accesos y en las bases para los apoyos. La ocupación temporal se produce en la campaña para el montaje e izado de los apoyos y zonas de instalaciones auxiliares.

La información relativa a la ocupación por los apoyos y los accesos del tramo aéreo, así como la ocupación derivada de la excavación de tramos soterrados, serán abordados en fase de proyecto técnico, por lo que los impacto no podrán ser debidamente cuantificados hasta dicha fase.

- **Ocupación del suelo por apoyos y plataformas durante las obras de la línea aérea**

La ocupación del suelo permanente del suelo por las bases de un apoyo supone una superficie reducida. Las tareas asociadas a la obra suponen la ocupación del entorno a la base y una alteración de todo el suelo bajo el apoyo y su entorno inmediato que se ha estimado en aproximadamente 50 m² (ver figura).

![Esquema de zonas de ocupación temporal ocasionadas por la construcción del apoyo, estimada en unos 350 m².](image)

Figura 113. Esquema de zonas de ocupación temporal ocasionadas por la construcción del apoyo, estimada en unos 350 m².
Por otra parte, la campa para el montaje e izado es el terreno necesario para proceder a las acciones de construcción del apoyo. Se ha estimado en 300 m² aproximadamente, en caso de que las plataformas se sitúen en zona llana (ver figura). Así pues, la ocupación total en fase de construcción (apoyo + plataforma + zona de acopios y residuos + vehículos y maquinaria) es de 350 m² (ver figura).

No obstante, se entiende que esta ocupación de 350 m² es una situación ideal en llano que, en caso de pendientes significativas, estimamos que va a haber una mayor ocupación.

En fase de proyecto técnico, se indicarán las superficies de ocupación de los apoyos más sus correspondientes plataformas de trabajo y el apoyo.

No obstante, hay que tener en cuenta que, de esta superficie, la mayor parte es de ocupación temporal, siendo tan sólo ocupación permanente los aproximadamente 50 m² que ocupa el apoyo propiamente dicho, lo que representa tan sólo un 13,7% de la afección total en fase de construcción.

☐ **Ocupación del suelo por accesos a los apoyos de la línea aérea**

Para evitar la apertura de nuevos caminos, siempre que sea posible se aprovecharán las trazas ya existentes o se accederá campo a través, lo que permite minimizar la ocupación del suelo.

De igual manera que en el caso de los apoyos y su plataforma o campa de construcción, los caminos de acceso ocuparán más superficie cuanto mayor sea la pendiente del terreno en el que se trazan.

La ocupación total ocasionada por los accesos de nueva construcción será calculada en fase de proyecto técnico.

Por otra parte, el camino campo a través es una tipología que no supone nueva ocupación, sino simplemente un tránsito y un consiguiente efecto de compactación del suelo que se concentra en la zona de mayor frecuencia de rodadas de los vehículos que circulen por dichos caminos campo a través. Es por ello por lo que hemos preferido abordarlo en el apartado posterior de alteración física del suelo.

☐ **Ocupación del suelo por implantación de las subestaciones**

La ocupación de suelo por parte de las subestaciones incluye su acceso, el edificio de control, la zona de parque donde se emplazan los equipos, etc. Esto supondrá la pérdida de las condiciones del suelo original, debido al decapado del suelo actual y el recubrimiento de este por nuevos materiales.

Se producirá la ocupación temporal de una superficie auxiliar necesaria para la construcción de las subestaciones, la cual será necesario proceder posteriormente a su recuperación o su utilización para elementos definitivos de la infraestructura.
Además, estas actuaciones suponen la pérdida de tierra vegetal, por lo que deberán tenerse en cuenta la adopción de medidas preventivas que contengan la eventual pérdida de dicha tierra vegetal, protegiéndola y preservándola para su uso en la zona revegetadas asociadas a la propia instalación.

Se ha estimado que la ocupación de la implantación de las subestaciones transformadoras del proyecto, ST Colectora La Cereal y ST Colimbo, tendrán una superficie de 7.915,58 m² (ver tabla).

<table>
<thead>
<tr>
<th>Tabla 162. Superficies de nueva ocupación de las subestaciones del proyecto.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subestación</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>ST Colimbo</td>
</tr>
<tr>
<td>ST Colectora La Cereal</td>
</tr>
<tr>
<td>Total STs</td>
</tr>
</tbody>
</table>

☐ **Ocupación del suelo por la zanja del tramo soterrado en la línea L/132 kV GR Colimbo – Colectora La Cereal**

El tramo soterrado de L/132 kV GR Colimbo – Colectora La Cereal que cruza el ZEC Río Guadalix es de 574m. Suponiendo una franja de afección media de 4m, resultaría una ocupación temporal de 2.296m, es decir 0,23has. No se han computado las áreas correspondientes a ambos lados de la hincal, las cuales serán detalladas en fase de proyecto técnico.

☐ **Ocupación del suelo por la zanja del tramo soterrado en la línea L/400 kV Colectora La Cereal – La Cereal REE**

Análogamente, el tramo soterrado de la línea L/400 kV Colectora La Cereal – La Cereal REE que va desde la ST La Cereal de REE al margen norte del arroyo Tejada es de 1.423m. Considerando una franja de afección media de 4m, resultaría una ocupación temporal de 5.688m, es decir 0,57has. Asimismo, al igual que en el tramo soterrado comentado anteriormente, no se han computado las áreas a ambos lados de la hincal, a detalla en fase de proyecto técnico.

☐ **Balance de nueva ocupación de suelo**

Los efectos sobre los suelos supondrán unas cifras de nueva ocupación que serán estimadas con detalle en el proyecto técnico. No obstante, dada la longitud de las líneas aéreas y el número de apoyo necesarios, en torno a 110-120 apoyos y sus correspondientes accesos, podemos estimar por comparación con proyectos similares que se ocuparán aproximadamente, al menos, unas 4-6 has, principalmente debido a los nuevos accesos a construir. Las subestaciones ocuparán según tabla anterior 0,79 has. Asimismo, se estiman unas 4 has de efectos temporales por campos de trabajo en torno a apoyos y 0,80 has también
de efectos temporales por los tramos soterrados en las líneas L/132 kV GR Colimbo – Colectora La Cereal y L/400 kV Colectora La Cereal – La Cereal REE. Todas estas estimaciones serán detalladas en fase de proyecto técnico.

Todos los efectos se producirán en fase de construcción, ya que no se producirán nuevas ocupaciones del suelo en las fases de funcionamiento.

Los efectos son de intensidad media en fase de construcción. En la fase de funcionamiento ya no habrá nueva destrucción de suelo, pero sí seguirá la ocupación del suelo por parte de la subestación y los apoyos. El correcto diseño de los apoyos, accesos, plataformas, y demás elementos del proyecto técnico de ejecución podrán reducir significativamente el efecto.

Tabla 163. Atributos de la importancia del impacto por ocupación y pérdida de suelo en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Ocupación y pérdida de suelos</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media-Alta</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizada</td>
<td>Localizada</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (I_{m})</td>
<td>31</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (I_{mN})</td>
<td>0,62</td>
<td>0,44</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO-SEVERO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.5.3 Incremento en los procesos erosivos

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Medio Tensión (LSMT)

Los movimientos de tierras pueden contribuir a un aumento en el riesgo de erosión del suelo.

Este efecto está directamente relacionado con la excavación y las cimentaciones de los elementos del proyecto que requieren de estas acciones, ya que la rotura de los horizontes superiores del perfil edáfico puede originar procesos erosivos. Asimismo, la desaparición de la cubierta vegetal por desbroce aumenta el riesgo de procesos erosivos.

Las labores que se realizan en la fase de funcionamiento de control de la vegetación y de mantenimiento de caminos, drenajes, etc., no generan un aumento de procesos erosivos. En
la fase de desmantelamiento podrían producirse fenómenos erosivos de importancia similar a la fase de construcción.

Estos procesos se ven acelerados en las zonas con mayores pendientes. No obstante, los terrenos presentan una superficie con pendientes muy bajas en las áreas de actuación y no se actuará en las zonas de ladera, por lo que el riesgo de erosión será bajo.

Hay que tener en cuenta que las PFV y su LSMT se localizan en una zona cuyo grado de erosión oscila entre el intervalo 0-5t/Ha/año y 12-25t/Ha/año de pérdida de suelo, por lo que puede considerar una zona sin problemas importantes de erosión.

Además, dado que las pendientes también son suaves, la intensidad de la erosión será de intensidad baja en fase de construcción y aún menor sería en fase de funcionamiento, ya que, aunque existirán fenómenos erosivos a suelos recientemente removidos, siempre serán localizados y de menor intensidad que en fase de construcción.

Tabla 164. Atributos de la importancia en el incremento en los procesos erosivos en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Imi)</td>
<td>18</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImNi)</td>
<td>0,36</td>
<td>0,28</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Este efecto está directamente relacionado con la apertura de nuevos accesos y sus taludes, las cimentaciones de los apoyos y la apertura de la campa. Se encuentra muy relacionado con el efecto potencial anteriormente citado de alteración de las características físicas de los suelos, ya que la rotura de los horizontes superiores del perfil edáfico puede originar procesos erosivos. Este riesgo es mayor cuando es necesario realizar aperturas de accesos en zonas
de pendientes fuertes. En menor medida se producirán daños como consecuencia de las labores necesarias para realizar las cimentaciones de las torres.

Las actuaciones que en mayor medida pueden suponer un incremento significativo de los procesos erosivos son la apertura de accesos en zonas con elevadas pendientes, por lo que, serán necesarias actuaciones de obra civil para minimizar los fenómenos erosivos.

La magnitud de esta afección depende de los siguientes factores:

- Erosionabilidad preoperacional. La línea aérea, así como el tramo soterrado se encuentra mayoritariamente en una zona entre 0-5 t/Ha/año de pérdida de suelo, y tan solo el tercio norte tiene unas pérdidas de 12-25t/Ha/año, por lo que son unos niveles de erosión bajos o moderados, que no llegarán a ser especialmente significativos.

- Superficie en la que será necesario eliminar la vegetación, ya que la pérdida de la cubierta vegetal protector provoca un incremento del riesgo de erosión.

- Pendiente, ya que tendrá una mayor magnitud cuanto mayor sea la pendiente. Se crearán unos taludes en aquellas zonas de mayor pendiente, aunque se trata de una zona con pendientes bajas, por lo que estos taludes tendrán una escasa altura. En general los taludes creados son tanto de desmonte como de terraplén, cada uno de ellos con una problemática distinta. Los desmontes presentarán unos frentes que en principio serán resistentes a los agentes externos; por contra los taludes en terraplén, al deberse a aportes de materiales, presentarán una superficie que en general será suelta y por tanto se hallará sometida a procesos erosivos, que pueden generar pequeñas cárcavas a medio o largo plazo.

- Las condiciones constructivas, ya que la afección será mayor en las zonas donde éstas sean desfavorables y muy desfavorables.

- Sistema utilizado para apeo de los árboles. Si se utiliza maquinaria pesada, el efecto puede ser elevado, ya que puede provocar la rotura de la capa superficial y la remoción del suelo. La corta individual con motosierra y desbroce manual o mecánico generan una afección claramente inferior.

- La exposición directa del suelo a la lluvia tras la desaparición de la vegetación permite la aparición de procesos de escorrentía superficial que suponen una exportación de materiales ladera abajo. El empobrecimiento que se causa en el suelo por la pérdida de elementos finos y nutrientes dificulta la existencia posterior de una capa vegetal que proteja el suelo. Este riesgo en concreto, y en general toda afección sobre el suelo, es más acusado en zonas de pendiente alta, ya que la magnitud de la afección sobre el suelo es directamente proporcional a la pendiente.

Por todo ello, consideramos que la intensidad de la erosión será de intensidad baja en fase de construcción y funcionamiento.
Tabla 165. Atributos de la importancia en el incremento en los procesos erosivos en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>18</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,36</td>
<td>0,28</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.5.4 Alteración de la calidad de los suelos

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Los efectos sobre la calidad del suelo de la PFV y LSMT han sido distinguidos, por un lado, efectos sobre las propiedades físicas del suelo y, por otro, efectos sobre sus propiedades químicas.

- **Efectos sobre las propiedades físicas del suelo: alteración por compactación**

El movimiento de la maquinaria y el acopio de los materiales en el terreno de forma temporal en fase la construcción pueden provocar una compactación de suelos y, por tanto, una alteración de la estructura edáfica.

Estas acciones son negativas para los suelos debido a disminución de la porosidad, pérdida de estructura, disminución de la permeabilidad y de la oxigenación lo que provoca a su vez limitaciones al desarrollo vegetal.

Este impacto se puede ver agravado por el tránsito de la maquinaria pesada fuera de la zona de trabajo, así como por el acopio de materiales en zonas no implementada para ello. Con un adecuado control de obra, la posible superficie alterada es muy reducida o incluso residual en relación con la superficie total del área de estudio.
Por último, es importante destacar que, en fase de funcionamiento, la no roturación del suelo por ausencia de uso agrícola es un beneficio para el suelo a medio largo plazo, por lo que el cambio de uso tiene efectos positivos ya que mejoraría las propiedades del suelo.

☐ **Efectos sobre las propiedades químicas del suelo: posibles episodios de contaminación**

Este efecto se centra en la contaminación puntual del suelo debida a un vertido accidental de aceite o grasa desde una de las máquinas participantes en la construcción, por negligencia o por accidente. Con las medidas preventivas que se desarrollarán en el correspondiente capítulo, y que serán de obligado cumplimiento para el contratista, se consigue minimizar el riesgo de ocurrencia de esta afección.

El incorrecto almacenamiento de materiales y productos de las obras y de los productos generados durante las mismas pueden provocar una afección por alteración en la calidad de los suelos. Los materiales utilizados y los residuos generados son los típicos de una construcción urbana (hormigón, áridos, ferrallas, ladrillos, etc., y aceites y combustibles de la maquinaria en general). La alteración en la calidad de los suelos puede venir ocasionada por accidentes o por una mala gestión de estos.

En la fase de obra civil se incrementa el riesgo de contaminación de suelos de forma importante, ya que la presencia de maquinaria puede provocar la contaminación por aceites e hidrocarburos, principalmente, que pueden derramarse en la zona de trabajo. En este caso el vertido sería de escasa dimensión y reducido a las inmediaciones de los depósitos de las propias máquinas. La ocurrencia de esta circunstancia es accidental.

Pueden producirse vertidos de hormigón por la limpieza incontrolada de las cubas que lo transportan en zonas no habilitadas para ello y provocando una alteración importante de las características fisicoquímicas del suelo.
Tabla 166. Atributos de la importancia del impacto en la alteración de la calidad de los suelos en fase de construcción, de funcionamiento y desmantelamiento para la PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativos</td>
<td>Acumulativos</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,32</td>
<td>0,32</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Lineas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Al igual que en el caso de la PFV y su LSMT, en el caso de infraestructuras eléctricas también hemos abordado los efectos sobre la calidad del suelo en dos facetas: por un lado, efectos sobre las propiedades físicas del suelo y, por otro, efectos sobre sus propiedades químicas.

- **Efectos sobre las propiedades físicas del suelo: alteración por compactación**

Se alterarán las características físicas del suelo en las tareas de montaje e izado de torres descritas en el apartado anterior y en zonas aledañas a movimientos de tierras y a la apertura de caminos de accesos.

En lo relativo a la construcción de las subestaciones, durante la fase de obras se pueden llegar a producir diversas alteraciones sobre el sustrato. Los movimientos de tierra provocarán como resultado final, la aparición de superficies desprovistas de vegetación que modificarán la evolución edáfica. La ubicación de las subestaciones supondrá una ocupación del suelo, y una impermeabilización y recubrimiento de la superficie donde se ubicarán las subestaciones, lo que influirá sobre los procesos a los que, en la actualidad, se encuentra sometido el suelo.

Durante la ejecución de nuevos caminos, la ampliación de la anchura de estos o los tramos con actuación pueden provocar perturbaciones en los horizontes superiores del perfil edáfico. Asimismo, también ocurrirán por la construcción en zonas de suelo aledañas a los tramos soterrados en las líneas L/132 kV GR Colimbo – Colectora La Cereal y L/400 kV Colectora La Cereal – La Cereal REE. Como consecuencia de esto, el suelo puede quedar desprotegido
de la cobertura vegetal, lo que conllevaría una degradación del suelo que impida o retrasa el posterior desarrollo de la vegetación. Este riesgo es mayor cuando es necesario realizar aperturas de accesos en zonas en pendientes moderadas y elevadas.

En los apoyos ubicados en zonas con pendiente que requieren la apertura de caminos de acceso hasta la base de los apoyos, se producirá una alteración de la cubierta vegetal y de los horizontes superficiales del suelo.

Asimismo, esta afección tendrá una mayor probabilidad de ocurrencia en aquellos terrenos con situaciones desfavorables desde el punto de vista constructivo, ya que en ellos pueden producirse deslizamientos, hundimientos y otros tipos de problemas que pueden alterar las características físicas del suelo.

En las zonas suficientemente planas o con pendientes reducidas y con cultivos o vegetación herbácea o leñosa poco densa y que no es necesario abrir accesos, se podrá acceder campo a través sobre los prados o cultivos. En ese caso se genera una alteración de las características físicas del suelo como consecuencia de la compactación del terreno por el paso de la propia maquinaria. Sin embargo, esto no supone un deterioro grave del suelo, habida cuenta de que, en general, no se utilizan tractores de orugas, sino máquinas con ruedas, y que es una afección fácilmente recuperable con la aplicación de las medidas correctoras oportunas.

En particular, destacamos en este apartado los caminos campo a través. El tránsito campo a través es una tipología de camino de acceso en la que la maquinaria y el resto de los vehículos discurren por zonas de herbazal, pastizal o matorral abierto o en cultivos, que no suponen decapado ni nueva ocupación, sino simplemente un tránsito. Este tránsito tiene un efecto de compactación del suelo que se concentra en la zona de mayor frecuencia de rodadas de los vehículos que circulen por dichos caminos campo a través. Toda esta información relativa a caminos de acceso será desarrollada en fase de proyecto técnico.

En la fase de operación y mantenimiento, el acceso de los vehículos se realizará por los mismos accesos abiertos para la realización de la obra, y ese acceso es asimilable al paso de maquinaria agrícola y forestal por esos mismos caminos; por tanto, no es previsible que se generen nuevas afecciones.

- **Alteración de las características químicas del suelo**

Este efecto se centra en la contaminación puntual del suelo debida a un vertido accidental de aceite o grasa desde una de las máquinas participantes en la construcción, por negligencia o por accidente. Con las medidas preventivas que se desarrollarán en el correspondiente capítulo, y que serán de obligado cumplimiento para el contratista, se consigue minimizar el riesgo de ocurrencia de esta afección. Durante la fase de explotación no se produce esta afección, ya que las líneas eléctricas son instalaciones industriales que no producen efluentes. Por tanto, se considera una afección no significativa.
Tabla 167. Atributos de la importancia del impacto en la alteración de la calidad de los suelos en fase de construcción, de funcionamiento y desmantelamiento para ST y LE.

Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativos</td>
<td>Acumulativos</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,32</td>
<td>0,32</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.5.5 Valoración final del impacto potencial sobre el suelo

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

En este apartado de valoración final, se analiza la información de los apartados anteriores relativa a los diferentes posibles efectos del proyecto sobre el suelo.

Para valorar los efectos globales sobre el factor suelo, el criterio ha sido elegir como valor global aquel cuyo efecto haya resultado de mayor magnitud, con el fin de quedar del lado de la seguridad (ver tabla). Según estos, los efectos globales en el suelo son moderado-severos en fase de construcción, moderados en fase de funcionamiento y positivos en fase de desmantelamiento.
Podemos afirmar que los efectos sobre los suelos se producirán principalmente en fase de construcción, resultando moderada-severa la pérdida de suelo originada por la implantación de edificaciones, zanjas y viales, y el resto de los elementos constructivos del proyecto que implica eliminar la capa edáfica del suelo.

Por otra parte, la superficie total ocupada por la PFV, con el vuelo de los paneles solares es de 11,85 has sobre esa superficie en la que se produce pérdida de horizontes edáficos, los cuales permanecen a lo largo de toda la fase de funcionamiento bajo condiciones ambientales diferentes a las naturales por encontrarse bajo el recubrimiento de los paneles, calificando estos impactos como moderados. Son relativamente de menor importancia las modificaciones del relieve y los fenómenos erosivos. Así pues, en fase de funcionamiento, excepto la ocupación que tiene efecto moderado, los efectos no son significativos o compatibles, como es el caso de la erosión y la alteración de las condiciones naturales de los suelos en las superficies cubiertas por la presencia de los módulos.

Por último, es conveniente destacar que, en la fase de desmantelamiento implica unas operaciones que conllevan cierto impacto, aunque serían paliadas por la restauración ambiental asociada al desmantelamiento y además sus consecuencias a medio y largo plazo, significarían la vuelta a la situación ambiental natural.

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

El principal indicador de los criterios de importancia de los impactos sobre el suelo es la superficie de la nueva ocupación de suelo desglosando las diferentes actuaciones del proyecto (ST, accesos y apoyos y plataforma y tramos de línea soterrada), complementado con otros descriptores como es la longitud de tránsitos campo a través.
Los efectos sobre los suelos suponen unas cifras de nueva ocupación de suelo que serán detalladas en fase de proyecto técnico. La nueva ocupación es un efecto en fase de obra, aunque también la presencia de los nuevos caminos construidos contribuye a un incremento poco significativo en el riesgo de erosión, excepto en aquellas situaciones en las que existen pendientes elevadas como las que pueden ocurrir con accesos en laderas.

Los tránsitos por campo a través a lo largo tienen un efecto de compactación y degradación del suelo como hemos indicado anteriormente. Este efecto, además de producirse en obra, seguirá ocurriendo en la fase de funcionamiento por el mantenimiento de la línea, si bien es cierto que con menos intensidad.

Así pues, considerando estos indicadores entendemos que la intensidad del impacto en fase de construcción es media-alta, principalmente debido a la ocupación de suelo que supone el proyecto.

Por otra parte, hay diferencias respecto a los efectos en fase de funcionamiento, especialmente considerando que una parte importante de los efectos por ocupación del suelo son temporales.

En este apartado de valoración final, se analiza la información de los apartados anteriores relativa a los diferentes posibles efectos del proyecto sobre el suelo. Para valorar los efectos globales sobre el factor suelo, se ha tomado como criterio elegir el efecto de mayor magnitud, con el fin de quedar del lado de la seguridad (ver tabla).

Según estos, los efectos globales en el suelo son moderado-severos en fase de construcción, compatible-moderados en fase de funcionamiento y positivos en fase de desmantelamiento (ver tabla).

Tabla 169. Atributos de la importancia del impacto sobre los suelos en fase de construcción, funcionamiento y desmantelamiento para ST y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LOS SUELOS</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construcción</td>
</tr>
<tr>
<td>Modificación de relieve y de la geomorfología</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td>Ocupación y pérdida de suelo</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td>Incremento de procesos erosivos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Alteración de la calidad de los suelos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>EFECTO GLOBAL SOBRE LOS SUELOS</td>
<td>MODERADO-SEVERO</td>
</tr>
</tbody>
</table>
Los efectos sobre los suelos se producirán principalmente en fase de construcción, siendo los de mayor impacto y calificados como moderado-severo, los movimientos de tierra de hincas y zanjas de los dos tramos soterrados y la pérdida de suelo originada por la implantación de los caminos de accesos de nueva construcción sobre zonas con vegetación natural, así como la plataforma y apoyos. A estas se añade las zonas de desbroce de los dos tramos de línea soterrada, que implican eliminar la capa edáfica del suelo básicamente de suelo agrícola. Todas estas pérdidas de suelo, tiene unas repercusiones de cierta magnitud en la alteración de procesos geomorfológicos. Aclarar de nuevo que todos estos indicadores serán cuantificados con detalle en fase de proyecto técnico.

Al igual que ocurre con las PFV, en fase de funcionamiento la mayor parte de los efectos no son significativos, estimándose los significativos de carácter compatible-moderado.

En la fase de desmantelamiento implica el retorno a situación ambiental natural y, por tanto, resulta un efecto positivo.

6.6 EFECTOS SOBRE LA VEGETACIÓN, LA FLORA Y LOS HICS

En este apartado se abordan los efectos identificados sobre la vegetación, tanto destrucción y alteración de la cobertura vegetal como la degradación de la vegetación circundante; la flora y los Hábitats de Interés Comunitario (HICs).

6.6.1 Alteración de la cobertura vegetal

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Los posibles efectos sobre la vegetación se producen principalmente durante la fase de construcción y más concretamente en aquellas actuaciones asociadas a la ejecución de la obra en las que es necesario eliminar la vegetación.

En fase de explotación ya no habría impactos nuevos en la vegetación, si bien es cierto que las condiciones ambientales relacionadas con la irradiación, temperatura, humedad, etc. sería, por la presencia de los paneles solares, diferentes a las condiciones ambientales actuales y características del ombroclima y piso bioclimático del ámbito de estudio. En fase de funcionamiento hay tareas de mantenimiento de la vegetación que se tendrán que realizarse para permitir el funcionamiento de los módulos son totalmente compatibles.

Debido a las acciones en fase de desmantelamiento, se producirían efectos en la comunidad vegetal herbácea que conviva con los paneles. A medio y largo plazo tendría un efecto positivo ya que al restaurarse las condiciones ambientales por ausencia de los paneles y no haber tratamientos de la vegetación correspondientes a fase de funcionamiento podría empezarse...
a recuperar etapas de vegetación más avanzadas desde el punto de vista de la sucesión vegetal.

Toda la zona de implantación de la PSFV y la LSMT coincide con cultivos de secano y puntualmente con olivar (ver ortofotos e imágenes a continuación).

El olivar representa la única vegetación arbolada del ámbito coincidente con las actuaciones de la PFV, en particular con la ubicación de los módulos. Son 14 los olivos que será necesario talar por su coincidencia con paneles solares, junto con lagunas retamas localizadas próximas al olivar.

Asimismo, la LSMT podría afectar puntualmente, entre parcelas de cultivo, a algún árbol aislado o alguna retama o grupo de vegetación de matorral abierto o caméfítico siempre inferior a 15-20m².

Figura 114. Zona norte de implantación de la PSFV GR Colimbo (módulos en azul) y LSMT (en amarillo) sobre ortofoto. Se observa la presencia puntual de olivar coincidente con módulos en la parte central de la imagen.
Figura 115. Zona sur de la implantación de PSFV GR Colimbo (módulos en azul) y LSMT (en amarillo) sobre ortofoto.

Figura 116. Vista de la PSFV GR Colimbo desde la carretera comarcal.
Figura 117. En el centro de la imagen, pequeña zona de olivar afectada por módulos de la PFV GR Colimbo. Al fondo, retamar, ya fuera de la implantación de la PFV.

Por todo lo dicho, se puede afirmar que los efectos en la vegetación serán puntuales y de intensidad muy baja. Una vez analizados los efectos en la vegetación, se procede a describir los atributos de importancia de estos efectos (ver tabla).

Tabla 170. Atributos de la importancia del impacto en la alteración de la cobertura vegetal en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Puntual</td>
<td>Puntual</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,28</td>
<td>0,28</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Los posibles efectos sobre la vegetación se producen principalmente durante la fase de construcción y más concretamente en aquellas actuaciones asociadas a la ejecución de la obra en las que es necesario eliminar la vegetación. Además de la eliminación de la vegetación, entre las actuaciones previstas se prevén actuaciones silvícolas en la calle de seguridad de la línea objeto de estudio.

Las actuaciones asociadas a la ejecución de la obra en las que se eliminará la vegetación son:

- Construcción de los apoyos, que supone:
 - Apertura de nuevos accesos.
 - Implementación de la campa de trabajo y de establecimiento de las plataformas alrededor de los apoyos necesarias para el montaje e izado.
 - Apertura de la zanja donde se alojan los tramos soterrados de las líneas L/132 kV GR Colimbo – Colectora La Cereal y L/400 kV Colectora La Cereal – La Cereal REE.
 - Excavación de las bases de los apoyos para su instalación.

 - Posibles actuaciones en determinadas zonas de las calles de seguridad.

□ Efectos en la vegetación por los accesos, la campa de trabajo y la instalación de los apoyos

Las actuaciones previstas conllevan la apertura y/o acondicionamiento de accesos a todos los apoyos, excepto en los casos en los que hay un camino existente en buen estado hasta la base del apoyo. La superficie de afección a la vegetación estará en función de la nueva ocupación del suelo. Así pues, los efectos variarán en función de la tipología del acceso, el relieve del terreno, la longitud de los accesos y las características de la vegetación circundante.

El establecimiento de las plataformas alrededor de los apoyos y demás superficies necesarias en la campa de trabajo para el montaje e izado es una afección, en caso de producirse, temporal que tan sólo se producirán en fase de construcción y siempre quedarán restaurados al finalizar los trabajos. Se estiman, como se dijo en apartados anteriores, en torno a 300 m².

Las 4 bases de los apoyos separadas 5 m, así como la propia presencia del apoyo y las tareas de mantenimiento asociadas a estos, supondrían, en su caso, una afección permanente a la vegetación en la zona que abarca el apoyo, estimada en 50 m² aproximadamente.
Por tanto, en cada apoyo existe una afección variable debida a la construcción y presencia de los accesos y otra, de unos 350 m² (estimados) asociada a la construcción del apoyo. No obstante, en casos de pendientes elevadas, esta superficie puede ser superior.

Los efectos en la vegetación natural se cuantificarán detalladamente en fase de proyecto técnico, una vez se conozcan con detalle la localización de los apoyos y el trazado de los accesos. Será entonces cuando se pueda cuantificar con precisión el total de vegetación natural desbrozada por efectos derivados de la construcción de los apoyos y los accesos para llegar a estos apoyos. Asimismo, de manera complementaria a los efectos por desbroce de la vegetación, se identificarán los efectos potenciales en el arbolado.

Las zonas de vegetación natural más afectadas serán los pastizales, al que le siguen retamares y encinares casi siempre abiertos y con diferentes grados de adehesamiento (ver imagen a continuación).

Figura 118. Pastizales, retamares y aulagares, susceptibles de afección, en el T.M de El Vellón, junto al trazado de la línea en torno a la M-129 que va de El Vellón a Torrelaguna.

Efectos por la construcción de la ST Colectora La Cereal

El pastizal de tipo majadal existente en pendiente muy suave en la zona de ubicación de la subestación Colectora La Cereal de 0,5has, que será nivelado y desbrozado para la construcción de dicha subestación (ver figura).
Figura 119. Imagen de la zona de ubicación de la ST Colectora La Cereal, donde encontramos un pastizal aprovechado por ganado ovino, totalmente desprovisto de vegetación leñosa.

☐ **Efectos por la construcción del tramo soterrado de la línea L/132 kV GR Colimbo – Colectora La Cereal**

Las actuaciones previstas conllevan la construcción de una hincada para cruzar el río Guadalix. De esta manera la alameda y sauceda existente en su ribera, no será afectada. La zona de apertura de las hincas se encuentran en zonas de cultivos al norte de la A-1 y al sur del margen izquierdo del río Guadalix, por tanto, no se afectará a vegetación natural. En función de las características y la ubicación exacta de la hincada se podrían afectar a los pastos con retama y otras especies de matorral dispersas, de escaso valor ambiental, localizados en la franja entre naves del P. I. de San Agustín de Guadalix (ver figura).

Figura 120. Herbazal con retamas dispersas en la franja entre naves del P. I. de San Agustín de Guadalix.
Figura 121. Alameda-sauceda que habrá de evitar la hinca para no afectar el bosque de ribera incluido en el ZEC Cuenca del río Guadalix

En cualquier caso, la ubicación exacta de la zona de apertura de la hinca no se conocerá hasta la fase de proyecto técnico de ejecución, por lo que se cuantificarán los efectos en dicha fase.

☐ Efectos por excavación de la zanja del tramo soterrado de la línea L/400 kV Colectora La Cereal – La Cereal REE

En el tramo soterrado de 1.422m de la L/400 kV Colectora La Cereal – La Cereal REE, la zanja de excavación supondrá el desbroce de una franja de 3m de ancho, en total 5.688m².

Figura 122. Pastizales, frecuentemente con encinas dispersas, cantuesares y encinares adehesados que serán afectados en el tramo soterrado en el ZEC Cuenca del río Manzanares, en la zona sur de la L/400 kV Colectora La Cereal – La Cereal REE.
Se contempla la construcción de una hinca que evite la afección a la ribera del arroyo Tejada. La boca de excavación de esta hinca se situará en majadales de *Poa bulbosa* (ver imagen).

![Imagen de majadal](image)

Figura 123. Majadal en la terraza del arroyo Tejada susceptible de afección por la hinca de la línea L/400 kV Colectora La Cereal – La Cereal REE en el ZEC Cuenca del río Manzanares.

Al igual que en la fase anterior, la ubicación exacta de la zona de apertura de la hinca no se conocerá hasta la fase de proyecto técnico, por lo que se cuantificarán los efectos en dicha fase.

- **Efectos en la vegetación por la apertura de las calles de seguridad y zonas de riesgo de caída de árboles**

En primer lugar, se recogen los aspectos normativos que aplican, seguidamente los tipos de vegetación presentes en la calle de seguridad y finalmente se analiza la compatibilidad de estos tipos de vegetación y la necesidad de actuaciones silvícolas teniendo en cuenta los aspectos normativos.

- Aspectos normativos

El Real Decreto 223/2008, de 15 de febrero, por el que se aprueba el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión (RLAT), indica que se establecerá una zona de protección de la línea que, teniendo en cuenta el tipo de vegetación, la pendiente del terreno y la velocidad de crecimiento de cada especie, garantice que no se produzcan interrupciones del servicio y posibles incendios producidos por el contacto de ramas o troncos de árboles con los conductores de la línea.

La calle de tendido es una franja que, en ocasiones, puede ser necesaria para la ejecución del tendido del cableado. En el caso del proyecto que nos ocupa, como se indica en el apartado de tendido de cable en la descripción del proyecto, no será necesaria la calle de
tendido, ya que el tendido del cableado se hará a mano mediante cables piloto en aquellas zonas en las que hay presencia de vegetación natural, por lo que los conductores en ningún momento contactan con las copas de los árboles.

Por otra parte, la calle de seguridad es la franja de terreno que comprende la servidumbre de vuelo y la zona de seguridad. Se establece para la puesta en servicio de la línea y viene reglamentada, como ya se ha mencionado, por el RLAT, que define la distancia mínima que ha de existir entre los conductores y los árboles. Asimismo, existe una zona de riesgo de inclinación o de caída de árboles, donde por inclinación o caída fortuita o provocada, el arbolado pueda alcanzar los conductores en su posición normal. En la calle de seguridad o en la zona de riesgo de inclinación o caída de árboles, se contemplan actuaciones forestales sobre el arbolado y la vegetación arbustiva considerada como no compatible según la Instrucción Técnica de REE (IA019) de Gestión forestal de la Red de Transporte. Estas actuaciones forestales serán talas, podas y/o desbroces para cumplir con las distancias de seguridad establecidas en la legislación vigente entre conductores, en sus condiciones más desfavorables, y estas especies, teniendo en cuenta su máxima altura potencial.

A los tratamientos en la calle de seguridad se unirán la tala de los árboles que existen en la zona de riesgo de inclinación o caída de los árboles:

“(...) deberán ser cortados todos aquellos árboles que constituyen un peligro para la conservación de la línea, entendiéndose como tales los que, por inclinación o caída fortuita o provocada puedan alcanzar a los conductores en su caída normal (...)”.

Por otra parte, el riesgo de incendio debido a las líneas también se recoge en la Ley 43/2003 de Montes y en el Decreto 3769/1972, de 23 de diciembre, por el que se aprueba el Reglamento de la Ley 81/1968, de 5 de diciembre, sobre incendios. Concretamente en el artículo 25 de esta última referencia legislativa, se recoge como norma de seguridad para las instalaciones industriales lo siguiente:

“(..) Dotar de una faja de seguridad de 15 metros de anchura mínima, libre de residuos, de matorral espontáneos y de vegetación seca (...) a las instalaciones de carácter industrial en zona forestal”. Así pues, en lo que se refiere a los tratamientos silvícolas a realizar en el perímetro de la subestación se realizará en un perímetro de 15 metros libres de vegetación desde el último elemento en tensión.

En definitiva, en cuanto a posibles efectos en la vegetación y a los tratamientos silvícolas a realizar en la calle de seguridad o en la zona de riesgo de inclinación o caída de árboles se cumplirá con:

- El Real Decreto 223/2008 e Instrucción Técnica Complementaria ITC-LAT 07

- Ley 43/2003 de Montes y en el Decreto 3769/1972, de 23 de diciembre, por el que se aprueba el Reglamento de la Ley 81/1968.

- Guía Forestal de REE.
Tipos de vegetación y usos en la calle de seguridad

En las líneas que aquí nos ocupan se ha calculado la franja que representa la calle de seguridad en base al Real Decreto 223/2008 y a la Instrucción Técnica Complementaria ITC-LAT 07. A continuación se han identificado los usos y formaciones vegetales dentro de la citada calle de seguridad (ver tablas) estimando una anchura de 20m, aunque este aspecto será detallado en fase de proyecto técnico.

Tabla 171. Resumen de los usos y formaciones vegetales sobrevoladas por el trazado y que se encuentran en la calle de seguridad del tramo de línea L/132 kV GR Colimbo – Colectora La Cereal. Se indica la superficie total (ha) afectada de cada tipo, y el porcentaje que representa del total. Elaboración propia a partir del MFE50.

<table>
<thead>
<tr>
<th>VEGETACIÓN</th>
<th>Superficie (ha)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantuesar, tomillar y otras especies de pequeña talla</td>
<td>0,6338</td>
<td>1,17</td>
</tr>
<tr>
<td>Cultivo de secano herbáceo</td>
<td>21,5594</td>
<td>39,63</td>
</tr>
<tr>
<td>Encinar</td>
<td>0,0464</td>
<td>0,09</td>
</tr>
<tr>
<td>Encinar adehesado</td>
<td>4,3075</td>
<td>7,92</td>
</tr>
<tr>
<td>Infraestructura lineal</td>
<td>0,1971</td>
<td>0,36</td>
</tr>
<tr>
<td>Jaral</td>
<td>0,0391</td>
<td>0,07</td>
</tr>
<tr>
<td>Matorral de leguminosas</td>
<td>1,3554</td>
<td>2,49</td>
</tr>
<tr>
<td>Pastizal y erial</td>
<td>3,0989</td>
<td>5,70</td>
</tr>
<tr>
<td>Piornal, codesar y escobonal</td>
<td>0,7176</td>
<td>1,32</td>
</tr>
<tr>
<td>Retamar</td>
<td>20,2196</td>
<td>37,17</td>
</tr>
<tr>
<td>Vegetación de ribera arbóreo - arbustiva</td>
<td>0,3979</td>
<td>0,73</td>
</tr>
<tr>
<td>Vegetación de ribera de matorral</td>
<td>0,7558</td>
<td>1,39</td>
</tr>
<tr>
<td>Vegetación de ribera herbácea</td>
<td>0,0124</td>
<td>0,02</td>
</tr>
<tr>
<td>Viñedo</td>
<td>0,8677</td>
<td>1,60</td>
</tr>
<tr>
<td>Zona urbanizada</td>
<td>0,1904</td>
<td>0,35</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,3992</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tabla 172. Resumen de los usos y formaciones vegetales sobrevoladas por el trazado y que se encuentran en la calle de seguridad del tramo de línea L/400 kV Colectora La Cereal – La Cereal REE. Se indica la superficie total (ha) afectada de cada tipo, y el porcentaje que representa del total. Elaboración propia a partir del MFE50.

<table>
<thead>
<tr>
<th>VEGETACIÓN</th>
<th>Superficie (ha)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encinar</td>
<td>3,9484</td>
<td>20,73</td>
</tr>
<tr>
<td>Encinar adehesado</td>
<td>4,8419</td>
<td>25,42</td>
</tr>
<tr>
<td>Infraestructura lineal</td>
<td>0,3442</td>
<td>1,81</td>
</tr>
<tr>
<td>Pastizal y erial</td>
<td>9,5508</td>
<td>50,15</td>
</tr>
<tr>
<td>Retamar</td>
<td>0,0939</td>
<td>0,49</td>
</tr>
<tr>
<td>Vegetación de ribera arbóreo - arbustiva</td>
<td>0,1164</td>
<td>0,61</td>
</tr>
<tr>
<td>Vegetación de ribera de matorral</td>
<td>0,1486</td>
<td>0,78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19,0441</td>
<td>100,00</td>
</tr>
</tbody>
</table>
Compatibilidad de la vegetación en la calle de seguridad y posibles actuaciones selvícolas

En la calle de seguridad se prestará especial atención a las especies vegetales, tanto especies arbóreas como arbustivas no compatibles, las cuales se definen en el Anexo 3 (Listado de árboles y arbustos por CCAA) de la Instrucciones técnicas de Gestión forestal de la red de transporte de REE.

Se define como especies no compatibles con líneas eléctricas aquellas “especies cuya presencia en la calle de seguridad no garantiza de forma permanente y durante toda la vida útil de la instalación el cumplimiento de las distancias de seguridad aumentando el riesgo de provocar incendios forestales y/o el riesgo de interrupción temporal del suministro eléctrico”.

Estas especies pueden requerir el empleo de talas y/o desbroces para cumplir con las distancias de seguridad, salvo cuando la orografía garantice el cumplimiento de las distancias de seguridad establecidas en la legislación vigente entre conductores, en sus condiciones más desfavorables, y estas especies, teniendo en cuenta su máxima altura potencial.

Por otro lado, se define como especies compatibles con líneas eléctricas aquellas “especies cuya presencia en la calle de seguridad o en la zona de riesgo de inclinación o caída de árboles garantiza de forma permanente durante toda la vida útil de la línea, el cumplimiento de las distancias de seguridad”.

En casos de vegetación compatible, y siempre que la normativa autonómica o el Órgano Ambiental no indique lo contrario, no será necesaria ningún tipo de actuación. No obstante, en aquellos vanos en los que la fracción de cabida cubierta sea superior al 50%, como medida de prevención de incendios forestales, sería recomendable trabajos de mantenimiento para la eliminación del substrato forestal o del arboreto compatible para que la fracción de cabida cubierta sea menor del 50%.

Una vez consultado el citado Anexo 3 de la Instrucciones técnicas de Gestión forestal de la red de transporte de REE., se encuentran las siguientes especies incompatibles:

- Pies arbóreos: *Pinus halepensis*, *Populus alba*, *Populus nigra*
- Jaral (en tallas superiores a 1,5m de altura)
- Matorral de leguminosas (en función de las especies, en tallas superiores a 1,5-2,0m)
- Piornal, codesar y escobonal (en función de las especies, en tallas superiores a 1,5-2,0m)
- Retamar (en tallas mayores de a 2m)

Por tanto, las únicas zonas en calle de seguridad que habría que tratar serían las zonas de vegetación de ribera arbórea en las que habría que eliminar los álamos o chopos en caso de que no cumplieran las distancias de seguridad. No se esperan talas, excepto algún álamo
aislado, ya que los tramos identificados de alameda serán salvados probablemente mediante las hincas en los cruces del arroyo Tejada y del río Guadalix. El resto, ni enebros, ni encinas, ni fresnos son incompatibles. Sí existe un matorral incompatible, concretamente, jarales matorral de leguminosas y más en particular piornales, codiesares y escobonales, así como retamares, que deberían ser tratado cuando superaran las tallas indicadas anteriormente. Destacan especialmente las más de 20 has de retamar, así como algunos matorrales también incompatibles menos abundante, presentes en la línea L/132 kV GR Colimbo – Colectora La Cereal, y susceptibles de tener que someterse a tratamientos de corta en función de la talla.

En todos los tramos y como análisis global se puede decir que:

- En el caso de ausencia de especies incompatibles, no se necesita actuación selvícola, a no ser que la normativa autonómica indique lo contrario.

- En caso de presencia de especies incompatibles, se podría requerir empleo de talas y/o desbroces, concretamente en el matorral citado (por encima de 1,5 o 2 m de altura), salvo cuando la orografía garantice el cumplimiento de las distancias de seguridad.

☐ **Valoración final del impacto potencial de la línea y las subestaciones en la vegetación**

Recapitulando los efectos sobre la vegetación ocasionados por la línea eléctrica, destacar que los principales efectos en la vegetación natural sólo se podrán cuantificarán detalladamente en fase de proyecto técnico, una vez se conozcan con detalle la localización de los apoyos y el trazado de los accesos.

Una vez analizados los posibles efectos en la vegetación, se procede a describir los atributos de importancia de estos efectos (ver tabla). Estos impactos se producirán en fase de construcción, siendo posibles los impactos de las tareas de mantenimiento en fase funcionamiento. Es por ello, por lo que los efectos en fase de construcción se estiman en moderados, mientras que en fase de funcionamiento los efectos son compatibles-moderado.

Tabla 173. Atributos de la importancia del impacto en la alteración de la cobertura vegetal en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizada</td>
<td>Localizada</td>
<td></td>
</tr>
</tbody>
</table>
6.6.2 Degradación de la vegetación circundante

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Los movimientos de tierras y el tránsito de vehículos en fase de construcción podrían provocar efectos en la vegetación de las proximidades a la zona de obras por incremento en las partículas de polvo que podrían depositarse en la vegetación. Esta acumulación de polvo en superficies foliares afecta a la fotosíntesis y transpiración de las plantas, mermando su crecimiento.

Este impacto ocurrirá en áreas de vegetación adyacentes a la PFV, plataformas de trabajo y caminos de acceso, así como donde se realicen acopios y movimientos de tierras, tanto en PFV como en la LSMT.

Tabla 174. Atributos de la importancia del impacto en la degradación de la vegetación circundante en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im) 0,56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN) 0,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Degradación de la vegetación circundante

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td></td>
<td>Negativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizada</td>
<td></td>
<td>Localizada</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td></td>
<td>Directo</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td></td>
<td>Simple</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td></td>
<td>Temporal</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td></td>
<td>Reversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td></td>
<td>Recuperable</td>
</tr>
<tr>
<td>Importancia (Im) 14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Página 410
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Como se observa respecto a la PFV, los movimientos de tierras y el tránsito de vehículos en fase de construcción podrían provocar efectos en la vegetación adyacente a la zona de obras por incremento en las partículas de polvo que podrían depositarse en la vegetación.

En este caso, este impacto se dará especialmente en áreas de vegetación adyacentes a subestación, apoyo y plataformas de trabajo y caminos de acceso, así como donde se realicen acopios y movimientos de tierras.

Tabla 175. Atributos de la importancia del impacto en la degradación de la vegetación circundante en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valoración</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN_i)</td>
<td>0,28</td>
<td>0</td>
<td>0,28</td>
</tr>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>-</td>
<td>Baja</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizada</td>
<td>-</td>
<td>Localizada</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>Simple</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>-</td>
<td>Reversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td>Importancia (Im_i)</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN_i)</td>
<td>0,28</td>
<td>0</td>
<td>0,28</td>
</tr>
<tr>
<td>Valoración</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>

6.6.3 Efectos sobre la flora amenazada

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Tras la revisión del listado de especies de flora vascular amenazada presentes en la zona para las cuadrículas UTM 10x10 km en las que se incluye el proyecto: 30TVL52, 30TVL51, 30TVL50, 30TVL59, 30TVL40 30TVL49, 30TVL30 y 30TVL39, resultó que ninguna de ellas contiene especies de flora vascular amenazada. No obstante, por quedar del lado de la
seguridad, se estudió un contexto más amplio y se analizaron también algunas las cuadrículas adyacentes más próximas. Considerando ese contexto geográfico más amplio, que abarca 6 cuadrículas 10x10km más, sí aparece una especie de flora amenazada: el helecho acuático *Marsilea strigosa*. Concretamente se encuentra en las cuadrículas 30TVL61, 30TVL60, fuera, aunque muy próximas del límite del ámbito.

La PFV no ocupa ninguna zona húmeda tales como navajos, charcas o lagunas, ni tampoco lechos y márgenes de ríos y arroyos estacionales que pudiera albergar este tipo de flora por lo que se descarta el impacto sobre *Marsilea strigosa*.

Tabla 176. Atributos de la importancia del impacto en la flora amenazada en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT.

<table>
<thead>
<tr>
<th>Efectos sobre la flora amenazada</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Como se ha visto en el apartado anterior, no hay especies de flora vascular amenazada en el ámbito. La especie más próxima, *Marsilea strigosa* ocupa navajos o charcas a varios kilómetros de distancia del trazado, en las cuadrículas 30TVL61, 30TVL60 localizadas en Laguna de los Mesones y en navajo de Monte Calderón, cerca de El Casar o en Puebla de Belenúa, ya en Guadalajara. Los accesos y los apoyos más cercanos no afectarán en ningún caso este tipo de hábitats.
Tabla 177. Atributos de la importancia del impacto en la flora amenazada en fase de construcción, de funcionamiento y desmantelamiento para ST y LE.

<table>
<thead>
<tr>
<th>Flora amenazada</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelam.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>NO SIGNIFIC.</td>
<td>NO SIGNIFIC.</td>
<td>NO SIGNIFIC.</td>
</tr>
</tbody>
</table>

6.6.4 Efectos los Hábitats de Interés Comunitario (HICs)

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

La PFV se asienta sobre cultivo por lo que, como vimos en el apartado de alteración de la cubierta vegetal, afecta muy puntualmente a vegetación natural que no coincide con la cartografía oficial de teselas con HICs y que, en ningún caso, y tras la visita de campo, no puede considerarse como HICs.

Tabla 178. Atributos de la importancia del impacto en los HICs en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Efectos en los HICs</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Efectos en los HICs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atributos de Importancia</td>
<td>Construcción</td>
<td>Funcionamiento</td>
<td>Desmantelamiento</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFIC.</td>
<td>NO SIGNIFIC.</td>
<td>NO SIGNIFIC.</td>
<td></td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Como se indicó en el apartado de inventario, existe presencia notable de teselas HICs, que suponen un 42,0% del ámbito es HIC, dominando los HICs prioritarios respecto de los HICs no prioritarios en una proporción aproximada de 2 a 1.

Los HICs prioritarios se deben a la presencia del HIC 6220*, acompañado fundamentalmente del HIC 9340 y del HIC 5330, y también frecuentemente por HIC 4090, HIC 6420, HIC 6310 e HIC 5210. Entre los HIC no prioritarios más frecuentes encontramos el HIC 9340 e HIC 5330, y también los ligados a cursos de agua o a zonas de suelos más húmedos como son el HIC 92A0, HIC 6420 e HIC 3260. Además, se encuentran otros como el HIC 4090, HIC 6310, HIC 5210 y un conjunto sin código UE, entre los que destacan los jarales y los espartales.

En el tramo soterrado de 1.422m de la L/400 kV Colectora La Cereal – La Cereal REE, la zanja de excavación supondrá el desbroce de una franja de 3m de ancho, en total 5.688m². Esta franja no coincide con teselas HIC según la cartografía oficial, aunque tendrá que ser verificado con realmente hay ausencia de HICs en fase de proyecto técnico. Una vez que comienza el tramo aéreo de esta línea, se observa coincidencia con HIC prioritario por presencia de majadales del HIC 6220* con Poa bulbosa de la Poo bulbosae-Trifolietum subterranei.
Figura 124. Tramo soterrado de la L/400 kV Colectora La Cereal – La Cereal REE no coincidente con teselas HIC según la cartografía oficial. El tramo aéreo sí observa coincidencia con HIC prioritario por presencia de majadales del HIC 6220*.

La ubicación de la ST Colectora La Cereal se encuentra (ver imagen a continuación) íntegramente en zonas de majadal del HIC 6220* con Poa bulbosa de la Poo bulbosae-Trifolietum subterranei, cuya presencia sí fue corroborada en visita de campo.

Figura 125. ST Colectora La Cereal y entorno próximo con presencia significativa de majadales pertenecientes al HIC prioritario 6220*.

El tramo de la línea L/132 kV GR Colimbo – Colectora La Cereal (ver imagen a continuación), dominan HIC no prioritarios HIC 9340 de encinares, HIC 5330 de retamares e HIC 4090 de cantuesares, aunque también hay presencia si bien es minoritaria de HIC prioritarios de 6220* de lastonares del Phlomido lychnitidis-Brachypodietum ramosi.
Figura 126. En la mitad norte de la línea L/132 kV GR Colimbo – Colectora La Cereal hay menor presencia de HICs y dominan los HIC no prioritarios principalmente HIC 9340, HIC 5330, HIC 4090 y el HIC 92A0 y 6420 en torno a los cursos de agua.

Los principales efectos en los HICs sólo se podrán cuantificar detalladamente en fase de proyecto técnico, una vez se conozcan con detalle la localización de los apoyos y el trazado de los accesos, así como los detalles de la construcción de los tramos soterrados. Por ello, se realizará un “Estudio de los efectos de las líneas eléctricas y subestaciones del proyecto sobre los HICs”, para aquellas zonas donde los elementos de la línea tanto, aérea como soterrada, así como las subestaciones, se localicen en zonas que pudieran ser HIC, especialmente HIC prioritarios o con un elevado valor de naturalidad. Dicho estudio también incluirá una propuesta de medidas protectoras, correctoras y, en su caso, compensatorias por la superficie de HICs afectados a aplicar en zonas degradadas y cercanas a las afectadas por el proyecto.

A continuación, se estiman los atributos de los impactos en los HICs que provocarían la subestación y las líneas eléctricas. La correcta localización de los apoyos, accesos y demás elementos del proyecto en fase de proyecto técnico de ejecución podrán reducir significativamente los efectos.

Tabla 179. Atributos de la importancia del impacto en los HICs en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Efectos en los HICs</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
<td></td>
</tr>
</tbody>
</table>
6.6.5 Valoración global de los efectos potenciales sobre la vegetación, la flora amenazada y los HICs

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

En este apartado de valoración final, se analiza la información de los apartados anteriores relativa a los diferentes posibles efectos globales del proyecto sobre la vegetación, la flora amenazada y los HICs. Para valorar estos efectos globales, el criterio ha sido elegir como valor, aquel cuyo efecto haya resultado de mayor magnitud, con el fin de quedar del lado de la seguridad (ver tabla). Según estos, los efectos globales en la vegetación son moderados en fase de construcción, principalmente debido a la pérdida de superficie de HIC prioritario 6220*, compatibles-moderados en fase de funcionamiento y positivos en fase de desmantelamiento.

Tabla 180. Atributos de la importancia del impacto sobre la vegetación en fase de construcción, funcionamiento y desmantelamiento para PFV y su LSMT. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA VEGETACIÓN</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alteración cubierta vegetal</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Degradación vegetación circundante</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE</td>
<td></td>
</tr>
<tr>
<td>Flora amenazada</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
<tr>
<td>Efectos sobre HIC</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
</tbody>
</table>
Podemos afirmar que los efectos sobre la vegetación y los HICs son prácticamente inexistentes ya que la PFV y su LSMT coinciden prácticamente en su totalidad con cultivos, salvo alguna superficie de pocos metros cuadrados. Son relativamente de menor importancia la degradación de la vegetación circundante, y no significativos los efectos sobre la flora amenazada, dada la ausencia de taxones protegidos.

Por último, es conveniente destacar que, en la fase de desmantelamiento implicaría unas operaciones que conllevan cierto impacto, aunque serían paliadas por la restauración ambiental asociada al desmantelamiento y la vuelta a las condiciones anteriores al proyecto.

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Los principales indicadores de los criterios de importancia de los impactos sobre la vegetación son la superficie de la nueva ocupación que implica desbroce de la misma y por consiguiente de los HICs, desglosando las diferentes actuaciones del proyecto (ST, accesos y apoyos y plataforma y la zanja para el tramo de línea soterrada), complementado con otros descriptores como es la longitud de tránsitos campo a través.

Aunque estos indicadores no podrán ser desarrollados hasta la fase de proyecto técnico, si se pude estimar que existirá un impacto de intensidad elevada y amplia extensión, dado la longitud de la línea, lo que implica un elevado número de apoyos (al menos superior a 100) y sus correspondientes campas de trabajo y accesos. Esto, unido a que casi la mitad del ámbito en torno a la línea es HIC, principalmente prioritario, hace que la magnitud e intensidad de los impactos sean considerable y que serán necesarios estudios específicos para su cuantificación real y, en su caso, la propuesta de medidas de diseño, protectoras y correctoras (y tal vez compensatorias) para asegurar una adecuada integración ambiental del proyecto.

En este apartado de valoración final, se analiza la información de los apartados anteriores relativa a los diferentes posibles efectos del proyecto sobre la vegetación y los HICs. Para valorar los efectos globales, se ha tomado como criterio elegir el valor global de aquel efecto que haya resultado de mayor magnitud, con el fin de quedar del lado de la seguridad (ver tabla). Según estos, los efectos sobre la vegetación se producirán principalmente en fase de construcción, siendo los de mayor impacto el desbroce originado por la implantación de los caminos de accesos de nueva construcción sobre zonas con vegetación natural, así como la plataforma y apoyos, a los que hay que añadir el desbroce del tramo soterrado. En fase de construcción resultó que los efectos son de carácter moderado. Sin embargo, en fase de
funcionamiento los efectos son de carácter compatible-moderado. En la fase de desmantelamiento implica el retorno a situación ambiental natural y, por tanto, resulta un efecto positivo.

La correcta localización de los apoyos, accesos y demás elementos del proyecto en fase de proyecto técnico de ejecución podrán reducir significativamente los efectos.

Tabla 181. Atributos de la importancia del impacto sobre la vegetación en fase de construcción, funcionamiento y desmantelamiento para ST y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA VEGETACIÓN</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construcción</td>
</tr>
<tr>
<td>Alteración cubierta vegetal</td>
<td>MODERADO</td>
</tr>
<tr>
<td>Degradación vegetación circundante</td>
<td>COMPATIBLE-NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Flora amenazada</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Efectos sobre HIC</td>
<td>MODERADO</td>
</tr>
<tr>
<td>EFECTOS GLOBALES VEGETACIÓN, FLORA E HICs</td>
<td>MODERADO</td>
</tr>
</tbody>
</table>

6.7 EFECTOS SOBRE LA FAUNA

En el presente apartado se aportan los datos obtenidos hasta la fecha del estudio anual de avifauna. Se considera importante recordar que las fases de selección de alternativas mediante mapas de capacidad de acogida en los que se han incorporado datos del seguimiento anual de avifauna y datos bibliográficos han permitido seleccionar una traza en la que se ha minimizado el impacto sobre la fauna.

Al estudiar los efectos sobre la avifauna hay que diferenciar claramente la fase de obras, la fase de explotación y la fase de desmantelamiento.

- **Planta Solar Fotovoltaica**

Durante la fase de construcción hay que tener en cuenta las afecciones que se producen como consecuencia de la pérdida de hábitat o muerte de ejemplares por ocupación, despeje de vegetación, apertura de zanjas o fosas u otras operaciones. Además de las molestias y perturbaciones por presencia humana y movimientos de maquinaria a especies protegidas, ya que pueden variar sus pautas de comportamiento como consecuencia de los ruidos, mayor presencia humana, movimiento de maquinaria, y otras molestias que las obras pueden ocasionar.
Durante la fase de explotación las potenciales afecciones existentes son la fragmentación del territorio, el efecto barrera, los accidentes de avifauna con el cerramiento del parque, accidentes de avifauna con los paneles solares y desvío de rutas de migración por el reflejo de las placas, degradación del hábitat en torno a la planta solar, eliminación de los plaguicidas y aumento de áreas de refugio de especies ubiquistas.

Por último, en fase de desmantelamiento las afecciones que se producen durante la propia obra, es decir, los efectos por molestias y perturbaciones, serán los mismos que los producidos durante la obra de construcción, mientras que el resto de los efectos serán inexistentes.

☐ **Línea eléctrica y subestación de transformación**

Durante la fase de obras hay que tener en cuenta las afecciones que se producen como consecuencia de la pérdida, fragmentación y alteración de hábitats por la apertura de nuevos accesos y la calle de seguridad. También se pueden producir afecciones sobre toda la fauna presente en el área de estudio, ya que pueden variar sus pautas de comportamiento como consecuencia de los ruidos, mayor presencia humana, movimiento de maquinaria, y otras molestias que las obras pueden ocasionar.

Además de los citados efectos que la construcción de una línea eléctrica de alta tensión genera sobre la avifauna, existen algunos aspectos positivos para el caso concreto de las aves, como es el uso de los postes como posadero y oteadero.

Durante la fase de explotación el mayor riesgo para la avifauna es la colisión contra el cableado. Por último, los efectos de la fase de desmantelamiento son inexistentes salvo los provocados por la ejecución de la propia obra los cuales se consideran de menos magnitud que los existentes en la fase de construcción por tratarse de un medio alterado.

6.7.1 Molestias y perturbaciones

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

La actividad de la maquinaria empleada en las obras, el ruido generado y la presencia continuada de personas en el tajo a lo largo del periodo de obras puede generar molestias y perturbaciones a la fauna.

Con carácter potencial, la fauna más vulnerable o más sensible al ruido y a la presencia de personas, podría evitar la zona de trabajos y su entorno más próximo. El periodo de cría es el momento del ciclo anual en el que podrían manifestar, de forma más severa, los efectos sobre la fauna más sensible derivados de perturbaciones y molestias, ya que podrían abandonar el área de reproducción o verse afectados los resultados de esta.

Valoración del efecto
La valoración se centrará en la avifauna, grupo más sensible, principalmente en las especies que nidifiquen en zonas esteparias y en especies que nidifiquen en áreas colindantes a las áreas de implantación, mediante los datos de observaciones/uso del espacio y las zonas relevantes para la avifauna obtenidas en el Seguimiento anual de avifauna.

La cuantificación del impacto se realiza para las especies con puntos de nidificación o dormideros a distancias de 500 metros de las áreas de actuación con los datos bibliográficos u obtenidos en el seguimiento anual hasta la fecha (muestreos de diciembre a la primera quincena de marzo).

Concretamente la cuantificación se aborda como la combinación de la intensidad del impacto en relación a las acciones del proyecto y el grado de catalogación de las especies que cumplen el requisito anteriormente descrito.

- **Intensidad alta**: especies catalogadas en peligro de extinción en los catálogos de aplicación y sensibles a este tipo de efectos.
- **Intensidad media-alta**: especies catalogada como vulnerable o sensible a la alteración del hábitat en los catálogos de aplicación.
- **Intensidad media**: más de una especie catalogada en régimen de protección especial o de interés especial en los catálogos de aplicación.
- **Intensidad media-baja**: una especie catalogada en régimen de protección especial o de interés especial en los catálogos de aplicación.
- **Intensidad baja**: no catalogadas.

En la siguiente tabla se exponen las nidificaciones o dormideros obtenidos en el estudio anual de avifauna hasta la fecha, el valor de catalogación de las especies, la distancia a las obras, la detección de pollos en el nido (éxito reproductor), la sensibilidad de la especie durante la época reproductora a molestias y perturbaciones, y la inclusión en alguna figura de protección.

Tabla 182. Nidificaciones detectadas en el seguimiento de avifauna.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Intensidad</th>
<th>Distancia a las obras (m)</th>
<th>Detección de pollos en nido</th>
<th>Sensibilidad de la especie</th>
<th>Inclusión en alguna figura de protección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyps fulvus</td>
<td>Media</td>
<td>2,7 km</td>
<td>Incubando</td>
<td>media</td>
<td>RD1432/2008</td>
</tr>
<tr>
<td>Gyps fulvus</td>
<td>Media</td>
<td>3 km</td>
<td>Incubando</td>
<td>media</td>
<td>RD1432/2008</td>
</tr>
</tbody>
</table>

Así mismo, hay dos detecciones de especies que potencialmente podrían tener puntos de nidificación en las cercanías de la PFV, aunque hasta la fecha no se ha podido cerciorar el dato. Concretamente se ha detectado un aguilucho lagunero sexado o datado como hembra o juvenil posado en el suelo a una distancia de 962 m de la PFV; y un milano real saliendo de un árbol en el que potencialmente pueda tener una nidificación a 1,3 km de la PFV.

Por último, aunque a fecha de la presente no se han detectado nidificaciones o puntos de reproducción de alguna especie esteparia, no se puede descartarest la posibilidad de...
presencia de puntos de interés en la zona por lo que la intensidad del impacto se valorará como media-alta bajo un criterio conservador.

Tabla 183. Atributos de la importancia del impacto en la red de drenaje natural en fase de construcción, de funcionamiento y desmantelamiento para PSFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media-Alta</td>
<td>-</td>
<td>Media-Alta</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>-</td>
<td>Localizado</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>-</td>
<td>Acumulativo</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>-</td>
<td>Irreversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>27</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,54</td>
<td>-</td>
<td>0,54</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>NO SIGNIFICATIVO</td>
<td>MODERADO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LEAT) y Subestaciones eléctricas de Transformación (ST)

El movimiento de maquinaria necesario para la explanación del terreno y construcción de las subestaciones, así como la ejecución de los elementos que componen la línea eléctrica a 132 kV Colimbo – Colectora La Cereal (tramo soterrado y aéreo) y línea eléctrica a 400 kV Colectora Cereal – La Cereal REE, podrían afectar a la fauna residente generando molestias debidas al aumento de ruido y de la frecuentación humanas. Si bien este impacto es reversible, estas molestias pueden tener una incidencia especialmente relevante si se producen durante la época de reproducción y cría de las especies ya que pueden dar lugar a una disminución en el éxito reproductor, con el consiguiente impacto sobre las poblaciones y la supervivencia de estas especies.

La cuantificación del impacto se realiza a partir del grado de catalogación de las especies con puntos de nidificación, dormideros o zonas sensibles localizados a menos de 500 metros de las líneas eléctricas o STs del proyecto, y que son sensibles por molestias y perturbaciones. La cuantificación se aborda como la intensidad del impacto y se estima a partir del grado de catalogación de las especies que cumplen el requisito anteriormente descrito.
Intensidad alta: especies catalogadas en peligro de extinción en los catálogos de aplicación y sensibles a este tipo de efectos.

Intensidad media-alta: especies catalogada como vulnerable o sensible a la alteración del hábitat en los catálogos de aplicación.

Intensidad media: más de una especie catalogada en régimen de protección especial o de interés especial en los catálogos de aplicación.

Intensidad media-baja: una especie catalogada en régimen de protección especial o de interés especial en los catálogos de aplicación.

Intensidad baja: no catalogadas.

Valoración del efecto:

1) Identificación de los puntos reproductores o dormideros a menos de 500 m detectados hasta la fecha en el estudio anual de avifauna:

- Nido de milano real en el Arroyo de Valdearenas a 423 m al este de la traza.
- Nido de rapaz mediana en el río Guadalix a 452 m al norte de la traza del tramo soterrado.
- Nido de rapaz mediante o grande sin actividad en el río Guadalix a 233 m al norte de la traza del tramo soterrado.
- Nido de milano real en el arroyo de la Colada a 234 m al sur de la traza.
- Nido de rapaz mediana en el Arroyo Tejada a 359 m al norte de la traza.

2) Identificación de los puntos reproductores o dormideros a más de 500 metros detectados hasta la fecha en el estudio anual de avifauna:

- 2 Colonías de buitre leonado al norte a 4,1 km al norte-oeste de la traza.
- Nido de milano real a 1,1 km del tramo soterrado a la altura del río Guadalix.
- Nido de águila imperial ibérica a 1,1 km de la traza a la altura del paraje de Los Descansos en una torre de una línea eléctrica extinguida.
- Nido de águila imperial ibérica a 1,28 km en una torre de alta tensión en el paraje de las Hoyas de S. Roque al norte de núcleo urbano de Tres Cantos.
- Nidos de los que no se ha podido identificar la especie cercanos a la L/132 kV Colimbo – Colectora La Cereal:
 - Posible nido de rapaz mediana a 654,11 m de la traza
 - Posible nido, en mal estado, de milano real a 740,02 m de la traza
 - Posible nido rapaz mediana a 815,15 m de la traza
 - En mal estado, quizás de Milano real o negro a 859,09 m de la traza
- Nidos de los que no se ha podido identificar la especie cercanos a la L/132 kV Colectora La Cereal – La Cereal REE:
 - Nido rapaz mediana en muy mal estado a 697,22 m de la traza
 - Nido en torre de media tensión, de rapaz o córvido a 873,57 m de la traza

Tabla 184. Atributos de la importancia del impacto en la red de drenaje natural en fase de construcción, de funcionamiento y desmantelamiento para ST y LEAT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Molestias y perturbaciones</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Negativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Alta</td>
<td>-</td>
<td>Media-Alta</td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>-</td>
<td>Parcial</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>Simple</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>Temporal</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>-</td>
<td>Irreversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>34</td>
<td>-</td>
<td>31</td>
</tr>
</tbody>
</table>
Molestias y perturbaciones

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,68</td>
<td>-</td>
<td>0,62</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO-SEVERO</td>
<td>NO SIGNIFICATIVO</td>
<td>MODERADO-SEVERO</td>
</tr>
</tbody>
</table>

6.7.2 Alteración y destrucción de hábitats

Planta Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Durante la fase de construcción de las PFV y sus LSMT se generará una ocupación del terreno que obligará a sus hospedadores a desplazarse a otros lugares más o menos próximos, donde encontrar nuevos puntos de residencia, acordes con sus necesidades. La ejecución del proyecto y su incorporación al medio conllevarán la desaparición de elementos que componen los biotopos y su sustitución por elementos ajenos al entorno natural, modificándose consecuentemente los hábitats de las especies de fauna presente.

La alteración del hábitat de las especies de fauna presentes en el ámbito de estudio va a ser dependiente de la superficie afectada por los distintos elementos que componen la instalación. Dicha alteración, conllevará la modificación del medio donde se desarrolla el ciclo biológico de las especies. La fauna terrestre será la más afectada directamente. En el caso de la avifauna, los posibles impactos se centrarán en la potencial destrucción de nidos y en casos muy concretos por alteraciones del ecosistema. Conviene puntualizar que la pérdida del hábitat para una especie determinada no tiene por qué ser física, puesto que pérdidas en la calidad del hábitat pueden ser suficientes como para que aquél se convierta en inutilizable para dicha especie.

Los efectos tendrán mayor trascendencia en función del interés de las especies presentes y de los daños que se puedan generar sobre éstas. Así, los efectos ambientales pueden ser graves en el caso de ecosistemas muy frágiles, o cuando las especies presentan escasa movilidad, una vinculación a un biotopo muy concreto o son especies en peligro de extinción, en las que cualquier alteración podría suponer un efecto directo y de gran trascendencia sobre sus poblaciones, en especial si las actividades de construcción afectasen directamente a sus funciones biológicas, la vegetación que los protege o a su entorno inmediato.

Valoración del efecto:

La valoración de la magnitud del impacto de alteración y pérdida de hábitat se realiza estimando la pérdida de hábitat/biotopo y su singularidad o representación en el ámbito de estudio, la representación de pérdida de hábitat a nivel de tesela de biotopo, el número de ejemplares/población de especies potencialmente afectada por esta transformación y su sensibilidad ante este efecto (se incluye el estado de catalogación).

El ámbito de estudio de 2 km a la PFV está compuesto por los siguientes biotopos:
Las áreas de implantación han sido definidas sobre zonas de biotopo pseudoestepario. La superficie de pérdida de hábitat (en %) respecto a la extensión total del biotopo es de 1,8 %.

El área de implantación es coincidente con la cartografía de corredor de especies esteparias de la CdM. Por otro lado, durante el estudio anual se ha detectado una observación de una otídido. Además, se han detectado durante el mes de marzo aguilucho pálido en las cercanías de las áreas de implantación.

Sobre la base de esto, al considerar el porcentaje de pérdida de hábitat, la detección de avutarda común (una única de detección) y aguilucho pálido, potencial presencia de coincidencia con corredor de especies esteparias la intensidad del impacto se considera media y estado de catalogación de estas especies el efecto se considera de intensidad media.

Tabla 185. Atributos de la importancia del impacto de la alteración y pérdida de hábitat en fase de construcción, de funcionamiento y desmantelamiento para PSFV y su LSMT.

Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Sinérgico</td>
<td>Sinérgico</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>28</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,56</td>
<td>0,56</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LEAT) y Subestaciones eléctricas de Transformación (ST)

Ocupación, alteración y pérdida de hábitats
Durante la fase de construcción de la línea, así como de la explicación del terreno de las subestaciones, se generará una ocupación del terreno que obligará a sus hospedadores a desplazarse a otros lugares más o menos próximos, donde encontrar nuevos puntos de residencia, acordes con sus necesidades.

La fauna terrestre será la más afectada directamente, mientras que la acuática, a priori, no se verá afectada. En el caso de la avifauna, los posibles impactos se centran en la potencial destrucción de nidos y en casos muy concretos por alteraciones del ecosistema, como la modificación permanente del hábitat en las zonas boscosas, en los casos en que llegue a producirse. Para evitar este estrés, se han establecido una serie de medidas preventivas que se describen en el correspondiente apartado.

Los efectos tienen mayor trascendencia en función del interés de las especies presentes y de los daños que se puedan generar sobre éstas. Así, los efectos ambientales pueden ser graves en el caso de ecosistemas muy frágiles, o cuando las especies presentan escasa movilidad, una vinculación a un biotopo muy concreto o son especies en peligro de extinción, en las que cualquier alteración podría suponer un efecto directo y de gran trascendencia sobre sus poblaciones, en especial si las actividades de construcción afectasen directamente a sus funciones biológicas, la vegetación que los protege o a su entorno inmediato.

Valoración del efecto

La línea discurre por zona de pastizal, bosques ribereños y zona de bosquetes/matorral. Con el grado de definición actual del proyecto, los biotopos potencialmente afectados más sensibles (por tratarse de áreas de nidificación) son los forestales y riparios.

La ocupación de la línea eléctrica sobre los hábitats de manera permanente se reduce a la base del apoyo, o incluso únicamente a la ocupación de las propias patas. Es decir, debido a que el área de ocupación (temporal y permanente) es reducida en relación con las extensiones del hábitat con un correcto diseño de la localización de los apoyos, se podría evitar afectar a zonas de nidificación.

Respecto a la subestaciones teniendo en cuenta la extensión de la misma, la gran cantidad de hábitat existente en el área, no se prevé afección significativa por alteración o pérdida de hábitats a estas especies.

Sobre la base de lo anterior, principalmente por el grado de definición del proyecto en lo que no se tienen definido los apoyos y accesos, como no se puede descartar la afección a zonas forestales y riparias de nidificación de rapaces como milano real y milano negro, y teniendo en cuenta la gran cantidad de áreas de nidificación que contienen la zona y por lo tanto los efectos que su alteración, la intensidad del efecto se valora como alta. Así mismo, en fase de proyecto técnico de ejecución se adoptarán medidas de diseño que eviten la implantación de apoyos y accesos, reduciendo así el efecto de manera significativamente.
La evaluación real del efecto se realizará en fase de proyecto técnico de ejecución. La aplicación de medidas de diseño del proyecto técnico de ejecución disminuirá la intensidad del efecto.

Uso de los apoyos por las aves

Las torres y los cables son utilizados como posaderos por infinidad de aves. En los terrenos despejados, carentes de arbolado, suelen constituir la atalaya habitual para numerosos rapaces como el buitre leonado, culebrera europea, el busardo ratonero, los cernícalos, etc., así como para muchas otras aves que tienen la costumbre de cazar desde posaderos (alcaudones, córvidos, etc.). También son utilizados como lugar de descanso y es frecuente que, en los cables de tierra, por encontrarse en un plano más elevado, aunque también en los conductores, se formen concentraciones de aves, previas a movimientos migratorios y dispersivos, como sucede con las palomas, tórtolas, estorninos, golondrinas, aviones, etc.

Los apoyos son utilizados también como plataforma para la instalación de nidos, o en ocasiones, como nichos de nidificación con alguna adaptación del apoyo. La parte superior de la cruceta suele ser un lugar típico de ubicación para aves grandes y planeadoras, como la cigüeña común y el águila imperial ibérica, mientras que en el cuerpo de la torre suelen anidar los córvidos (cuervo, corneja negra y urraca).

Por todo lo anterior se trata de un efecto positivo para algunas familias de especies presentes en el ámbito de estudio.
Tabla 186. Atributos de la importancia del impacto de la alteración y pérdida de hábitat en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Alta</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Parcial</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>33</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,66</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO - SEVERO</td>
<td>MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.7.3 Fragmentación del territorio y efecto barrera

Planta Solar Fotovoltaica (PSFV) y Línea Soterrada de Media Tensión (LSMT)

La fragmentación del territorio se analiza a escala de detalle (cerramiento de las áreas de implantación) y a escala más general (presencia de la propia PSFV). La implantación de huertos solares con su consecuente pérdida de hábitat potencialmente puede restringir los movimientos de especies a través de los hábitats con un efecto más o menos intenso en función del ecosistema (tipología de organismo, corredores, y hábitats) y del proyecto.

La fragmentación del hábitat y destrucción se puede definir mediante las siguientes variables:

1) Perdida de la cantidad de hábitat con la consiguiente reducción del tamaño de las poblaciones de los organismos afectados.

2) Disminución del tamaño medio de los hábitats y aumento del número de los fragmentos de hábitats resultantes. Esta tendencia reduce progresivamente el tamaño de las poblaciones mantenidas por cada uno de los fragmentos, aumentando así el riesgo de que alcancen un umbral por debajo del cual son inviables.

3) Un aumento de la distancia entre fragmentos, con la consiguiente dificultad para el intercambio de individuos entre las poblaciones aisladas, así como para reponerse, por recolonización, de una eventual extinción.
4) Aumento de la relación perímetro/superficie y, por consiguiente, una mayor exposición del hábitat fragmentado a múltiples interferencias procedentes de los hábitats periféricos, es decir, un creciente efecto borde que origina un deterioro de la calidad del hábitat.

El diseño de permeabilidad de las propias áreas de implantación, mediante corredores internos y la permanencia de teselas sin alterar, por una parte, minimizan el grado de fragmentación del área conectando teselas y por otro lado genera el aumento de fragmentos/teselas del área y una disminución de la calidad de los biotopos resultantes.

Cuantificación del efecto

La pérdida de hábitat pseudoestepario como anteriormente se mencionó a nivel de teselas se considera bajo para especies de aves de gran tamaño, que junto con la baja detección de especies sensibles se considera que hace asumible el efecto. En relación a especie de menor tamaño o grandes mamíferos la pérdida de hábitat no se considera elevada ya que se trata de especies con menos requerimientos de calidad y que se pueden adaptar algunas de ellas a la transformación parcial del biotopo.

El tamaño del área de implantación junto con la disposición de los grupos de plantas (7 teselas) favorece la permeabilidad de los movimientos de fauna. Además, no se generan islas internas al implantarse sobre zonas de cultivo homogeneas. Por lo tanto, el potencial intercambio que pudiera haber entre organismos presentes al no haber aumentado la distancia entre fragmentos y haber rutas viables de conexión se considera que no será afectado de manera significativa.

Por último, el efecto borde de las teselas de hábitat afectados no se considera que modifiquen el impacto generado por destrucción de hábitat al superar en el caso del hábitat pseudoestepario el umbral de calidad necesario para poder albergar especies esteparias (aunque no se hayan detectado de manera relevante).

Tabla 187. Atributos de la importancia del impacto de fragmentación del territorio en fase de construcción, de funcionamiento y desmantelamiento para PSFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Fragmentación del territorio y efecto barrera</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja - Media</td>
<td>Baja - Media</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Parcial</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Sinérgico</td>
<td>Sinérgico</td>
<td></td>
</tr>
</tbody>
</table>
Fragmentación del territorio y efecto barrera

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,45</td>
<td>0,45</td>
<td></td>
</tr>
</tbody>
</table>

VALORACIÓN

- COMPATIBLE-MODERADO
- COMPATIBLE-MODERADO
- POSITIVO

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

La magnitud de la fragmentación del hábitat depende de varios factores, entre los que se encuentran la/s especie/s afectada/s y sus características (principalmente su capacidad de dispersión y su grado de especialización al hábitat afectado) y la disposición de los fragmentos de hábitat afectado (Saunders, 1991). En este sentido, una línea eléctrica se trata de una infraestructura permeable que permite la conectividad entre áreas, aunque puede suponer una ligera alteración del hábitat que podría afectar a las especies más especialistas del mismo no se trata de una barrera que aíslene a las poblaciones de aves ni una barrera a su paso, aunque el paso a través de éstos implica la posible colisión (efecto anteriormente que se trata a continuación).

Por todo esto este efecto no se considera significativo para esta tipología de infraestructuras.

6.7.4 Pérdida de individuos de especies sensibles

Planta Solar Fotovoltaica (PSFV) y Línea Soterrada de Media Tensión (LSMT)

- **Mortalidad por atropello**

Los efectos directos sobre ejemplares producidos por la utilización de las infraestructuras viarias de los caminos de accesos a las áreas de implantación y línea eléctrica soterrada aumentan la probabilidad de atropello de la fauna terrestre. Las especies más vulnerables a sufrir este impacto por su tamaño (y baja visibilidad/detección) son los anfibios, reptiles y micromamíferos. Además de las especies con menor capacidad de desplazamiento.

Valoración del efecto

Teniendo en cuenta el estado de catalogación de las especies potencialmente presentes (bajo), la sensibilidad de sus poblaciones, y la tipología de los viales de acceso (caminos de tierra) el impacto se considera de intensidad baja. La aplicación de medidas preventivas (regulación de la velocidad de circulación) disminuirá el potencial impacto.
Mortalidad por colisión con el vallado

No hay datos concluyentes, ni información de mortalidad de avifauna asociada a las plantas solares fotovoltaicas (Loss et al.2015). La bibliografía identifica que potencialmente puede existir riesgo, aunque no se tengan dados concluyentes, en aves acuáticas que confunden las plantaciones solares con láminas de agua principalmente en áreas muy áridas (Horváth et Alabama.2009). Además, sin estar asociado a este tipo de infraestructuras se identifica como los cerramientos de las parcelas que se pueden mimetizar con el paisaje, pueden provocar la mortalidad de diferentes especies de aves. Concretamente esta incidencia puede ser grave para especies de esteparias, identificándose una mortalidad significativa en avutardas en áreas con alta densidad, donde existían frecuentes desplazamientos diarios entre parcelas.

Valoración del efecto

La tipología de hábitat y de módulos no hace probable el efecto de confusión de la plantación con láminas de agua. Además, la presencia de grupos de paso o individuos de especies acuáticas es nula área de estudio. Este efecto también se podrá dar sobre invertebrados. De manera preventiva, se adoptarán medidas de diseño sobre las placas (señalización).

Por otro lado, la tipología de cerramiento hace también improbable la no visibilidad del mismo. Aunque el área de implantación es coincidente con un corredor de especies esteparias y durante el seguimiento anual, hasta la fecha, se ha observado un individuo de avutarda. Por lo que, bajo un punto de vista conservador no se puede descartar el uso de la especie del área de implantación y los movimientos entre áreas. Sobre la base de esto, la intensidad del impacto se considera como media – alta bajo una posición conservadora, y se abordarán las medidas de señalización necesarias de señalización del vallado.

Respecto al resto de grupos de aves o especies insectívoras con carácter positivo potencialmente el no tratar con plaguicidas los campos donde se instales las PFV hará que aumente la densidad de invertebrados, teniendo así mayor riqueza de alimento. Además, el tipo de instalación generará nichos de reproducción para especies ubiquistas.

El impacto de incidencia directa sobre ejemplares se considera significativo, de signo negativo para los accidentes y positivo por la generación de nichos y aumento de alimento, de extensión localizada, directo y sinérgico. Así mismo es permanente, irreversible e irrecuperable. La intensidad durante la fase de construcción es baja y durante la fase de explotación es media - alta:
Tabla 188. Atributos de la importancia del impacto en la pérdida de individuos de especies sensibles y sus zonas de protección en fase de construcción, de funcionamiento y desmantelamiento para PFV. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de individuos de especies sensibles</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo / No significativo</td>
<td>No significativo</td>
<td>Significativo</td>
<td>No significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Media - Alta</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Localizada</td>
<td>Localizada</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Acumulativo</td>
<td>Acumulativo</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>30</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,6</td>
<td>0,7</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>MODERADO - SEVERO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LEAT) y Subestaciones eléctricas de Transformación (ST)

Tal y como ya se ha dicho, en el caso de las líneas eléctrica el principal riesgo para la avifauna es debido a los accidentes por colisión, junto con la electrocución, que se producen como consecuencia de la incapacidad de un ave en vuelo para evitar el obstáculo que supone la presencia de los cables. Es de importancia comentar que en tendidos de más de 66 kV, como es el caso, no se producen electrocuciones, por presentar cadenas de aisladores que impiden el contacto fase – tierra y/o por presentar una mayor distancia entre conductores.

No todas las especies presentan el mismo grado de propensión a sufrir accidentes de colisión, las más susceptibles suelen ser especies con las siguientes características: especies de vuelo rápido, especies gregarias (palomas, sisones, chorlitos, codornices, etc.), especies crepusculares o nocturnas (rapaces nocturnos y varios paseriformes durante las migraciones, como currucas, bbsitas y mosquiteros), y especies con elevada carga alar (grulla, avutarda, anátidas, etc.). Además de esto la incidencia de accidentes contra los cables de tendidos suele ser mayor en determinados tipos de hábitats asociados a una mayor concentración de especies propensas a la colisión, como zonas húmedas.

Por otro lado, las aves, según las especies, tienen una cierta capacidad de aprendizaje, tomando así conciencia del paisaje, ganando en experiencia de la realidad de su entorno vital. Esto les permite evitar los cables, aun en situaciones de escasa visibilidad debidas a las malas condiciones meteorológicas. Por lo tanto, se puede decir que las especies sedentarias
conocen mejor su territorio que las invernantes, que generalmente se ven más afectadas por la colisión.

El efecto de colisión se valora a partir de la vulnerabilidad de la traza que compone la línea eléctrica, esta depende principalmente de dos factores:

- Sensibilidad del área: presencia en el área de implantación de la LE y STs de especies sensibles (propensas a los accidentes por colisión y con poblaciones amenazadas):
 - Presencia de nidificaciones (se aplica un buffer de 1000 m)
 - Áreas de aplicación de planes de recuperación y conservación, RD1432/2008, Zonas de Especial Protección para las Aves y Áreas de Interés para las aves. (coincidencia geográfica).

- Concurrencia de factores de riesgo:
 - Densidad de registros de individuos volando a altura 2 de riesgo (entre 20 y 40 metros).

Puntos de atracción/acumulación de especies: muladares, vertederos, puntos/cursos de agua, dormideros o zonas de corredores ecológicos. (buffer de 1000 m)

Los efectos potenciales han sido determinados a partir de la elaboración de un modelo predictivo de la peligrosidad potencial mediante análisis ráster que considera los factores anteriormente descritos, es decir, tanto las especies más susceptibles presentes en el ámbito de estudio y su entorno, como la concurrencia de diferentes factores de riesgo.

Los datos utilizados para el análisis son los obtenidos hasta la fecha en el seguimiento anual de avifauna (diciembre 2020 – diciembre 2021) y los obtenidos en fuentes oficiales. El resultado del análisis es:
Sobre la base de los resultados de las fuentes de información oficiales, y de los resultados obtenidos hasta la fecha del seguimiento anual de avifauna se establecen los siguientes una vulnerabilidad alta y muy alta en las infraestructuras en proyecto. Las categorías de
vulnerabilidad se asocian al estado de catalogación de las especies (EX y VU) y su sensibilidad ante este tipo de infraestructuras.

Para obtener una evaluación real sobre los efectos del proyecto en materia de avifauna deberán ser evaluados los efectos con los datos del proyecto técnico de ejecución. La aplicación de medidas de diseño en fase de proyecto técnico de ejecución y correctoras, instalación de medidas anticolisión, atenuará la importancia del efecto.

Tabla 189. Atributos de la importancia del impacto de pérdidas de individuos de especies sensibles en fase de construcción, de funcionamiento y desmantelamiento de LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo / No significativo</td>
<td>No significativo</td>
<td>Significativo</td>
<td>No significativo</td>
</tr>
<tr>
<td>Signo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>Alta</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td></td>
<td>Localizada</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td></td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td></td>
<td>Sinérgico</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td></td>
<td>Permanente</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td></td>
<td>Irreversible</td>
<td>-</td>
</tr>
<tr>
<td>Recoverabilidad</td>
<td></td>
<td>Irrecuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>-</td>
<td>38</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>-</td>
<td>0,76</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO SIGNIFICATIVO</td>
<td>SEVERO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

6.7.5 Valoración del impacto potencial en la Fauna

La información sobre la que se han evaluado los efectos procede de fuentes oficiales y del seguimiento de avifauna anual (datos obtenidos hasta la fecha). La evaluación real y cuantificación de los efectos se realizará con el proyecto técnico definido (apoyos y accesos).

Las principales conclusiones que se obtienen sobre la base de lo expuesto anteriormente son:

- Se han identificado varios puntos de nidificación, entre los que destacaría por su cercanía dos nidificaciones a menos de 500 m de las trazas de milano real. Por otro lado, a distancias significativas (más de 1 km) destacarían detecciones de nidificación de águila imperial ibérica.

- El área de implantación de la PFV se localiza sobre biotopo pseudoestepario, con potencial presencia de especies esteparias y siendo coincidente geográficamente con
un corredor de especies esteparias. Aunque hasta la fecha únicamente se ha detectado un individuo de avutarda en la zona.

- El trazado de la línea eléctrica se ha diseñado mediante un modelo de capacidad de acogida que ha incorporado en materia de fauna la información de fuente oficiales y los datos obtenidos hasta la fecha del estudio anual de avifauna. Se han evitado en los puntos de interés de fauna identificados en el momento de la ejecución.

- Los impactos más relevantes residen en la potencial pérdida de individuos (colisión) en la PFV con el vallado y en las trazas, y en las pérdida de hábitat en la LEs. Efectos que con una correcta aplicación de medidas de diseño, preventivas y correctoras se podrán reducir significativamente.

- En el anexo 1 se puede consultar el Estudio anual de avifauna.

Tabla 190. Efectos globales sobre la fauna en fase de construcción, funcionamiento y desmantelamiento para PFV y su LSMT. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA FAUNA</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molestias perturbaciones y Alteración y pérdida de hábitat</td>
<td>COMPATIBLE-MODERADO</td>
<td>NO SIGNIFICATIVO</td>
<td>COMPATIBLE-MODERADO</td>
<td></td>
</tr>
<tr>
<td>Fragmentación del territorio y efecto barrera</td>
<td>MODERADO</td>
<td>MODERADO</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Pérdida de individuos de especies sensibles</td>
<td>MODERADO</td>
<td>MODERADO-SEVERO</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA FAUNA</td>
<td>MODERADO</td>
<td>MODERADO-SEVERO</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 191. Efectos globales sobre la fauna en fase de construcción, funcionamiento y desmantelamiento para STs y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LA FAUNA</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molestias perturbaciones y Alteración y pérdida de hábitat</td>
<td>MODERADO-SEVERO</td>
<td>NO SIGNIFICATIVO</td>
<td>MODERADO-SEVERO</td>
<td></td>
</tr>
</tbody>
</table>

Página 437
6.8 EFECTOS SOBRE LOS ESPACIOS PROTEGIDOS

Las características básicas de los efectos del proyecto objeto del presente documento sobre los espacios naturales protegidos presentes en el ámbito de estudio, pueden distinguirse en efectos directos e indirectos.

Las afecciones directas derivadas del proyecto sobre los espacios naturales protegidos se registran potencialmente en los elementos del proyecto incluidos dentro de estos espacios, mientras que las afecciones indirectas están relacionadas con la reducción de la población o perjuicio de la dinámica poblacional de especies con movilidad objeto de declaración del espacio y con el deterioro de calidad de los hábitats y de elementos que conformen el espacio.

La evaluación real de los espacios protegidos queda supeditada al “Estudio de afecciones a espacios Red Natura 2000” en fase de proyecto técnico de ejecución. En el estudio se detallarán y describirán en detalle los valores naturales de dichos espacios naturales y se pormenorizarán las afecciones que el proyecto podría ocasionar sobre los hábitats y especies presentes en los mismos.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Los espacios naturales protegidos presentes en el ámbito de estudio no coinciden con la planta solar fotovoltaica GR Colimbo, estando los espacios más cercanos (ZEC ES311001 Cuencas de los ríos Jarama y Henares y ZEPA ES0000139 Estepas cerealistas de los ríos Jarama y Henares) a 1,32 km de distancia hacia el Este y a 2,67 km hacia el sureste respectivamente.

En relación con los efectos indirectos, los hábitats de interés comunitario presentes en el ZEC, y por los que fue declarado como espacio protegido, no se encuentran presentes en el emplazamiento de la PFV proyectada, ya que ésta se localiza sobre terreno agrícola, fuera de áreas coincidentes con HICs.

Respecto a las especies objeto de declaración de este espacio, por una parte, se citan especies exclusivamente acuáticas (nutria y peces continentales) las cuales no se podrán ver afectadas, al no modificarse ni deteriorarse su hábitat, es decir, el río Henares. Para el resto
de especies, la ZEC ES3110001 “Cuencas de los ríos Jarama y Henares” y la ZEPA ES0000139 “Estepas cerealistas de los ríos Jarama y Henares”, en gran parte coincidentes en su superficie, constituyen también una zona de especial calidad e importancia para la protección de especies de tipo estepario, ya que incluyen poblaciones numerosas de *Otis tarda*, *Tetrao tetrix*, *Falco naumanni*, *Pterocles orientalis*, *Circus pygargus* y *Circus cyaneus*. Sin embargo, aunque la distancia existente a estos espacios se estima suficiente como para que no se generen efectos indirectos significativos sobre dichas especies, es posible que la construcción de la infraestructura y la ocupación permanente de la PFV pueda generar algún efecto indirecto sobre las mismas.

Por tanto, se estima que no se generarán afecciones directas sobre los valores naturales de los espacios naturales protegidos, aunque debido a que pueden esperarse afecciones indirectas a algunos de los elementos y valores ambientales del mismo, el impacto se considera compatible-moderado tanto en la fase de construcción como en la fase de funcionamiento.

Tabla 192. Atributos de la importancia del impacto en Espacios Naturales Protegidos en fase de construcción, de funcionamiento y desmantelamiento para PFV. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Espacios Naturales Protegidos</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Media-Alta</td>
<td>Baja-Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizada</td>
<td>Localizada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Temporal</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>23</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0,46</td>
<td>0,42</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LEAT) y Subestaciones eléctricas de Transformación (ST)

Los espacios naturales protegidos presentes en el ámbito no coinciden con las subestaciones transformadoras proyectadas, sin embargo, la L/400kV Colectora La Cereal - La Cereal REE coincide en 3,38 km (1,96 km del tramo aéreo y 1,42 km del tramo soterrado) con el Parque Regional Cuenca Alta del Manzanares, la ZEC ES311004 Cuenca del río Manzanares y con
la Reserva de la Biosfera Cuenca Alta del Manzanares; mientras que el tramo soterrado de la L/132kV GR Colimbo - Colectora La Cereal coincide con 156 m del ZEC ES3110003 Cuenca del río Guadalix.

Los espacios protegidos que se encuentran a menos de 10 km del área de estudio son los siguientes:

Tabla 193. Espacios naturales protegidos situados a < 10 km de distancia de elementos del proyecto.

<table>
<thead>
<tr>
<th>Espacio Protegido</th>
<th>Elemento del proyecto</th>
<th>Distancia</th>
<th>Superficie coincidente con el ámbito (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parque Regional Cuenca Alta del Manzanares</td>
<td>Coincide con 3.38 km (1.96 km de tramo aéreo y 1.42 km de tramo soterrado) de la L/400kV Colectora La Cereal - La Cereal REE.</td>
<td>-</td>
<td>1.838,68</td>
</tr>
<tr>
<td>ZEC ES3110001 Cuenca de los ríos Jarama y Henares</td>
<td>L/132kV GR Colimbo - Colectora La Cereal.</td>
<td>0.58 km al Este.</td>
<td>379.89</td>
</tr>
<tr>
<td>ZEC ES3110003 Cuenca del río Guadalix</td>
<td>Coincide con 156 m del tramo soterrado de la L/132kV GR Colimbo - Colectora La Cereal.</td>
<td>-</td>
<td>82,11</td>
</tr>
<tr>
<td>ZEC ES3110004 Cuenca del río Manzanares</td>
<td>Coincide con 3.38 km (1.96 km de tramo aéreo y 1.42 km de tramo soterrado) de la L/400kV Colectora La Cereal - La Cereal REE.</td>
<td>-</td>
<td>1.824,61</td>
</tr>
<tr>
<td>ZEC ES3110002 Cuenca del río Lozoya y Sierra norte</td>
<td>PFV GR Colimbo</td>
<td>7.2 km al Norte.</td>
<td>-</td>
</tr>
<tr>
<td>ZEC ES 0000164 Sierra de Aylón</td>
<td>PFV GR Colimbo</td>
<td>7.9 km al Norte.</td>
<td>-</td>
</tr>
<tr>
<td>ZEPA ES0000139 Estepas cerealistas</td>
<td>L/132kV GR Colimbo - Colectora La Cereal.</td>
<td>0.98 km al Este.</td>
<td>126,53</td>
</tr>
<tr>
<td>ZEPA ES0000011 Monte de El pardo</td>
<td>L/400kV Colectora La Cereal - La Cereal REE.</td>
<td>1,21 km al Sur.</td>
<td>-</td>
</tr>
<tr>
<td>ZEPA ES0000012 Soto de Viñuelas</td>
<td>L/132kV Colimbo - Colectora La Cereal.</td>
<td>1,33 km al Sur.</td>
<td>74,12</td>
</tr>
<tr>
<td>ZEPA ES0000488 Sierra de Aylón</td>
<td>PFV GR Colimbo</td>
<td>7,9 km al Norte.</td>
<td>-</td>
</tr>
<tr>
<td>Reserva de la Biosfera “Cuenca Alta del Manzanares”</td>
<td>Coincide con 3.38 km (1.96 km de tramo aéreo y 1.42 km de tramo soterrado) de la L/400kV Colectora La Cereal - La Cereal REE.</td>
<td>-</td>
<td>1.822,34</td>
</tr>
</tbody>
</table>

Por ello se considera que se generarán efectos directos sobre los valores de declaración de los espacios Natura 2000 al haber coincidencia geográfica con sus límites.

En el caso de la ZEC ES3110003 “Cuenca del río Guadalix”, la línea lo cruza durante 156 m de forma soterrada. Se estima que no será necesario llevar a cabo ningún tratamiento sobre la vegetación existente en la calle de seguridad, por lo que no habría afecciones directas.
sobre los HIC por los que fue declarado el espacio protegido. Asimismo, al estar el cableado soterrado, se estima que no se producirán afecciones directas por colisión sobre las especies de aves y quirópteros de interés comunitario presentes en el espacio protegido. Las hincas de entrada y salida del paso soterrado por perforación dirigida se excavarán fuera de los límites del espacio protegido. Sin embargo, para llevar a cabo el soterramiento de la línea se generará un elevado volumen de excedentes de tierra (que será acopiado fuera de los límites del espacio) y será necesario el uso de maquinaria pesada de gran tonelaje, lo que producirá afecciones y molestias sobre las especies de fauna presentes en el espacio protegido. Asimismo, será necesaria la realización de un Estudio hidrogeológico específico de tal manera que el soterramiento se lleve a cabo asegurando la no afección del cauce ni de sus recursos hídricos superficiales y subterráneos.

En el caso de la L/400kV Colectora La Cereal - La Cereal REE, coincide en 3,38 km (1,96 km de tramo aéreo y 1,42 km de tramo soterrado) con el Parque Regional Cuenca Alta del Manzanares, la ZEC ES311004 Cuenca del río Manzanares y con la Reserva de la Biosfera Cuenca Alta del Manzanares.

Respecto al tramo aéreo, el cableado podría generar afecciones directas por colisión de las especies de aves de interés comunitario presentes en el espacio, como el milano real (Milvus migrans), la cigüeña negra (Ciconia nigra), o el águila pescadora (Pandion haliaetus), o de quirópteros de los géneros (Rhinolophus spp.), (Myotis spp.), o (Miniopterus schreibersii) entre otros.

En relación con el tramo soterrado, las obras generarán afecciones directas en la fase de construcción sobre la vegetación, el suelo y los hábitats derivados de la excavación de la zanja para el soterramiento del cableado, el trasiego de maquinaria y el acopio de materiales y de los excedentes de excavación.

Además, como afección indirecta sobre estos espacios tanto del tramo aéreo como soterrado, la fase de construcción podría generar molestias y perturbaciones sobre las especies presentes en los hábitats afectados, aunque se estima que éstas pueden ser minimizadas con la aplicación de medidas preventivas y correctoras, y durante la fase de funcionamiento, podría ocasionar mortalidad sobre ejemplares de las especies presentes en estos espacios protegidos por colisión con el cableado. Por todo ello, se considera que las líneas eléctricas contempladas en el presente proyecto pueden generar impactos directos e indirectos severos sobre los espacios Red Natura 2000 coincidentes con el ámbito de estudio tanto en fase de construcción como en fase de funcionamiento y positivos en la fase de desmantelamiento.
Tabla 194. Atributos de la importancia del impacto en Espacios Naturales Protegidos en fase de construcción, de funcionamiento y desmantelamiento para LE y STs. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Espacios Naturales Protegidos</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Media-Alta</td>
<td>Media-Alta</td>
<td>Positivo</td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Parcial</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Sinérico</td>
<td>Sinérico</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>39</td>
<td>39</td>
<td>-</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,78</td>
<td>0,78</td>
<td>-</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>SEVERO</td>
<td>SEVERO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Según estos resultados, los efectos globales en los Espacios Naturales Protegidos son compatibles-moderados en las fases de construcción y funcionamiento y positivos en la fase de desmantelamiento de las PFV, mientras que se consideran severos en las fases de construcción y funcionamiento y positivos en la fase de desmantelamiento de las SET y LEAT. Tal impacto se reducirá previsiblemente tras la ejecución del estudio sobre las repercusiones de las Red Natura 2000 sobre el proyecto técnico de ejecución, tras elaborar un estudio hidrogeológico e incorporación ambos resultados al proyecto técnico de ejecución en fase de diseño y medidas. De esta manera se prevé que el efecto se reduzca de manera significativa.

Tabla 195. Atributos de la importancia del impacto en los Espacios Naturales Protegidos en fase de construcción, funcionamiento y desmantelamiento para PFV, SET y LEAT. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LOS ENP</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efectos sobre los ENP de la PFV</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Efectos sobre los ENP de las SET y LEATs</td>
<td>SEVERO</td>
<td>SEVERO</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>
6.9 Población y medio socioeconómico

Los potenciales efectos sobre la población y el medio socioeconómico asociados a la implantación del proyecto pueden ser, principalmente:

- Generación de empleo
- Crecimiento de la actividad económica

Generación de empleo

Durante la fase de obras de construcción y, en su caso, de desmantelamiento de los elementos que integran el proyecto (PFV GR Colimbo y su LSMT, L/132 kV GR Colimbo – Colectora La Cereal, L/400 kV Colectora La Cereal – La Cereal REE y ST Colectora La Cereal) se producirá una demanda de mano de obra, así como de diversos trabajos de transporte y de carga y descarga de materiales, que posibilitará la generación de empleo durante el tiempo que duren estos trabajos. Dichos empleos serán cubiertos por personal de la empresa constructora o de empresas auxiliares.

Los empleos serán de tipo directo durante el tiempo que duren las fases de obras. Además, habrá generación indirecta de empleos relacionados, por ejemplo, con suministro de materiales y con empresas de transporte.

Crecimiento de la actividad económica

El personal de obra que trabaje durante las fases de construcción y, en su caso, de desmantelamiento de las instalaciones eléctricas, así como el personal de mantenimiento durante la fase de funcionamiento de las mismas, demandarán servicios de hostelería, residencia, farmacia, etc. en los municipios donde se lleve a cabo la implantación, lo que generará un crecimiento de la actividad económica de dichos municipios.

Una vez desmantelado, en su caso, el proyecto, el personal asociado a las labores de mantenimiento y de desmantelamiento, dejará de demandar dichos servicios por lo que, previsiblemente, disminuirá la actividad económica en los municipios en los que se llevó a cabo la implantación.

Tabla 196. Atributos de la importancia del impacto sobre la población y el medio socioeconómico en las fases de construcción, funcionamiento y desmantelamiento. Se indica el valor numérico de la importancia del efecto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Aguas subterráneas</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>Positivo</td>
<td>Positivo</td>
<td>Negativo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>Baja</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>Local</td>
<td></td>
</tr>
</tbody>
</table>
Aguas subterráneas

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>Directo</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>Sinérghico</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>Permanente</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>Reversible</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>Recuperable</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>-</td>
<td>-</td>
<td>0,44</td>
</tr>
</tbody>
</table>

VALORACIÓN

<table>
<thead>
<tr>
<th></th>
<th>POSITIVO</th>
<th>POSITIVO</th>
<th>COMPATIBLE - MODERADO</th>
</tr>
</thead>
</table>

Valoración final del efecto potencial sobre el medio socioeconómico

Conforme a las valoraciones anteriores, el efecto global sobre la población y el medio socioeconómico puede valorarse como positivo en las fases de construcción y funcionamiento del proyecto, debido a los empleos directos e indirectos que generará, así como al incremento de la actividad económica en los municipios del área de implantación de las líneas eléctricas. Por contra, su desmantelamiento tendría un efecto global negativo debido a la potencial pérdida de empleo asociado al mantenimiento de dichas líneas, así como a la disminución de la actividad económica en los municipios en los que se implantó el proyecto.

6.10 EFECTOS SOBRE LOS USOS DEL SUELO

6.10.1 Efectos sobre la productividad agrícola

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

La superficie de suelo agrícola que se perderá por la implantación de la PFV es mayoritaria en el contexto de suelo afectado directamente por las obras.

Además de la pérdida del capital edáfico que implica la afección de estos suelos, existe una pérdida de productividad agrícola en toda la superficie, ya que su uso quedará alterado por la implantación de la PFV, pasando el suelo de un uso principalmente agrícola de cultivo de secano (cereal) a un uso industrial, lo cual afecta a toda la superficie de la planta solar.

Considerando un rendimiento en torno a 1.830 kg/Ha de cereal cultivado en secano, (según valor de rendimiento medio de los cereales de invierno en la Comunidad de Madrid en https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/default.aspx), si consideramos que prácticamente toda la superficie de ocupación (30,78 has) es cereal, esto representaría una pérdida de producción de, aproximadamente 56,33 T de cereal/año.
Se trata, por lo tanto, de un impacto de intensidad baja en el contexto amplio del estudio, ya que estos campos de cultivo representan poca superficie respecto al total de campos de cultivo del ámbito. Así mismo, se trata de efectos que perdurarán a lo largo de toda la fase de funcionamiento.

Por otro lado, dentro del proceso de solicitud de permisos, se buscará llegar a acuerdos con cada propietario para indemnizar por la pérdida, en su caso, de rentabilidad en los cultivos.

Una vez que la PFV se desmantele, los terrenos ocupados quedarán libres y restaurados, por lo que recuperarán su uso agrícola original, de manera que el efecto se considera de signo positivo.

Tabla 197. Atributos de la importancia del impacto en la productividad agrícola en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Productividad agrícola</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Parcial</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,36</td>
<td>0,36</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Los efectos sobre la productividad agrícola por el desarrollo de las LE proyectadas, se reducen a la pérdida de superficie de pastos producida por la ocupación de las plataformas de los apoyos (7x7m²) y por las subestaciones eléctricas.

Encontrándose el proyecto en fase de definición básica, no se cuenta con información sobre los elementos de proyecto necesario para llevar a cabo una valoración cuantitativa de los efectos de su desarrollo sobre la productividad agrícola. No obstante, en términos de pérdida estimada de superficie productiva, se considera que el efecto de estas superficies de ocupación en las fases de construcción y funcionamiento será de importancia cuantitativa escasa, y se pueden considerar como no significativos en el contexto de las amplias extensiones de los campos de cultivo del ámbito de estudio.
Por otro lado, dentro del proceso de solicitud de permisos, se buscará llegar a acuerdos con cada propietario para indemnizar por la pérdida, en su caso, de rentabilidad en los cultivos.

Una vez que las infraestructuras se desmantelen, los terrenos ocupados quedarán libres y restaurados, por lo que recuperarán su uso agrícola original, por lo que el efecto se considera de signo positivo.

Tabla 198. Atributos de la importancia del impacto en la productividad agrícola en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia ((Im))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada ((ImN))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

6.10.2 Efectos sobre los usos forestales

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

No se han inventariado montes de utilidad pública, montes protectores o montes protegidos cercanos a la PFV.

De este modo, se considera que las actuaciones del proyecto en las fases de construcción, funcionamiento y desmantelamiento de la PFV no supondrán efectos significativos sobre los usos forestales.

Tabla 199. Atributos de la importancia del impacto en los usos forestales en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.
Lineas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

No se han inventariado montes de utilidad pública, montes protectores o montes protegidos coincidentes con el trazado de las LE proyectadas.

De este modo, se considera que las actuaciones del proyecto en las fases de construcción, funcionamiento y desmantelamiento de la L/132kV GR Colimbo – Colectora la Cereal y de la L/400kV Colectora la Cereal – La Cereal REE, no supondrán efectos significativos sobre los usos forestales.

Tabla 200. Atributos de la importancia del impacto en los usos forestales en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

Tabla 200: Atributos de la importancia del impacto en los usos forestales en fase de construcción, de funcionamiento y desmantelamiento para ST y LE

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

valoración

NO SIGNIFICATIVO

NO SIGNIFICATIVO

NO SIGNIFICATIVO
6.10.3 Efectos sobre el uso ganadero y el dominio público pecuario

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

No se han inventariado Vías Pecuarias coincidentes con la PFV proyectada, ni colindante con la misma, por lo que no se espera que el dominio público pecuario o el uso ganadero pueda verse afectado significativamente por su desarrollo, no previendo tampoco su uso para tránsitos relacionados con la construcción, el funcionamiento o el desmantelamiento de la PFV.

Tabla 201. Atributos de la importancia del impacto en los usos ganaderos en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Se han identificado 14 cruces de las líneas eléctricas proyectadas sobre Vías Pecuarias.

El estudio de los efectos sobre el uso ganadero y el dominio público pecuario, se debe centrar en la interferencia de alguno de los elementos de las líneas eléctricas (apoyos, traza o accesos con alguna de las vías pecuarias presentes en el ámbito de estudio). Sin embargo, dado que los proyectos de la L/132kV GR Colombo – Colectora la Cereal y de la L/400kV Colectora La Cereal – La Cereal REE, se encuentran en fase de definición básica, en la que no se aporta información relativa a los apoyos de las LE y sus accesos, no puede definirse la
afeción real que podrá darse sobre las Vías Pecuarias. A este respecto, se establece como medida de diseño la implantación de apoyos fuera de servidumbres legales.

No obstante, las afecciones sobre el dominio público pecuario se limitarán al tránsito de maquinaria y vehículos que circulen por los accesos propuestos, en caso de ser coincidentes estos con las vías pecuarias.

Por todo ello, el efecto se considera compatible en fase de construcción y no significativo en fase funcionamiento y desmantelamiento.

Tabla 202. Atributos de la importancia del impacto en los usos ganaderos en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Usos ganaderos y dominio público pecuario</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>No Significativo</td>
<td>Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>-</td>
<td>Positivo</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im.)</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,36</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>NO SIGNIFICATIVO</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>

6.10.4 Efectos sobre los usos cinegéticos

Como se ha explicado en el capítulo 5. *Inventario de detalle*, en el ámbito de estudio considerado para el análisis de los efectos provocados por la construcción y puesta en funcionamiento de las infraestructuras proyectadas, existen numerosos cotos de caza, por lo que se espera que se generen efectos sobre estos usos.

Los potenciales efectos sobre los cotos de caza presentes en el ámbito de estudio pueden deberse a:

- Pérdida de valor del coto por la disminución de la superficie destinada a la actividad cinegética.
- Desplazamiento de las especies cinegéticas presentes.
Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Pérdida de superficie de cotos de caza:

La totalidad de la PFV GR Colimbo se situará sobre superficie de cotos de caza, por lo que los mismos se verán disminuidos.

Desplazamiento de especies cinegéticas:

Motivado por el tránsito de personal y maquinaria durante las fases de construcción y desmantelamiento de las PFV y la LSMT, se producirán desplazamientos de especies cinegéticas dentro de los cotos de caza. Una vez implantadas las PFV, contarán con vallado cinegético que permitirá el paso de pequeños mamíferos. Además, la propia distribución de la PFV generará corredores que permitirán la presencia de especies ubiquistas, como aves paseriformes y pequeños mamíferos, llegando incluso a propiciar su proliferación.

Tabla 203. Atributos de la importancia del impacto en los usos cinegéticos en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>Parcial</td>
<td>Parcial</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Reversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,36</td>
<td>0,36</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Pérdida de superficie de cotos de caza:

En el caso de las líneas eléctricas, los potenciales efectos sobre los cotos de caza presentes en el ámbito de estudio pueden deberse, principalmente, a la pérdida de valor del coto por la disminución de la superficie destinada a la actividad cinegética.
Gran parte de la superficie sobrevolada por las líneas eléctricas proyectadas presenta cotos de caza. No obstante, la pérdida de superficie de estos usos será aquella relativa a la ocupación de la plataforma de los apoyos de las líneas.

Al encontrarse el proyecto en fase de definición básica, no se cuenta con información sobre los elementos de proyecto necesaria para llevar a cabo una valoración cuantitativa de los efectos de su desarrollo sobre los cotos de caza. No obstante, en términos de pérdida estimada de superficie, se considera que, atendiendo a la superficie presente en el conjunto del ámbito de estudio, el efecto no será significativo.

Desplazamiento de especies cinegéticas:

Motivado por el tránsito de personal y maquinaria durante el periodo de construcción y, en su caso, desmantelamiento de las infraestructuras eléctricas, se producirán desplazamientos de especies cinegéticas dentro del coto de caza. Sin embargo, para las especies cinegéticas presentes en los cotos de caza, ni las subestaciones eléctricas de transformación ni las líneas eléctricas supondrán una barrera para sus corredores naturales, por lo que se considera que el efecto en fase de funcionamiento será no significativo.

Tabla 204. Atributos de la importancia del impacto en los cotos de caza en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Usos ganaderos y dominio público pecuario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
</tr>
<tr>
<td>Significativo/No significativo</td>
</tr>
<tr>
<td>Signo</td>
</tr>
<tr>
<td>Intensidad</td>
</tr>
<tr>
<td>Extensión</td>
</tr>
<tr>
<td>Causa-efecto</td>
</tr>
<tr>
<td>Complejidad</td>
</tr>
<tr>
<td>Persistencia</td>
</tr>
<tr>
<td>Reversibilidad</td>
</tr>
<tr>
<td>Recuperabilidad</td>
</tr>
<tr>
<td>Importancia (Im)</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
</tr>
<tr>
<td>VALORACIÓN</td>
</tr>
</tbody>
</table>

6.10.5 Efectos sobre los usos mineros

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)
Tal como se indicaba en el Capítulo 5, partiendo de la información obtenida del portal “CATASTRO MINERO” del Ministerio para la Transición Ecológica (MITERD), se ha verificado que no existen derechos mineros activos en el ámbito de estudio que puedan verse afectados por el desarrollo de la PFV y su LSMT.

Tabla 205. Atributos de la importancia del impacto en los usos mineros en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Usos mineros</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Del mismo modo, se ha verificado que no existen derechos mineros activos en el ámbito de estudio que puedan verse afectados por el desarrollo de las LE y ST proyectadas.

Si en el futuro se autorizaran nuevas explotaciones mineras que hubieran de localizarse bajo las líneas eléctricas, deberán respetar las distancias de seguridad que establezca el Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, así como por el resto de normativa vigente en la materia.
Tabla 206. Atributos de la importancia del impacto en los usos mineros en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Usos mineros</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atributos de Importancia</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Significativo/No significativo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

6.10.6 Valoración final del impacto potencial sobre los usos del suelo

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Tras el análisis de los diferentes factores, se concluye que, el desarrollo de la PFV GR Colimbo resultará compatible en sus fases de construcción y funcionamiento, siendo positivo el efecto que generará sobre los usos del suelo su desmantelamiento.

Tabla 207. Atributos de la importancia del impacto en los usos del suelo en fase de construcción, funcionamiento y desmantelamiento para PFV. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LOS USOS DEL SUELO</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad agrícola</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Usos forestales</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
<tr>
<td>Uso ganadero y dominio público pecuario</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
<tr>
<td>Usos cinegéticos</td>
<td>COMPATIBLE</td>
<td>COMPATIBLE</td>
<td>POSITIVO</td>
<td></td>
</tr>
<tr>
<td>Usos mineros</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
</tbody>
</table>

Página 453
Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Por su parte, el desarrollo de las líneas eléctricas, resultará compatible en sus fases de construcción y funcionamiento, siendo positivo el efecto que generará sobre los usos del suelo su desmantelamiento.

Tabla 208. Atributos de la importancia del impacto en los usos del suelo en fase de construcción, funcionamiento y desmantelamiento para ST y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LOS USOS DEL SUELO</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construcción</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LOS USOS DEL SUELO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Productividad agrícola</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Usos forestales</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Uso ganadero y dominio público pecuario</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Usos cinegéticos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Usos mineros</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LOS USOS DEL SUELO</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>

6.11 EFECTOS SOBRE LAS INFRAESTRUCTURAS

Para evaluar los efectos sobre las infraestructuras presentes en el ámbito de estudio, se ha considerado la información presentada en el capítulo 5. Inventario de detalle.

6.11.1 Efectos sobre las infraestructuras viarias

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

No se prevén efectos sobre las infraestructuras viarias más cercanas a la PFV GR Colimbo, que podrán ser utilizadas temporal y puntualmente durante la fase de obras por maquinaria y vehículos destinados a la implantación y, en su caso, el desmontaje de la planta.

Tampoco se prevé afección a la funcionalidad de dichas carreteras, ni será necesaria la ocupación ni el corte del viario local, únicamente el tránsito por el mismo. Debido a la baja intensidad de vehículos durante la fase de obras, se considera que los posibles efectos generados por el proyecto, no afectará a la funcionalidad de las carreteras utilizadas ni influirá en el funcionamiento habitual de las mismas.
Tabla 209. Atributos de la importancia del impacto en las infraestructuras viañas en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Infraestructuras viañas</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Se han identificado cruces de la L/132kV GR Colimbo – Colectora La Cereal con las carreteras A-1, N-320, M-129, M-122 y M-607.

No obstante, no se prevén efectos sobre estas u otras infraestructuras viañas que podrán ser utilizadas temporal y puntualmente durante la fase de obras por la maquinaria y los vehículos destinados a la implantación y, en su caso, el desmontaje de las líneas eléctricas y las subestaciones.

Tampoco se prevé afectación a la funcionalidad de dichas carreteras, ni será necesaria la ocupación ni el corte del viario local, únicamente el tránsito por el mismo. Debido a la baja intensidad de vehículos durante la fase de obras, se considera que los posibles efectos generados por el proyecto, no afectará a la funcionalidad de las carreteras utilizadas ni influirá en el funcionamiento habitual de las mismas.

Tabla 210. Atributos de la importancia del impacto en las infraestructuras viañas en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Infraestructuras viañas</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Página 455
6.11.2 Efectos sobre las infraestructuras ferroviarias

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

No se han inventariado vías de ferrocarril cercanas a la PFV GR Colombo, por lo que no se prevén efectos sobre estas infraestructuras durante las fases de construcción, funcionamiento o desmantelamiento de la planta.

Tabla 211. Atributos de la importancia del impacto en las infraestructuras ferroviarias en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Infraestructuras viarias</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td></td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infraestructuras ferroviarias</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td></td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)
La L/132kV GR Colimbo – Colectora La Cereal, sobrevolará el trazado de la línea de alta velocidad Madrid-Segovia-Valladolid y el trazado de la línea de ferrocarril convencional incluidos en el ámbito de estudio.

No obstante, el cruzamiento se realizará con las medidas de seguridad necesarias para garantizar el adecuado funcionamiento de la vía, por lo que no se prevén efectos sobre la misma, ni en fase de construcción, ni en fase de funcionamiento o desmantelamiento.

Tabla 212. Atributos de la importancia del impacto en las infraestructuras ferroviarias en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Infraestructuras ferroviarias</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

6.11.3 Efectos sobre las infraestructuras eléctricas

Se han identificado cuatro líneas eléctricas de alta tensión existentes en el ámbito de estudio

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

No existen coincidencias entre las infraestructuras eléctricas existentes en el ámbito y la PFV GR Colimbo, por lo que no se generarán efectos significativos sobre las mismas, derivados de su desarrollo, funcionamiento o desmantelamiento.

Tabla 213. Atributos de la importancia del impacto en las infraestructuras eléctricas en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Infraestructuras eléctricas</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td></td>
</tr>
</tbody>
</table>

Página 457
Con respecto a las líneas eléctricas proyectadas, la L/132kV GR Colimbo – Colectora La Cereal proyectada, intercepta dos LEAT existentes en varios puntos de su trazado (fuente: ortoimagen).

Durante jornada de campo que tuvo lugar en marzo de 2021, se evidencia que una de las intercepciones de la L/132kV (aquella que se da en el punto kilométrico 15 de la línea), se da en un punto en el que las dos LEAT existentes se sitúan a pocos metros la una de la otra, y sobre terreno con pendiente, lo que no permitirá respetar las distancias establecidas en la ITC-LAT07. El resto de sobrevuelos sí respetarán dichas distancias.

De este modo, la ejecución de la L/132kV GR Colimbo – Colectora la Cereal y su funcionamiento, supondrá un efecto moderado sobre las LEAT existentes en el ámbito de estudio, mientras que su desmantelamiento tendrá un efecto positivo sobre las infraestructuras eléctricas.

Tabla 214. Atributos de la importancia del impacto en las infraestructuras eléctricas en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.
6.11.4 Efectos sobre los gasoductos y oleoductos

Tal y como se ha indicado en el capítulo de inventario, por el ámbito de estudio discurren aproximadamente 4 y 5 Km de dos gasoductos.

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

No existen coincidencias entre los gasoductos inventariados en el ámbito y la PFV GR Colimbo, por lo que no se generarán efectos significativos sobre estos derivados de la construcción, funcionamiento o desmantelamiento de la planta.

Tabla 215. Atributos de la importancia del impacto en gasoductos y oleoductos en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

Infraestructuras eléctricas

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>30</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0,6</td>
<td>0,6</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>MODERADO</td>
<td>MODERADO</td>
<td>POSITIVO</td>
</tr>
</tbody>
</table>

Gasoductos y oleoductos

<table>
<thead>
<tr>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Persistencia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversibilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recuperabilidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Importancia Normalizada (ImN)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)
Con respecto a las líneas eléctricas proyectadas, el trazado de la L/132kV GR Colimbo – Colectora la Cereal cruzará a ambos gasoductos del siguiente modo:

- Sobrevuelo en el tramo aéreo, entre el P.K. 4 y el P.K. 5.
- Cruzamiento en el tramo soterrado de la línea, entre el P.K. 20 y el P.K. 21.

Con respecto al sobrevuelo, el mismo respetará las distancias establecidas en la ITC-LAT07, por lo que no se producirán efectos derivados del proyecto sobre el gasoducto.

En relación con el cruzamiento del tramo soterrado de la línea, deberán mantenerse las distancias mínimas que se establecen en la tabla 3 de la ITC-LAT 06 del RD 223/2008. Cuando por causas justificadas no puedan mantenerse estas distancias, esta se reducirá mediante colocación de una protección suplementaria, hasta los mínimos establecidos en dicha tabla 3. En los casos en que no se pueda cumplir con la distancia mínima establecida con protección suplementaria, y se considerase necesario reducir esta distancia, se pondrá en conocimiento de la empresa propietaria de la conducción de gas, para que indique las medidas a aplicar en cada caso.

De este modo, no se esperan efectos significativos sobre los gasoductos inventariados en fase de construcción, funcionamiento o desmantelamiento.

Además, sería necesario respetar la servidumbre establecida en el artículo 107 Servidumbres y autorizaciones de paso de la Ley 34/1998, de 7 de octubre, del sector de hidrocarburos:

“ii. Prohibición de realizar cualquier tipo de obras, construcción, edificación, o de efectuar acto alguno que pudiera dañar o perturbar el buen funcionamiento de las instalaciones, a una distancia inferior a diez metros (10 m) del eje del trazado, a uno y otro lado del mismo. Esta distancia podrá reducirse siempre que se solicite expresamente y se cumplan las condiciones que, en cada caso, fije el órgano competente de la Administración Pública”.

Tabla 216. Atributos de la importancia del impacto en gasoductos y oleoductos en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Gasoductos y oleoductos</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significativo/No significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td>No Significativo</td>
<td></td>
</tr>
<tr>
<td>Signo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Intensidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Extensión</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Causa-efecto</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complejidad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
6.11.5 Efectos sobre servidumbres aeronáuticas

Tal y como se ha indicado en el Capítulo 5 del EsIA, el ámbito de estudio se ve afectado por las servidumbres aeronáuticas correspondientes a un helipuerto situado al norte de la L/400kV Colectora la Cereal – La Cereal REE, y el campo de ultraligeros de El Molar y el Aeropuerto Adolfo Suárez Madrid- Barajas, que afectan a la traza de la L/132kV GR Colimbo – Colectora la Cereal entre su P.K. 18 y P.K. 21.

Dado el nivel de detalle del proyecto (Proyecto Básico), no puede evaluarse la afección sobre la servidumbre aeronáutica sobre el proyecto, que será evaluada cuando se definan los apoyos de las líneas eléctricas.

6.11.6 Valoración final del efecto potencial sobre las infraestructuras

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Como se ha explicado en los epígrafes precedentes, durante las diferentes fases del proyecto, no se prevén efectos significativos sobre infraestructuras viarias, ferroviarias, eléctricas, de transporte de hidrocarburos, o servidumbres aeronáuticas que discurren por el ámbito analizado, siempre que se respeten las distancias establecidas, tanto en la ITC-LAT07, como en la Ley 34/1998.

Tabla 217. Efectos globales sobre las infraestructuras en fase de construcción, funcionamiento y desmantelamiento para PFV y LSTM. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LAS INFRAESTRUCTURAS</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructuras viarias</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
<tr>
<td>Infraestructuras ferroviarias</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
<tr>
<td>Infraestructuras eléctricas</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
<tr>
<td>Gasoductos y oleoductos</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td></td>
</tr>
</tbody>
</table>
EFECTOS SOBRE LAS INFRAESTRUCTURAS

<table>
<thead>
<tr>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servid. aeronáuticas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LAS INFRAESTRUCTURAS</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
<td>NO SIGNIFICATIVO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Con respecto a las líneas eléctricas, su ejecución supondrá unos efectos moderados sobre las infraestructuras del ámbito de estudio durante sus fases de construcción y funcionamiento, debido a la interacción entre la L/132kV GR Colimbo – Colectora la Cereal dos líneas de alta tensión existentes. Por consiguiente, su desmantelamiento supondrá unos efectos positivos sobre las infraestructuras.

Con respecto a las infraestructuras viarias, ferroviarias o de transporte de hidrocarburos, no se esperan efectos significativos, siempre que se cumplan las distancias establecidas en la ITC-LAT 06, la ITC-LAT07 y la Ley 34/1998.

Con respecto a los efectos sobre las servidumbres aeronáuticas, serán evaluados una vez se conozcan los detalles de los elementos de proyecto (apoyos).

Tabla 218. Atributos de la importancia del impacto en las infraestructuras en fase de construcción, funcionamiento y desmantelamiento para ST y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE LAS INFRAESTRUCTURAS</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructuras viarias</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Infraestructuras ferroviarias</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Infraestructuras eléctricas</td>
<td>MODERADO</td>
</tr>
<tr>
<td>Gasoductos y oleoductos</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Servid. aeronáuticas</td>
<td>-</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LAS INFRAESTRUCTURAS</td>
<td>MODERADO</td>
</tr>
</tbody>
</table>

6.12 EFECTOS SOBRE EL PAISAJE

6.12.1 Efectos derivados de la PSFV GR Colimbo y ST Colimbo

Al objeto de tener una primera aproximación a la magnitud del impacto paisajístico producido por la ubicación de las PSFV GR Colimbo, se analiza a continuación la interacción de la
localización propuesta con las unidades paisajísticas y la intervisibilidad y calidad paisajística de las mismas.

Figura 128. Unidades de paisaje presentes en el entorno de las PSFV de GR Colimbo.
Fuente: elaboración propia.

En efecto, las plantas se localizan íntegramente sobre la unidad de paisaje “Campiñas minifundistas de la margen derecha del Jarama” en un ámbito notablemente visible por su planitud (el 53% de la PFV se encuentran en zona de alta visibilidad), aunque la calidad paisajística resulta entre media y baja-media (el 57% es media).
Figura 129. Intervisibilidad general presente en el entorno de las PSFV de GR Colimbo.
Fuente: elaboración propia.

Figura 130. Calidad paisajística presente en el entorno de las PSFV de GR Colimbo.
Fuente: elaboración propia.
6.12.2 Efectos derivados del trazado de las LEATs 132kV y 400 kV y STs Colectora – La Cereal

De igual modo, el análisis de los efectos derivados del trazado de la LEAT (tramo de 132 kV y tramo de 400 kV), ante la ausencia de datos específicos de localización de apoyos y altura de los mismos, y teniendo en cuenta la propuesta de soterramiento de algún tramo, se ha fundamentado, como en el caso de las plantas, en la afección producida por la traza sobre las unidades de paisaje que atraviesa, en relación a su intervisibilidad y calidad paisajística.

![Figura 131. Unidades de paisaje presentes en el entorno del trazado de la LEAT 132 kV/400 kV. Fuente: elaboración propia.](image)

Así, el trazado de la LEAT discurre por las siguientes unidades de paisaje (en porcentaje sobre el recorrido total):

<table>
<thead>
<tr>
<th>Unidades de paisaje</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campiñas minifundistas de la margen derecha del Jarama</td>
<td>51%</td>
</tr>
<tr>
<td>Dehesas montes y pastaderos de la cuenca sedimentaria</td>
<td>37%</td>
</tr>
<tr>
<td>Escarpes de San Agustín - Torrelaguna</td>
<td>9%</td>
</tr>
<tr>
<td>Pastizales de Colmenar - El Vellón</td>
<td>3%</td>
</tr>
</tbody>
</table>
En relación con la intervisibilidad general, los espacios de alta visibilidad atravesados por la LEAT se localizan en la cercanía de las PFV; conforme el trazado avanza hacia La Cereal, la afección por visibilidad disminuye al recorrer ésta una orografía más compleja. De hecho, la intervisibilidad es notablemente baja (más del 50% es baja o muy baja). Esta disminución no implica que un apoyo situado en una cresta o divisoría de aguas pueda tener gran visibilidad al no existir ningún tipo de contraste que lo camuflle.

Finalmente, y en relación con la calidad paisajística atravesada por la LEAT 132 kV/400 kV, la mayor afección por la singularidad paisajística se produce sobre la unidad ambiental “Escarpes de San Agustín - Torrelaguna” donde los valores presentes son “muy altos”.

Figura 132. Intervisibilidad general presente en el entorno del trazado de la LEAT 132 kV/400 kV. Fuente: elaboración propia.
6.12.3 Valoración de efectos sobre el paisaje

Atendiendo a la metodología seguida en el resto del estudio, la valoración final de los efectos sobre el paisaje deberá atender tanto a la fase de obra como a la de funcionamiento, si bien es cierto que los impactos esperados en la fase de construcción son mínimos en comparación con los esperados en la fase de funcionamiento, ya que la incidencia visual de las PSFV, SET y LEAT se entiende una vez esté construida; en todo caso, los efectos de fase de obra corresponderán a las variaciones de color y textura derivadas de los movimientos de tierra y explicación, de carácter temporal e intensidad baja, reversible si no se continuará con la instalación del apoyo.

De este modo, la caracterización del impacto esperado en fase de construcción se considera de magnitud global compatible-moderado para las PSFV y su ST asociada y compatible para la LEAT y ST Colectora La Cereal.

Por el contrario, los efectos esperados en fase de funcionamiento se caracterizan a partir de la intrusión de la PSFV GR Colimbo y la LEAT 132 kV/400 kV en los diferentes escenarios por los que discurre, aunque también se entienden como localizados, ya que el impacto se entiende únicamente en los puntos de mayor calidad paisajística, sobre todo en la unidad de “Escarpes de San Agustín - Torrelaguna” y, por tanto, se considera que en fase de funcionamiento la caracterización global del impacto sobre el paisaje es de magnitud global.
moderado para la PSFV y ST Colimbo y moderado, también, para la LEAT y ST Colectora La Cereal.

Así mismo, se ha considerado el impacto esperado sobre el paisaje en la fase de desmantelamiento, en la que se entiende que aplicadas las medidas preventivas y correctoras que se establecen en el capítulo correspondiente, el desmantelamiento de los apoyos y la LEAT supone la recuperación de los escenarios originales y, por tanto, el impacto se considera de (signo) positivo.

Tabla 219. Atributos de la importancia de los efectos sobre el paisaje para PSFV y ST Colimbo. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Media-Alta</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizada</td>
<td>Localizada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Temporal</td>
<td>Temporal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Irreversible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>23</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0,46</td>
<td>0,52</td>
<td></td>
</tr>
</tbody>
</table>

VALORACIÓN: COMPATIBLE-MODERADO MODERADO POSITIVO

Tabla 220. Atributos de la importancia de los efectos sobre el paisaje para LEAT y ST Colectora La Cereal. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Baja</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizada</td>
<td>Localizada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>Acumulativo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Temporal</td>
<td>Permanente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Reversible</td>
<td>Irreversible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>Recuperable</td>
<td>Recuperable</td>
<td></td>
</tr>
<tr>
<td>Atributos de Importancia</td>
<td>Construcción</td>
<td>Funcionamiento</td>
<td>Desmantelamiento</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Importancia (Im)</td>
<td>14</td>
<td>26</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Importancia Normalizada (ImNi)</td>
<td>0,28</td>
<td>0,52</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VALORACIÓN</td>
<td>COMPATIBLE</td>
<td>MODERADO</td>
<td>POSITIVO</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 221. Atributos de la importancia del impacto sobre el paisaje en fase de construcción, funcionamiento y desmantelamiento para PFV Colimbo y ST Colimbo. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS PAISAJE SOBRE EL PAISAJE</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paisaje</td>
<td></td>
<td>COMPATIBLE-MODERADO</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN EL PAISAJE</td>
<td></td>
<td>COMPATIBLE-MODERADO</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>

Tabla 222. Atributos de la importancia del impacto sobre el paisaje en fase de construcción, funcionamiento y desmantelamiento para LE y la ST Colectora La Cereal. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS PAISAJE SOBRE EL PAISAJE</th>
<th>Fase</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paisaje</td>
<td></td>
<td>COMPATIBLE-MODERADO</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN EL PAISAJE</td>
<td></td>
<td>COMPATIBLE-MODERADO</td>
<td>MODERADO</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>

6.13 PATRIMONIO CULTURAL

Planta Solar Fotovoltaica (PFV) y Línea Soterrada de Media Tensión (LSMT)

Según la consulta a la carta arqueológica, se ha identificado la distancia de la PFV GR Colimbo respecto a los diferentes elementos culturales:

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código</th>
<th>Municipio (Provincia)</th>
<th>Adscripción Cultural</th>
<th>Tipología</th>
<th>Afección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción Auxiliar del Canal de Y-II</td>
<td>CM/153/0037</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>A 26 m de la PFV Colimbo</td>
</tr>
<tr>
<td>Almenara de Valdeperote, del Canal de la Parra</td>
<td>CM/153/0033</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>A 1m de la PFV Colimbo</td>
</tr>
</tbody>
</table>
Ante la cercanía de los elementos patrimoniales, que el layout respete, se tendrá que realizar una prospección arqueológica que verifique la no afección real durante el periodo de obras.

Tabla 223. Atributos de la importancia del impacto en el patrimonio cultural en fase de construcción, de funcionamiento y desmantelamiento para PFV y su LSMT. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Elementos culturales</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>Localizado</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>Directo</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>Simple</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>Permanente</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>Irreversible</td>
</tr>
<tr>
<td></td>
<td>Recuperabilidad</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
</tbody>
</table>

Líneas eléctricas (LE) y Subestaciones eléctricas de Transformación (ST)

Según la consulta de la carta arqueológica, se ha identificado la distancia de las LE con respecto a los diferentes elementos culturales:

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código</th>
<th>Municipio (Provincia)</th>
<th>Adscripción Cultural</th>
<th>Tipología</th>
<th>Afección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente sobre el Canal de Cabarrús</td>
<td>CM/153/0090</td>
<td>Torremocha de Jarama</td>
<td>Siglo XVII</td>
<td>Infraestructura hidráulica</td>
<td>A 215 de la L/132kV</td>
</tr>
<tr>
<td>Miralrio</td>
<td>CM/168/0013</td>
<td>El Vellón</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>A 225 m de la L/132kV</td>
</tr>
<tr>
<td>Sifón de los Yesos</td>
<td>CM/168/0031</td>
<td>El Vellón</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>Afectado en 235 m por la L/132kV</td>
</tr>
<tr>
<td>Sillón del Morenillo</td>
<td>CM/000/0126</td>
<td>El Vellón y El Molar</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>A 208 m de la L/132kV</td>
</tr>
<tr>
<td>Las Huertas</td>
<td>-</td>
<td>El Molar</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>A 148 m de la L/132kV</td>
</tr>
<tr>
<td>Almenara de Tades</td>
<td>CM/086/0019</td>
<td>El Molar</td>
<td>Siglo XVI-XVII- XVIII-XIX-XX</td>
<td>Material en superficie</td>
<td>A 30 m de la L/132kV</td>
</tr>
</tbody>
</table>
Dadadas las distancias a las trazas, el Sifón de los Yesos, el Sillón del Morenillo, Las Huertas y Almera de Tades podrán verse afectados durante las fases de construcción y funcionamiento de la L/132kV GR Colimbo – Colectora la Cereal.

Tabla 224. Atributos de la importancia del impacto en el patrimonio cultural en fase de construcción, de funcionamiento y desmantelamiento para ST y LE. Se indica el valor numérico de la importancia del impacto, su valor una vez normalizado, así como su valoración literal.

<table>
<thead>
<tr>
<th>Elementos culturales</th>
<th>Atributos de Importancia</th>
<th>Construcción</th>
<th>Funcionamiento</th>
<th>Desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significativo/No significativo</td>
<td>Significativo</td>
<td>Significativo</td>
<td>Significativo</td>
</tr>
<tr>
<td></td>
<td>Signo</td>
<td>Negativo</td>
<td>Negativo</td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>Intensidad</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
</tr>
<tr>
<td></td>
<td>Extensión</td>
<td>Localizado</td>
<td>Localizado</td>
<td>Localizado</td>
</tr>
<tr>
<td></td>
<td>Causa-efecto</td>
<td>Directo</td>
<td>Directo</td>
<td>Directo</td>
</tr>
<tr>
<td></td>
<td>Complejidad</td>
<td>Simple</td>
<td>Simple</td>
<td>Simple</td>
</tr>
<tr>
<td></td>
<td>Persistencia</td>
<td>Permanente</td>
<td>Permanente</td>
<td>Permanente</td>
</tr>
<tr>
<td></td>
<td>Reversibilidad</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
<td>Irrecuperable</td>
</tr>
<tr>
<td></td>
<td>Importancia (Im)</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Importancia Normalizada (ImN)</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>VALORACIÓN</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
</tbody>
</table>

De este modo, los efectos globales sobre el patrimonio cultural serán:

Tabla 225. Atributos de la importancia del impacto en el patrimonio cultural en fase de construcción, funcionamiento y desmantelamiento para PFV. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE EL PATRIMONIO CULTURAL</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos culturales</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN EL PATRIMONIO CULTURAL</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
</tbody>
</table>

Página 471
Tabla 226. Atributos de la importancia del impacto en la geología en fase de construcción, funcionamiento y desmantelamiento para ST y LE. Como valor de efecto global se toma el efecto de mayor magnitud, con objeto de quedar del lado de la seguridad.

<table>
<thead>
<tr>
<th>EFECTOS SOBRE EL PATRIMONIO CULTURAL</th>
<th>Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construcción</td>
</tr>
<tr>
<td>Elementos culturales</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN EL PATRIMONIO CULTURAL</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
</tbody>
</table>

6.14 SÍNTESIS DE LOS EFECTOS POTENCIALES DE LA ALTERNATIVA SELECCIONADA

Sobre la base del análisis desarrollado en apartados anteriores, se muestra a continuación una síntesis de la valoración de los efectos potenciales sobre el medio, como consecuencia de las acciones del proyecto:
<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>EFECTO</th>
<th>VALORACION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fase de construcción</td>
<td>Fase de funcionamiento</td>
</tr>
<tr>
<td>Atmósfera</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calidad del aire</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Incremento de los niveles sonoros</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Contaminación luminica</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>Cambio Climático</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LA ATMOSFERA</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Geología</td>
<td>Lugares de Interés Geológico</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA GEOLOGÍA</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Hidrología</td>
<td>Modificación o alteración de la red de drenaje natural</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de las aguas</td>
<td>COMPATIBLE - MODERADO</td>
</tr>
<tr>
<td></td>
<td>Efectos sobre las aguas subterráneas</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Efectos en el DPH</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA HIDROLOGÍA</td>
<td>MODERADO</td>
</tr>
<tr>
<td>Suelos</td>
<td>Modificación del relieve y de procesos geomorfológicos</td>
<td>COMPATIBLE - MODERADO</td>
</tr>
<tr>
<td></td>
<td>Pérdida del suelo</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Erosión del suelo</td>
<td>compatible</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de los suelos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LOS SUELOS</td>
<td>MODERADO</td>
</tr>
<tr>
<td>Vegetación, flora e HICs</td>
<td>Alteración de la cubierta vegetal</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Degradación de la vegetación circundante</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Efectos en la flora amenazada</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>Efectos en los HICs</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA VEGETACIÓN, FLORA E HICs</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Fauna</td>
<td>Molestias y perturbaciones</td>
<td>COMPATIBLE - MODERADO</td>
</tr>
<tr>
<td></td>
<td>Alteración y pérdida de hábitats</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Fragmentación y efecto barrera</td>
<td>COMPATIBLE - MODERADO</td>
</tr>
<tr>
<td></td>
<td>Colisión con las infraestructuras</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LA FAUNA</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Efectos sobre los espacios protegidos</td>
<td>COMPATIBLE - MODERADO</td>
</tr>
<tr>
<td>FACTOR AMBIENTAL</td>
<td>EFECTO</td>
<td>VALORACION</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fase de construcción</td>
</tr>
<tr>
<td>Espacios protegidos</td>
<td>EFECTO GLOBAL EN ESPACIOS PROTEGIDOS</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>Actividad económica y empleo</td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>EFECTO GLOBAL EN LA SOCIOECONOMÍA</td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Productividad agrícola</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Usos forestales</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Uso ganadero y domínio público pecuario</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Usos cinegéticos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Usos mineros</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>EFECTO GLOBAL SOBRE LOS USOS DEL SUELO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>Efectos sobre las infraestructuras</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>EFECTO GLOBAL SOBRE LAS INFRAESTRUCTURAS</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Salud y población</td>
<td>Efecto de los campos electromagnéticos</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Salud y población</td>
<td>EFECTO GLOBAL SOBRE LA SALUD Y LA POBLACION HUMANA</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>Limitaciones y efectos sobre el desarrollo urbanístico</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>EFECTO GLOBAL SOBRE EL PLANEAMIENTO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Efectos sobre el paisaje</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>Paisaje</td>
<td>EFECTO GLOBAL SOBRE EL PAISAJE</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>Efectos sobre los elementos del Patrimonio</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>EFECTO GLOBAL SOBRE EL PATRIMONIO CULTURAL</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>FACTOR AMBIENTAL</td>
<td>EFECTO</td>
<td>VALORACION</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Fase de construcción</td>
<td>Fase de funcionamiento</td>
</tr>
<tr>
<td>Atmósfera</td>
<td>Calidad del aire</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Incremento de los niveles sonoros</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Contaminación luminica</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>Cambio Climático</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LA ATMOSFERA</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Geologia</td>
<td>Lugares de Interés Geológico</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA GEOLOGIA</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>Hidrología</td>
<td>Modificación o alteración de la red de drenaje natural</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de las aguas</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td></td>
<td>Efectos sobre las aguas subterráneas</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Efectos en el DPH</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA HIDROLOGIA</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td>Suelos</td>
<td>Modificación del relieve y de procesos geomorfológicos</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td></td>
<td>Pérdida del suelo</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td></td>
<td>Erosión del suelo</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de los suelos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LOS SUELOS</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td>Vegetación, flora e HiCs</td>
<td>Alteración de la cubierta vegetal</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Degradación de la vegetación circundante</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>Efectos en la flora amenazada</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>Efectos en los HiCs</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA VEGETACIÓN, FLORA E HICS</td>
<td>MODERADO</td>
</tr>
<tr>
<td>Fauna</td>
<td>Molestias y perturbaciones</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td>Alteración y pérdida de hábitats</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td></td>
<td>Fragmentación y efecto barrera</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>Colisión con las infraestructuras</td>
<td>POSITIVO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LA FAUNA</td>
<td>MODERADO-SEVERO</td>
</tr>
<tr>
<td></td>
<td>Efectos sobre los espacios protegidos</td>
<td>SEVERO</td>
</tr>
<tr>
<td>FACTOR AMBIENTAL</td>
<td>EFEKTOS</td>
<td>VALORACIÓN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Espacios protegidos</td>
<td>EFECTO GLOBAL EN ESPACIOS PROTEGIDOS</td>
<td>Fase de construcción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fase de funcionamiento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fase de desmantelamiento</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>EFECTO GLOBAL EN LA SOCIOECONOMÍA</td>
<td>SEVERO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEVERO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td></td>
<td>POSITIVO</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>PRODUCTIVIDAD AGRíCOLA</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>USOS FORESTALES</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>USO GANADERO Y DOMINIO PÚBLICO PECUARIO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>USOS CINEGÉTICOS</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td>USOS MINEROS</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LOS USOS DEL SUELO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>EFECTO GLOBAL SOBRE LAS INFRAESTRUCTURAS</td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Salud y población</td>
<td>EFECTO GLOBAL SOBRE LA SALUD Y LA POBLACIÓN HUMANA</td>
<td>NO SIGNIFICATIVO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>LIMITACIONES Y EFECTOS SOBRE EL DESARROLLO URBANÍSTICO</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Paisaje</td>
<td>EFECTO GLOBAL SOBRE EL PAISAJE</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>EFECTO GLOBAL SOBRE EL PATRIMONIO</td>
<td>COMPATIBLE-MODERADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MODERADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>
7 VULNERABILIDAD DEL PROYECTO FREnte A ACCIDENTES GRAVES o CATÁSTROFES

El objetivo del presente apartado es el cumplimiento de lo indicado en el apartado 14 del Artículo único de la Ley 9/2018, que modifica el Artículo 35.1 apartado d).

Para ello, se identifican los siguientes objetivos específicos:

- **Objetivo 1:** Identificar el riesgo de que se produzcan accidentes graves o catástrofes naturales, así como una descripción y caracterización general de cada riesgo en el ámbito de estudio y los efectos adversos significativos sobre el medio ambiente en caso de ocurrencia.

- **Objetivo 2:** Describir la vulnerabilidad del proyecto o probabilidad que tiene el proyecto para verse afectado por accidentes graves o catástrofes naturales.

- **Objetivo 3:** Describir los efectos adversos significativos sobre medio ambiente derivados de la vulnerabilidad del proyecto ante accidentes graves o catástrofes naturales.

- **Objetivo 4:** Evaluación del riesgo a partir de los objetivos 2 y 3.

El documento completo donde se analiza la evaluación de riesgos y los efectos adversos del proyecto se aporta como Anexo 2 “Vulnerabilidad del proyecto frente a accidentes graves o catástrofes”.

El presente apartado recoge una síntesis de lo más destacado del documento completo.

La evaluación de riesgos específicos de que se produzcan accidentes graves o catástrofes naturales y los efectos adversos significativos sobre el medio ambiente derivados de la vulnerabilidad del proyecto ante accidentes graves o catástrofes naturales, se basa en el documento de la EPA de orientación para la evaluación y el cálculo el coste de los pasivos ambientales de la Environmental Protection Agency (Guidance on assessing and costing environmental liabilities. Wexford, Ireland. Environmental Protection Agency, 2014.).

Las fases metodológicas para la evaluación de riesgos específicos son las siguientes:

- **Fase 1.** Identificación de riesgo (Objetivo 1).

- **Fase 2.** Clasificación de riesgo según su probabilidad ocurrencia y efectos sobre el proyecto (Objetivo 2).

- **Fase 3.** Clasificación de la magnitud de impacto del proyecto como consecuencia de que el proyecto sufra un accidente o catástrofe natural (Objetivo 3).
7.1 IDENTIFICACIÓN Y CLASIFICACIÓN DE LOS RIESGOS

En cuanto al riesgo derivado de la peligrosidad sísmica, el aspecto más destacable del análisis efectuado es que la probabilidad de ocurrencia de un seísmo en el ámbito considerado es extremadamente improbable, por encontrarse en la zona de menor actividad sísmica de la península. En su caso, la caída de elementos que ocasionaría dicho seísmo, tendría un impacto limitado, insignificante respecto de los impactos que podría producir el propio seísmo. Por ello, considerando ambos aspectos, el escenario que resulta es de bajo riesgo (valor de $R = 2$).

Los fenómenos meteorológicos adversos, en particular los vientos fuertes, son sucesos muy improbables. Además, dadas las características del proyecto, es muy improbable que afectasen significativamente a las infraestructuras, por lo que el impacto sería limitado. Considerando ambos motivos, el escenario que resulta es de bajo riesgo (valor de $R = 4$). Comparado con el riesgo anterior (peligrosidad sísmica), podemos decir que existe mayor probabilidad de que ocurra, pero si así lo hiciera, tanto la posibilidad de afectar al proyecto, como los impactos como consecuencia de esta posible afección, ocasionarían un escenario de riesgo bajo.

Las zonas inundables se circunscriben a una pequeña zona localizada al norte del ámbito, asociada al Arroyo de San Román, varias zonas al noreste y este asociadas al río Jarama y un área en la zona central del ámbito asociada al río Guadalix.

Figura 134. Zonas con probabilidad de inundación en periodos de 10, 50, 100 y 500 años. Fuente: MINTERD.
Únicamente el área inundable localizada en la zona central del ámbito podría afectar al proyecto, concretamente, a la línea L/132 kV GR Colimbo – Colectora La Cereal. Sin embargo, es en esta zona donde se localiza el tramo soterrado de la línea, por lo que se considera que el riesgo es improbable. El resto de infraestructuras del proyecto están lo suficientemente alejadas de las zonas inundables como para considerar que no habrá afecciones por inundación sobre dichas infraestructuras eléctricas. Debido a las características del proyecto se considera que la probabilidad de ocurrencia de efectos por inundación sobre las infraestructuras eléctricas es improbable. En caso de que se produjeran efectos, su magnitud sería limitada, por lo que el escenario de riesgo es bajo (valor de R = 6).

El riesgo por la presencia de zonas con arcillas expansivas potencialmente inestables es bajo. No obstante, por las medidas preventivas a implantar (mejora de la cimentación), se puede calificar la probabilidad de afectar al proyecto como improbable y los impactos de carácter menor, especialmente por la velocidad de estos procesos y la vigilancia de las medidas que se implementen. Por todo ello, el escenario que resulta es de bajo riesgo (valor de R = 3).

Respecto al riesgo de **incendios forestales**, la mayor parte del ámbito se localiza en área de nivel IV, siendo tan solo una superficie minoritaria las áreas de nivel I y II. La PFV GR Colimbo se localiza en áreas de nivel IV, si bien, próxima a áreas de nivel I y II por lo que se considera improbable la ocurrencia de un incendio en esas zonas. Además, con la presencia de perímetros de seguridad y ausencia de vegetación, es muy improbable que se afectase a los elementos del proyecto. El escenario de riesgo seguiría siendo por tanto bajo (valor de R = 3).

En cuanto a los **riesgos tecnológicos**, se puede valorar como muy improbable que un accidente asociado a un riesgo de este tipo pueda afectar al proyecto. En caso de ocurrencia, provocaría un impacto limitado, ya que se limitaría al impacto ambiental provocado por la interrupción del suministro eléctrico y el derrubio de algún/os elemento/os. De todo esto, se desprende que el escenario de riesgo sería bajo (valor de R = 4).

En la siguiente tabla se resume la información más relevante para cada uno de los riesgos considerados:

- Vulnerabilidad del proyecto, estimado mediante la probabilidad de ocurrencia de que el proyecto se vea afectado por accidente grave o catástrofe natural y el valor del índice de vulnerabilidad (V) estimado para la evaluación del riesgo.
- Magnitud de los efectos ambientales que se produjeran en caso de que el proyecto fuera afectado por accidente grave o catástrofe natural y valor del índice de magnitud de los efectos ambientales (M) estimado para la evaluación del riesgo

- Evaluación del riesgo mediante un índice (R) que resulta del producto del valor del índice de vulnerabilidad (V) y el valor del índice de magnitud de los efectos ambientales (M). Es decir, \(R = V \times M \)

- Medidas minimización del riesgo y plan de respuesta.
Tabla 227. Resumen la información más relevante para cada uno de los riesgos: Vulnerabilidad del proyecto (V); Magnitud de los efectos ambientales que se produjeran en caso de que el proyecto fuera afectado por accidente grave o catástrofe natural (M); Evaluación del riesgo mediante un índice (R) que resulta del producto del valor del índice de vulnerabilidad (V) y Medidas minimización del riesgo y plan de respuesta

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Vulnerabilidad del proyecto (Probabilidad de ocurrencia de afección al proyecto)</th>
<th>V</th>
<th>Magnitud de efectos ambientales (en caso que el proyecto fuera afectado)</th>
<th>M</th>
<th>R = V x M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sísmico</td>
<td>Extremadamente improbable</td>
<td>1</td>
<td>Limitado</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fenómenos meteorológicos adversos</td>
<td>Muy improbable</td>
<td>2</td>
<td>Limitado</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Inundaciones y avenidas</td>
<td>Improbable</td>
<td>3</td>
<td>Limitado</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Litológicos</td>
<td>Improbable</td>
<td>3</td>
<td>Menor</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>Improbable</td>
<td>3</td>
<td>Menor</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tecnológicos</td>
<td>Muy improbable</td>
<td>2</td>
<td>Limitado</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
7.2 **EVALUACIÓN GLOBAL DEL RIESGO**

Para la evaluación de riesgos se emplean las clasificaciones de probabilidad de ocurrencia y de vulnerabilidad del proyecto frente a la magnitud de impacto, causado por el proyecto en caso de que sucediera el accidente grave o catástrofe natural. Se emplea una matriz de riesgo para representar la naturaleza de cada riesgo y asignarle un escenario determinado, codificada del siguiente modo:

- El área roja representa "escenarios de riesgo alto".
- El área naranja representa "escenarios de riesgo medio".
- El área verde representa "escenarios de riesgo bajo".

Tabla 228. Matriz de riesgo en la que se ubican los escenarios de cada uno de los riesgos contemplados, considerando la probabilidad de ocurrencia de afección al proyecto y los efectos ambientales asociados al proyecto, en caso de producirse accidente grave o catástrofe natural.

<table>
<thead>
<tr>
<th>Probabilidad de ocurrencia de afección al proyecto</th>
<th>Muy probable</th>
<th>Probable</th>
<th>Improbable</th>
<th>Muy improbable</th>
<th>Extremadamente improbable</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Litológicos (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Litológicos (3)</td>
<td>Inundaciones (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F. meteorol. (4)</td>
<td>Tecnológicos (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sísmico (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor</td>
<td>Limitado</td>
<td>Grave</td>
<td>Muy grave</td>
<td>Catástrofe</td>
</tr>
</tbody>
</table>

Efectos ambientales asociados al proyecto tras el suceso

Como se comprueba en la tabla anterior, **todos los riesgos se encuentran en escenarios de riesgo bajo**.
8 MEDIDAS DE DISEÑO, PREVENTIVAS Y CORRECTORAS

Las medidas de diseño, preventivas y correctoras han sido elaboradas partiendo del análisis de los potenciales impacto que se van a producir los elementos del proyecto, con grado de definición de proyecto básico, en la fase de ejecución, explotación y desmantelamiento. Estos impactos han sido contrastados con los datos obtenidos en las visitas de campo realizadas, y las medidas se enfocan tratando de proyectar soluciones concretas a los impactos detectados, con medidas de diseño aplicadas a la selección de alternativas y una serie de criterios generales de diseño de aplicación a los proyectos técnicos en desarrollo.

El plan de vigilancia ambiental que se aporta en este estudio de impacto ambiental es una propuesta metodológica teórica que será revisado cuando se evalúen los efectos reales del proyecto junto a las medidas preventivas y correctoras que finalmente queden diseñadas.

8.1 MEDIDAS DISEÑO

Se definen como las medidas adoptadas en la fase de diseño, con el fin de evitar o reducir los impactos del proyecto.

Se procura incidir más en el carácter preventivo que en el corrector, con objeto de evitar los posibles impactos antes de su aparición.

Las medidas preventivas de diseño tienen por objeto conseguir una buena integración ambiental del proyecto considerando los condicionantes ambientales en la obtención de la alternativa seleccionada y de los elementos que definen el proyecto.

8.1.1 Selección de las alternativas de menor impacto

La elección de la mejor alternativa ambiental permite minimizar significativamente los posibles impactos ambientales. Este análisis se desarrolla en el capítulo 4. Este análisis se ha desarrollado en los capítulos de selección de la mejor alternativa técnica y ambiental de cada estudio de impacto ambiental de infraestructuras.

Comparativa y selección de alternativas: se diseñan dos o tres alternativas técnicamente viables que se somete a un análisis multivariante ambiental y de sinergias para su selección.

Las variables ambientales específicas de cada tipología de proyecto son:

- PFV: Las variables ambientales utilizadas para la PFV son la distancia a la SE de destino, planeamiento urbanístic, cauces, vegetación natural, vías pecuarias, monte público, geomorfología, fauna y patrimonio cultural.
- LE: Las variables ambientales utilizadas para las LEs son las infraestructuras, planeamiento urbanístico, campos electromecánicos, cauces, vías pecuarias, monte
público, geomorfología, vegetación, hábitat de interés comunitario, paisaje, fauna y patrimonio cultural.

- **ST:** Las variables utilizadas para la selección de las STs son la distancia a la SE de evacuación con mayor peso, y la no coincidencia con valores ambientales (vegetación de interés, fauna, hábitats de interés comunitario, montes públicos, cauces, patrimonio cultural y vías pecuarias).

8.1.2 Criterios generales de diseño

A continuación se establecen criterios generales de diseño de aplicación al proyecto técnico de ejecución en fase de desarrollo.

☐ ADECUACIÓN DE LA UBICACIÓN DE LOS APOYOS Y SUS ACCESOS PARA MINIMIZAR EL IMPACTO EN LOS HICS

Se adecuará la ubicación de los apoyos y accesos a los mismos para minimizar el impacto en los HICs en base al “Estudio de los efectos de las líneas eléctricas y subestaciones del proyecto sobre los HICs”, que se elaborará en fase de proyecto técnico.

☐ LOCALIZACIÓN DE LOS APOYOS

La localización de los apoyos en el Proyecto Técnico de ejecución se diseñará teniendo en cuenta las siguientes recomendaciones:

- Priorizar la no afección a vegetación natural, HICs y flora protegida.
- Priorizar la no afección a puntos de interés para la avifauna (nidificaciones).
- Proyectarse fuera de DPH y zona de servidumbre, y priorizar la no localización en zona de policía.
- Priorizar la no afección a los valores de declaración sobre las repercusiones de la Red Natura 2000.
- Evitar pendientes elevadas para reducir al máximo el movimiento de tierras.
- Se adecuará la ubicación de los apoyos y accesos a los mismos para minimizar el impacto en los HICs en base al “Estudio de los efectos de las líneas eléctricas y subestaciones del proyecto sobre los HICs”, que se elaborará en fase de proyecto técnico.
- Se adecuará la ubicación de los apoyos con los resultados de las prospecciones arqueológicas superficiales en el área de coincidencia de la traza con la zona de protección del TM007.
□ **DISEÑO DEL TRAZADO DE LOS ACCESOS**

Se diseñarán los accesos intentando aprovechar al máximo la red de caminos existentes. Las acciones que se priorizarán en su diseño serán:

- **Priorizar al máximo la red de caminos existentes.**
- **Reducir al máximo la longitud de camino de nueva creación, considerando que, de forma genérica, una mayor longitud de caminos supone mayores efectos sobre el medio.**
- **Adaptar al máximo el camino al terreno, siguiendo siempre que sea posible las curvas de nivel, para reducir los movimientos de tierras y la creación de grandes desmontes y terraplenes.**
- **Se evitarán accesos con pendientes elevadas, zonas con presencia de fauna protegida (nidificaciones), y cursos de agua superficial.**
- **Se evitará, en la medida de lo posible, la afección a vegetación natural, flora amenazada, y pies arbóreos.**
- **Se adecuará la ubicación de los apoyos y accesos a los mismos para minimizar el impacto en los HICs en base al “Estudio de los efectos de las líneas eléctricas y subestaciones del proyecto sobre los HICs”, que se elaborará en fase de proyecto técnico.**
- **Los accesos a los apoyos serán principalmente de tipo campo a través y en el caso de que sea necesaria la adecuación o construcción de accesos nuevos, se velará porque el firme quede compactado y los taludes perfilados y estabilizados. En ningún caso modificarán la red de drenaje natural ni impedirán el paso de las aguas.**
- **Se adecuará la ubicación de los apoyos con los resultados de las prospecciones arqueológicas superficiales en el área de coincidencia de la traza con la zona de protección del TM007.**

□ **UBICACIÓN DE LA PLATAFORMA DE TRABAJO**

Se ubicará la plataforma de trabajo priorizando los lugares que:

- **Contribuyan a un menor impacto atendiendo al trazado del camino de acceso en su llegada al apoyo.**
- **Reduczan los movimientos de tierras y la creación de grandes desmontes y no se ubiquen a zonas con elevada pendiente, a zonas con presencia de vegetación natural, flora amenazada, los pies arbóreos fauna protegida, zonas de protección arqueológica y a cursos de agua superficial.**
DISEÑO DE LOS ELEMENTOS QUE COMPONEN EL PROYECTO

Instalación de cerramiento permeable a la fauna que no sea objeto de exclusión sobreelevado en 15 cm para el paso de mamíferos de menor tamaño presentes en el entorno de esta planta. Se evitará la utilización de alambre de espino en el vallado y para evitar la colisión de especies se señalizará con placas reflectantes mediante la instalación de placas en el vallado para aumentar su visibilidad (medida anticolisión). Placas de 20 x 20 x 0,6 cm al tresbolillo con una densidad mínima de una placa cada 3,5 m de vallado.

- El alumbrado para mantenimiento de equipos se encenderá de forma manual únicamente en caso de necesidad como consecuencia de averías o de operaciones de mantenimiento.

- En el alumbrado de viales y edificios se evitará que la luz se emita por encima de la horizontal y se dirigirá solo allí donde sea necesaria, empleando de forma generalizada luminarias apantalladas cuyo flujo luminoso se dirija únicamente hacia abajo.

- Se iluminarán exclusivamente aquellas áreas que lo necesiten, de arriba hacia abajo y sin dejar que la luz escape fuera de estas zonas.

MÍNIMA OCUPACIÓN

Para evitar y minimizar la afección de los terrenos con valores naturales, se priorizará el uso del camino al ancho establecido, prohibiendo la instalación de elementos, el acopio de materiales o el vertido de residuos a ambos márgenes de estos accesos.

Además, se priorizará la superficie de ocupación de las plataformas para las grúas a las zonas de menor valores natural viables para la actuación. Estas zonas quedarán delimitadas en obra para utilizar la menor superficie posible.

Balizar y mantener libres de actuaciones los enclaves internos del parque las áreas con valores ecológicos que el propio diseño de la PSFV preserva.

EMPLAZAMIENTO DE INSTALACIONES AUXILIARES

El emplazamiento de las instalaciones se efectuará priorizando su alejamiento a cauces, para que no se puedan producir vertidos ocasionales que afecten a la red de drenaje y a las zonas de mayor de valor natural.

Se evitarán efectos por la ubicación de las máquinas de tiro y freno ya que se ubicarán fuera de vegetación natural.

Se deberán de recoger en los pliegos de prescripciones técnicas de obligado cumplimiento por parte de los contratistas todas las medidas y acciones que eviten la contaminación del medio.
Además, el constructor deberá de presentar un plan de gestión de residuos en los que se establezca las características del punto limpio y la gestión y transporte de los residuos generados.

☐ DISEÑO DE LA LUMINARIA DE SUBESTACIONES Y PLANTAS SOLARES FOTOVOLTAICAS

Para evitar problemas derivados de la contaminación lumínica, a la hora de diseñar la iluminación exterior de las Plantas Solares Fotovoltaicas y las Subestaciones Eléctricas proyectadas, se dará cumplimiento al contenido del Real Decreto 1890/2008, de 14 de noviembre, por el que se aprueba el Reglamento de eficiencia energética en instalaciones de alumbrado exterior y sus Instrucciones Técnicas Complementarias EA-01 a EA-08 aplicable a instalaciones de más de 100 W de potencia instalada, así como a la Directiva 2009/125/CE, que establece el marco de requisitos de diseño ecológico aplicables a la puesta en el mercado de ciertos componentes de una instalación de alumbrado exterior.

Para evitar problemas derivados de la contaminación lumínica, a la hora de diseñar la iluminación de las Plantas Solares Fotovoltaicas y las Subestaciones eléctricas proyectadas, se dará cumplimiento al contenido del Real Decreto Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.

8.2 MEDIDAS PREVENTIVAS

Dada la escala a la que se han evaluado los efectos de proyecto (básico), el presente capítulo describe con carácter preventivo los aspectos ambientales significativos identificados y aquellos estudios específicos que permitirán la evaluación real de los principales efectos del proyecto: avifauna, vegetación, flora, HIC, paisaje, espacios protegidos e hidrología.
8.2.1 Medidas preventivas para la protección de la calidad atmosférica

☐ Medidas en materia de contaminación por emisiones de gases y partículas en suspensión de aplicación durante las fases de construcción y desmantelamiento de los elementos de proyecto (MP01)

- Para evitar el incremento del nivel de polvo y partículas en suspensión derivadas de los trabajos de construcción, se realizarán riegos periódicos en las zonas de suelo desnudo, principalmente en días ventosos.

- Se regarán los caminos en los que se produzca el tránsito de vehículos y maquinaria siempre que se observe generación de nubes de polvo. Estos riegos se intensificarán durante los periodos estivales.

- No se circulará a más de 20 Km/h en los caminos de acceso y zonas de obra.

- La maquinaria que se utilice deberá cumplir con la normativa vigente referente en emisiones a la atmósfera (marcados CE), así como tener la Inspección Técnica de Vehículos (ITV) en vigor.

- Se evitará el levantamiento de polvo en las operaciones de carga y descarga de materiales, así como en el acopio de materiales finos en zonas desprotegidas del viento para evitar la movilización de partículas.

- Los movimientos de tierras quedarán prohibidos en jornadas con velocidades del viento superiores a los 40 Km/h.

- El transporte de materiales sueltos en camiones se ejecutará con lonas que eviten su difusión.

- Se controlará que maquinaria y camiones no queden con el motor al ralentí, disminuyendo de este modo las emisiones de contaminantes atmosféricos.

- El agua que se requiera para la aplicación de riegos se obtendrá de puntos de recogida autorizados.

- El alcance específico de las medidas propuestas podrá variar con el desarrollo del Proyecto Técnico de Ejecución de la PFV y las LE.

☐ Medidas preventivas en materia de ruido de aplicación durante las fases de construcción y desmantelamiento de los elementos de proyecto (MP02)

- Se deberá dar cumplimiento al RD 212/2002, de 22 de febrero, por el que se regulan las emisiones sonoras en el entorno debidas a determinadas máquinas de uso al aire libre, así como al Real Decreto 524/2006, de 28 de abril, por el que se modifica el anterior.
- Las operaciones constructivas y de transporte de materiales y residuos estarán limitadas al periodo diurno.

- Se procederá a la utilización de maquinaria que cumpla los valores límite de emisión de ruidos establecidos por la normativa, evitando, en la medida de lo posible, el funcionamiento simultáneo de maquinaria pesada, así como las operaciones bruscas de aceleración y retención.

- No se superarán los límites de ruido marcados por las curvas isófonas concretas según la legislación, en la totalidad de los terrenos por los que discurren los trazados de las líneas eléctricas.

- Se comprobará que los niveles de ruido equivalente generados no superen los contemplados en el desarrollo del Estudio de Impacto Ambiental. En caso de que se produzcan niveles superiores a los evaluados, se recomienda llevar a cabo un estudio que valore la potencial afección del ruido a las viviendas más cercanas, con el fin de determinar la necesidad de tomar medidas específicas de control, tales como la planificación de las actividades de obra y/o la instalación de pantallas acústicas.

- Si se observa presencia de fauna sensible en las inmediaciones de los elementos de proyecto, se recomienda llevar a cabo un estudio que valore la potencial afección del ruido a dicha fauna, con el fin de determinar las medidas específicas que serán necesarias, tales como restricciones de actividades en fechas de riesgo, apantallamientos u otras medidas.

- Se informará a los residentes de las edificaciones cercanas de cuándo se van a realizar las operaciones constructivas, en especial, el hincado de soportes, y se diseñará un plan de hincado tratando de reducir las potenciales molestias, por ejemplo, determinando el recorrido de las hincadoras y evitando que las hincadoras trabajen próximas, en las cercanías de las viviendas y en las áreas de alta sensibilidad para la fauna de forma que se minimice el efecto acumulativo en las zonas sensibles y teniendo en cuenta la ocupación de las viviendas.

- El alcance específico de las medidas propuestas podrá variar con el desarrollo del Proyecto Técnico de Ejecución de la PFV y las LE.

8.2.2 Medidas preventivas para la geología

□ Protección del Lugar de Interés Geológico TM007 (MP03):

Se deberá realizar una prospección arqueológica superficial de carácter intensivo en los 2.800 metros del trazado de la L/132kV GR Colimbo – Colectora la Cereal coincidente con el TM007 que determine la afección potencial sobre este LIG por el desarrollo de la línea eléctrica.
El diseño de la L/132kV GR Colimbo – Colectora la Cereal deberá, en todo caso, minimizar el número de apoyos a ejecutar en los 2.800 metros del trazado coincidente con el TM007.

El diseño de los accesos que será necesario ejecutar a dichos apoyos, se hará evitando la afectación sobre dicho LIG.

8.2.3 Medidas preventivas en materia de hidrología

- **Estudio hidrogeológico para el cruzamiento de la LSMT de la PFV GR Colimbo bajo el cauce del arroyo innominado ubicado en su trazado (MP04).**

 Se llevará a cabo un Estudio hidrogeológico previo al inicio de las obras que asegure que el cruzamiento soterrado mediante perforación dirigida de la LSMT de la PFV GR Colimbo no afecte al DPH del cauce ni a sus zonas de protección, ni a los recursos hídricos superficiales ni subterráneos.

- **Medidas de protección del cauce del arroyo innominado ubicado entre parcelas de la PFV Colimbo (MP05).**

 Con objeto de prevenir posibles arrastres de sólidos en suspensión sobre el cauce innominado, en las parcelas adyacentes de la PSFV Colimbo, se limitarán los acopios de excedentes de excavación a los mínimos necesarios y se gestionarán dichos excedentes a la mayor brevedad posible, cumpliendo todos los requisitos de la normativa en materia de gestión de residuos existente.

 Las hincas de la perforación dirigida se ubicarán en la zona de policía del cauce, fuera del DPH y su zona de servidumbre.

 Asimismo, se limitarán los accesos y las zonas de paso de maquinaria a las mínimas imprescindibles, disponiéndose lo más alejadas del cauce posible.

- **Estudio hidrogeológico para el cruzamiento soterrado del río Guadalix de la L/132kV GR Colimbo-Colectora La Cereal (MP06).**

 Se llevará a cabo un Estudio hidrogeológico previo al inicio de las obras que asegure que el cruzamiento soterrado mediante perforación dirigida de la L/132kV GR Colimbo-Colectora La Cereal bajo el río Guadalix no afecte al DPH del cauce ni a sus zonas de protección, ni a los recursos hídricos superficiales ni subterráneos.

- **Medidas de preventivas para la fijación del terreno circundante a las obras de soterramiento del cauce del río Guadalix (MP07).**

 Se llevarán a cabo medidas de fijación y afianzamiento de las vaguadas a ambos lados del río Guadalix en la zona en la que realizarán las obras de soterramiento del cableado de la L/132kV GR Colimbo – Colectora La Cereal, limitando los acopios de excedentes de excavación a los mínimos necesarios y gestionando dichos excedentes a la mayor brevedad.
posible, cumpliendo todos los requisitos de la normativa en materia de gestión de residuos existente.

Las hincas de la perforación dirigida se ubicarán en la zona de policía del cauce, fuera del DPH y su zona de servidumbre.

Asimismo, se limitarán los accesos y las zonas de paso de maquinaria a las mínimas imprescindibles, disponiéndose lo más alejadas del cauce posible.

☐ Estudio hidrogeológico para el cruzamiento soterrado del arroyo Tejada de la L/400kV Colectora La Cereal-La Cereal REE (MP08).

Se llevará a cabo un Estudio hidrogeológico previo al inicio de las obras que asegure que el cruzamiento soterrado mediante perforación dirigida de la L/400kV Colectora La Cereal-La Cereal bajo el arroyo Tejada no afecte al DPH del cauce ni a sus zonas de protección, ni a los recursos hídricos superficiales ni subterráneos.

☐ Medidas de preventivas para la fijación del terreno circundante a las obras de soterramiento del cauce del arroyo Tejada (MP09).

Se llevarán a cabo medidas de fijación y afianzamiento de las vaguadas a ambos lados del arroyo Tejada en la zona en la que realizarán las obras de soterramiento del cableado de la L/400kV Colectora La Cereal-La Cereal REE, limitando los acopiados de excedentes de excavación a los mínimos necesarios y gestionando dichos excedentes a la mayor brevedad posible, cumpliendo todos los requisitos de la normativa en materia de gestión de residuos existente.

Las hincas de la perforación dirigida se ubicarán en la zona de policía del cauce, fuera del DPH y su zona de servidumbre.

Asimismo, se limitarán los accesos y las zonas de paso de maquinaria a las mínimas imprescindibles, disponiéndose lo más alejadas del cauce posible.

8.2.4 Medidas preventivas para la protección del suelo

☐ Acopio y reutilización de tierras (MP10)

Se llevará a cabo una correcta gestión de los acopiados de tierras evitando, en la medida de lo posible, mezclar diferentes tipologías.

Los acopiados de inertes se realizarán conforme a los siguientes requisitos:

- Se formarán caballones o artesas (de sección trapezoidal) cuya altura no excederá de 1,5 m.
- Se evitará el paso de los camiones de descarga por encima de la tierra apilada.
- El modelado del caballón se llevará a cabo, preferentemente, con tractor agrícola de modo que se evite una compactación excesiva del suelo.

☐ **Minimización de la superficie de ocupación por acopios (MP11)**

Todos los acopios de tierra vegetal, materiales y/o excedentes de excavación deberán realizarse fuera de áreas sensibles y, cuando no sea posible, se elegirán aquellas con menor fracción de cabida cubierta, ocupando en cualquier caso la menor superficie posible.

De manera general, y con objeto de disminuir los efectos de los movimientos de tierra, se programarán los movimientos de tierras con anterioridad al inicio de la ocupación. Asimismo, se realizarán las obras de excavación en el menor tiempo posible, disminuyendo así el tiempo de exposición de los materiales del suelo a la erosión.

Para la apertura de caminos y zanjas, se aprovechará al máximo la red de caminos existentes y se tratará de ajustar su acondicionamiento a la orografía y relieve del terreno para minimizar pendientes y taludes, todo ello supeditado a los condicionantes técnicos necesarios para el tránsito de la maquinaria necesaria.

Limitación de los desbroces, movimientos de tierras y trabajos constructivos al mínimo necesario.

☐ **Cerramiento rígido temporal perimetral para evitar los efectos de los movimientos de tierras (MP12)**

El cerramiento rígido temporal de obra evitará daños sobre el medio sean superiores a los estrictamente necesarios. El movimiento de la maquinaria se limitará al área perimétrica y tras la finalización de las obras se procederá a su retirada.

Esto también evitará que los movimientos de tierras afecten a superficies que no se incluyan en las zonas de actuación. Así pues, con el cerramiento quedará limitada para la circulación fuera de las áreas permitidas, minimizando la compactación de terrenos adicionales a los necesarios para llevar a cabo las posteriores labores de restauración.

Este cerramiento deberá ser revisado durante toda la fase de obras, reponiendo aquel que eventualmente pudiera haberse dañado.

☐ **Gestión y retirada de tierra vegetal (MP13)**

En todas las actuaciones que necesiten movimientos de tierra para el acondicionamiento de los terrenos, ya sea la excavación para las cimentaciones o los decapados de tierra que fueran necesarios, se procederá a una correcta gestión de las tierras excavadas y en particular de la tierra vegetal:

- La tierra excavada se acopiará en cordones cuya altura no superará 1,5m de altura para evitar la compactación de la misma. Se minimizará el tiempo de acopio.
Tras la excavación y el correspondiente acopio temporal, se extenderá la tierra excavada, de manera que los horizontes orgánicos queden en la parte más superficial.

Quedará prohibido la extensión de otras tierras diferentes a las actualmente presentes, aunque estas representaran poco volumen.

Control de vertidos sobre el terreno (MP14)

En puntos no habilitados para ello, debidamente impermeabilizados, permitiéndose el repostaje en obra únicamente de aquella maquinaria que, de manera justificada, no pueda trasladarse para ello a un establecimiento autorizado.

La obra deberá contar con material absorbente de derrames, así como un punto de limpieza de cubas y canaletas de hormigón.

Los equipos y envases que contengan sustancias potencialmente contaminantes del suelo nunca podrán estar sobre suelo denudo.

En caso de hacer uso de transformadores con líquido dieléctrico, estos deberán ser herméticos.

En caso de que la obra requiera de un depósito de combustible externo, este deberá ser de doble pared, y su comunicación con el grupo electrógeno deberá realizarse mediante tubería encamisada.

Estas medidas son de aplicación a la fase de construcción y desmantelamiento.

8.2.5 **Medidas preventivas para la protección de la vegetación**

Antes de enumerar las medidas preventivas de la vegetación, comentar que existen otras ya mencionadas encaminadas a la protección de la atmósfera, de las aguas y del suelo que también contribuyen indirectamente a la protección de la vegetación.

Jalonamientos para la protección de la vegetación y los Hábitats de interés Comunitario (HIC) (MP15)

En las zonas donde no exista un cerramiento rígido temporal de protección se procederá al jalonamiento del perímetro de todas las superficies de ocupación, para evitar en cualquier caso efectos en la vegetación natural y los HICs adyacentes.

Las zonas de HICs presentes en las zonas próximas a las obras serán las que resulten de la prospección de HICs que es realice en el marco del “Estudio de los efectos de las líneas eléctricas y subestaciones del proyecto sobre los HICs” que se desarrollará a nivel de proyecto técnico.
La instalación de parques de maquinaria y acopios de obra se hará fuera de zonas de vegetación natural.

- **Protección del arbolado (MP16)**

 Se señalarán aquellos pies arbóreos, prestando especial atención a los individuos de más de 2m de talla de especies autóctonas, que pudieran ser necesario proteger por su proximidad a masas forestales de estas especies, u otras formaciones con presencia significativa de estas especies, en la zona adyacente al límite de la obra de cualquiera de los elementos constructivos del proyecto, permanente o temporal.

- **Podas controladas y desbroces (MP17)**

 En caso de ser necesario el descuaje de vegetación natural arbórea o arbustiva, se solicitará autorización y se realizará en presencia y bajo las indicaciones del supervisor medioambiental.

 En las podas, se aplicará cicatrizante sobre la superficie de todos los cortes realizados, de tal forma que se proteja a los ejemplares podados de posibles infecciones. En los desbroces, podas y talas se aplicarán las medidas preventivas en materia de prevención de riesgos de incendios para la fase de obras.

 Estas medidas son de aplicación a la fase de construcción y desmantelamiento.

 8.2.6 Medidas preventivas de incendios forestales

 Se analizan a continuación los elementos con riesgo potencial de provocar incendios forestales y se describen las medidas preventivas propuestas para evitarlos.

 Entre los elementos con riesgo potencial de provocar incendios cabe distinguir dos grupos:

 - Elementos propios de la implantación
 - Elementos propios del medio: vegetación (inflamabilidad de la misma), combustible, riesgo histórico de incendios, dificultades para la extinción, orografía y densidad de caminos.

- **Medidas preventivas a adoptar por el riesgo de incendio (MP18)**

 Para minimizar el riesgo de incendio durante el periodo de obras, se dará cumplimiento a las medidas de prevención de incendios recogidas en la legislación específica: Decreto 59/2017, de 6 de junio, del Consejo de Gobierno, por el que se aprueba el Plan Especial de Protección Civil de Emergencia por Incendios Forestales en la Comunidad de Madrid (INFOMA).

 Además de la medida genérica anterior, de acuerdo con los elementos de riesgo identificados anteriormente, se resumen a continuación las medidas preventivas para las fases de construcción y explotación:
<table>
<thead>
<tr>
<th>Factor de riesgo</th>
<th>Medida preventiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repostaje y reposo de maquinaria ligera</td>
<td>Se detendrá la máquina antes de repostar. Se utilizará un recipiente con sistema antiderrame y no se fumará. No se arrancará la máquina si se detectan fugas de combustible o si hay riesgos de chispas (cable de bujía pelado, etc.). No se depositará en caliente la maquinaria sobre material inflamable.</td>
</tr>
<tr>
<td>Quema de residuos forestales generados durante las labores de desbroce</td>
<td>Queda prohibida la quema de residuos forestales.</td>
</tr>
<tr>
<td>Chispa producida en escape de maquinaria</td>
<td>Utilización de maquinaria dotada de sistema matachispas.</td>
</tr>
<tr>
<td>Almacenaje de productos inflamables en obra</td>
<td>Queda prohibido el almacenaje de elementos combustibles al aire libre en el campo y elementos inflamables en obra. En su caso, los locales donde se almacene gasolina, oxígeno, acetileno, propano o butano, estarán aislados y dotados de extintor de incendios. En su entrada se colocarán las señales de Peligro de Incendio y Prohibido Fumar.</td>
</tr>
<tr>
<td>Labores de oxicorte</td>
<td>La lluvia incandescente de chispas que se producen al cortar metal, puede provocar incendios, por lo que son tareas que no se ejecutarán en el campo en zonas de riesgo alto de incendio.</td>
</tr>
<tr>
<td>Encendido de fuego para calentarse</td>
<td>Limitación de este tipo de fuegos excepto para casos extremos. Obligación de proceder a su total extinción por parte del personal de la obra, que ha de permanecer hasta el apagado total de los rescaldos, así como de cubrirlos con tierra.</td>
</tr>
</tbody>
</table>

Los responsables de la construcción interpondrán en la extinción de incendios forestales tan sólo en la fase de intervención inmediata, en el mismo momento que se produce o detecta el incendio. Una vez llegan los equipos y medios operativos de la Administración, los responsables de la construcción se deberán retirar o, en el mejor de los casos y previa solicitud de los responsables de la extinción, actuar bajo sus órdenes en labores de apoyo.

Por tanto, se deberá disponer en obra del material imprescindible para la intervención inmediata y, al menos, el siguiente:

- Un todoterreno.
- Depósito de agua.
- Mochila extintora por cuadrilla de trabajo.
- Batefuegos.
- Radio-emisores-receptores o teléfonos móviles.
- Motosierra.
- Herramientas de podar y cavar: hachas, guadañas, palas...
Durante las obras de construcción se deberán extremar las precauciones, sobre todo durante la época seca, y se deberá exigir el estricto cumplimiento de las medidas y normas adoptadas en las especificaciones ambientales dictadas, así como la totalidad de las Normas de Actuación en Seguridad incluidas en los Procedimientos y Especificaciones de obra, en especial en relación con el cumplimiento de las normas establecidas en cuanto a la generación y tratamiento de restos vegetales y al uso de maquinaria que pueda producir chispas.

Estas medidas son de aplicación a la fase de construcción, funcionamiento y desmantelamiento.

8.2.7 Medidas preventivas para la protección de la fauna

- **Limitación de la velocidad de circulación de los accesos (MP19)**

 Se propone limitar la velocidad de circulación de los vehículos en los accesos a menos de 20 km/h, con la finalidad de disminuir las posibles molestias o atropellos que pudieran ocasionarse sobre las especies de fauna presentes en el ámbito de estudio, especialmente para aquellas con movilidad reducida.

- **Localización de los elementos del proyecto (MP20)**

 Se evitará en la medida de lo posible la localización de apoyos o áreas de trabajo en las cercanías de las nidificaciones:

 - Nido de milano real en el Arroyo de Valdearenas a 423 m al este de la traza.

 - Nido de rapaz mediana en el río Guadalix a 452 m al norte de la traza del tramo soterrado.

 - Nido de rapaz mediante o grande sin actividad en el río Guadalix a 233 m al norte de la traza del tramo soterrado.

 - Nido de milano real en el arroyo de la Colada a 234 m al sur de la traza.

 - Nido de rapaz mediana en el Arroyo Tejada a 359 m al norte de la traza.

- **Cronograma de trabajo (MP21)**

 Se tendrá que realizar una evaluación de los efectos de perturbaciones y molestias sobre el proyecto técnico de ejecución que determinará el cronograma de trabajo.

 De manera complementaria, al inicio de los trabajos se realizarán prospecciones de campo mediante las cuales se adaptará el programa de trabajo a las circunstancias actuales del momento. La no aplicación de la medida se consensuará de manera previa con la administración competente.
El cronograma se deberá de adaptar a la época reproducción de las especies con nidificaciones en el área o zonas colindantes.

- **Conectividad biológica (MP22)**

El diseño de los vallados será cinegético. Este tendrá que contener gateras/pasos de fauna, no podrá tener elementos punzantes, deberá de ser de luz de malla superior a 15 cm y deberá tener un espacio libre desde el suelo para favorecer el paso de organismos.

Se ubicarán los parques de maquinaria y acopios de obra fuera de zonas sensibles que puedan servir como hábitat de alimentación, refugio o como corredor de fauna.

Estas medidas son de aplicación a la fase de construcción y desmantelamiento.

8.2.8 **Medidas preventivas para la protección de los espacios protegidos**

- **Estudio hidrogeológico para el cruzamiento soterrado de la ZEC ES3110003 Cuenca del río Guadalix de la L/132kV GR Colimbo-Colectora La Cereal (MP23)**

Se llevará a cabo un Estudio hidrogeológico en fase de proyecto técnico de ejecución que asegure que el cruzamiento soterrado de la LSMT de la PFV GR Colimbo no afecte a los valores naturales del espacio protegido, ni a los recursos hídricos superficiales ni subterráneos.

- **Medidas de preventivas para la fijación del terreno circundante a las obras de soterramiento del cableado de la L/132kV GR Colimbo-Colectora La Cereal en el cruce de la ZEC ES3110003 Cuenca del río Guadalix (MP24)**

Se llevarán a cabo medidas de fijación y afianzamiento de las vaguadas a ambos lados del río Guadalix, fuera de los límites de la ZEC ES3110003 Cuenca del río Guadalix, en la zona en la que realizarán las obras de soterramiento del cableado de la L/132kV GR Colimbo-Colectora La Cereal, limitando los acopios de excedentes de excavación a los mínimos necesarios y gestionando dichos excedentes a la mayor brevedad posible, cumpliendo todos los requisitos de la normativa en materia de gestión de residuos existente y asegurando la no afección al espacio protegido.

Se llevará asimismo a cabo el balizamiento de los límites del espacio protegido para asegurar que ni la maquinaria ni las obras invadan superficies pertenecientes al mismo.
8.2.9 Medidas preventivas en materia de usos del suelo

Protección de las vías pecuarias (MP26)

El diseño del proyecto de ejecución de la L/132kV GR Colimbo – Colectora la Cereal, deberá realizarse evitando la afección a las Vías Pecuarias que son sobrevoladas por la traza, evitando en todo caso que se sitúen apoyos o plataformas de trabajo sobre las mismas.

Las vías pecuarias podrán ser transitadas una vez obtenido su permiso de tránsito emitido por la administración competente y Medidas preventivas para la protección del patrimonio cultural.

En los tramos de tránsito por vías pecuarias se limitará el número de trayectos de la maquinaria optimizando las operaciones de carga y descarga de materiales y las de traslado de residuos.

8.2.10 Medidas preventivas para la gestión de residuos

Como medida se redactará un Plan de Gestión de Residuos de cada proyecto, de aplicación durante las fases de obras y explotación.

En la zona de obras de la PFV, STs y de las LEs se instalará un “Punto Limpio” para el almacenamiento de los residuos peligrosos. El Punto Limpio se instalará sobre un recinto estanco para evitar filtraciones al suelo en caso de derrame.

En el interior del Punto Limpio se colocarán, convenientemente etiquetados, los bidones necesarios para el almacenamiento de los residuos peligrosos.
Los aceites usados que se generen durante la fase de construcción, tendrán la consideración de residuo peligroso y deberán ser gestionados conforme a la legislación vigente, entregándolos a transportista y gestor autorizado por la Comunidad de Madrid.

Durante la fase de obras se prohibirá a los contratistas el vertido de todo tipo de sustancias al suelo, en particular, aceites, para lo que se controlará que no se realicen cambios de aceites de la maquinaria, etc., lo cual quedará reflejado en los pliegos de prescripciones técnicas del proyecto.

Durante la fase de explotación de la PFV, STs y de las LEs no se prevén actuaciones que puedan conllevar la generación de residuos peligrosos.

Para el inicio de la fase de desmantelamiento la literatura consultada otorga una vida útil a los paneles solares fotovoltaicos entre 25 y 35 años. La legislación actual considera los paneles solares fotovoltaicos en desuso como residuos no peligrosos y deberán gestionarse conforme al Real Decreto 110/2015, de 20 de febrero, sobre residuos de aparatos eléctricos y electrónicos (RAEE).

En la fase de desmantelamiento se priorizará la reutilización de todos los elementos reutilizables separando en origen (obra) cada material.

La vigilancia ambiental garantizará el cumplimiento de la legislación vigente en materia de gestión de residuos, durante las fases de obra, explotación y desmantelamiento de la PFV, STs y de la LEs.

Estas medidas son de aplicación a la fase de construcción, funcionamiento y desmantelamiento.

8.2.11 Medidas preventivas en materia de paisaje

☐ **Desarrollo de un estudio de paisaje (MP27)**

A la dificultad de implementar medidas de atenuación del impacto visual por la alta visibilidad del espacio en el que se localizan los módulos fotovoltaicos y las líneas eléctricas, que además van a ser visibles desde posiciones del observador con mayor cota que la del objeto observado, se une el hecho de que en los modelos de visibilidad empleados no se pueden modelizar aspectos de demasiado detalle que puedan ayudar a imponer la actuación en territorio; por ello, se propone:

1. Con la información del proyecto técnico de ejecución se elaborará un estudio de paisaje que permita identificar los puntos de observación (miradores, senderos y rutas paisajísticas y carreteras) principales del entorno con un límite de cuenca de 5 Km para los miradores y de 2 Km para rutas y carreteras, así como la presencia de hitos paisajísticos, culturales o naturales, y entorno de singularidad paisajística, y que
permite, a su vez, estimar la incidencia visual de la planta sobre los elementos identificados.

2. Con la información del proyecto técnico de ejecución se llevará a cabo el análisis de la dimensión social de los recursos paisajísticos afectados

3. Resultante del estudio de pasaje se propondrán las medidas preventivas de apantallamiento o integración paisajística necesarias.

8.2.12 Medidas preventivas en materia de infraestructuras

☐ Distancia con respecto a las infraestructuras eléctricas existentes (MP28)

El trazado de la L/132kV GR Colimbo – Colectora la Cereal deberá garantizar en su P.K. 15 las distancias establecidas en la ITC-LAT07 con respecto a las dos líneas eléctricas de alta tensión existentes.

8.2.13 Medidas preventivas para la protección del patrimonio cultural

☐ Protección del patrimonio cultural (MP29)

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código</th>
<th>Municipio (Provincia)</th>
<th>Adscripción Cultural</th>
<th>Tipología</th>
<th>Afección</th>
<th>Medidas preventivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción Auxiliar del Canal de Y-II</td>
<td>CM/153/0037</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura</td>
<td>A 26 m de la PFV Colimbo</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Almenara de Valdeperote, del Canal de la Parra</td>
<td>CM/153/0033</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura</td>
<td>A 1m de la PFV Colimbo</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Sifón de los Yesos</td>
<td>CM/168/0031</td>
<td>El Vellón</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura</td>
<td>Afecotado en 235 m por la L/132kV</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Sillón del Morenillo</td>
<td>CM/000/0126</td>
<td>El Vellón y El Molar</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura</td>
<td>A 208 m de la L/132kV</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Las Huertas</td>
<td>-</td>
<td>El Molar</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>A 148 m de la L/132kV</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Almenara de Tades</td>
<td>CM/086/0019</td>
<td>El Molar</td>
<td>Siglo XVI-XVII-XVIII-XIX-XX</td>
<td>Material en superficie</td>
<td>A 30 m de la L/132kV</td>
<td>Seguimiento arqueológico</td>
</tr>
</tbody>
</table>

Durante la fase de obras (construcción y desmantelamiento) se llevará a cabo un seguimiento arqueológico y balizamiento de los yacimientos identificados.
8.3 MEDIDAS CORRECTORAS

8.3.1 Medidas correctoras de protección de cauces

Se detallan a continuación, las medidas correctoras particulares de este proyecto según las actuaciones previstas en zona de policía, zona de servidumbre y DPH:

- **Medidas de restauración de las zonas afectadas por el soterramiento de la LSMT próximas al cauce del arroyo innominado ubicado entre parcelas de la PFV GR Colimbo (MC01).**

 Se llevarán a cabo medidas de sujeción del terreno descendente desde el límite occidental de la PFV GR Colimbo hacia la carretera (que coincide con la vía pecuaria Colada del Camino del Monte) ubicada al este de la PFV, tales como perfilado de taludes, siembras, plantaciones o medidas que favorezcan la revegetación natural de la zona, de tal manera que la vegetación actúe sustentando la capa superficial de tierra y se minimicen los posibles efectos de lixiviado y arrastre de solidos en suspensión hacia el citado arroyo innominado.

 Se diseñará además un sistema de drenaje de la plataforma de la implantación de la PFV GR Colimbo que encauce adecuadamente la escorrentía y evite la generación de efectos erosivos que conlleven la incorporación de sedimentos al cauce.

 Se estudiará asimismo la instalación de barreras de sedimentos (balsas de decantación) antes de la salida de pluviales de la PFV.

- **Medidas de restauración de las zonas afectadas por las obras de soterramiento del cableado de la L/132kV GR Colimbo - Colectora La Cereal en su cruce del río Guadalíx (MC02).**

 Se llevarán a cabo las actuaciones necesarias para restaurar todas las zonas afectadas por las obras de soterramiento del cableado de la L/132kV GR Colimbo - Colectora La Cereal en su cruce del río Guadalíx, de tal manera que se devuelva a la zona a sus condiciones ambientales previas a la ejecución de la obra. Para ello se perfilarán los taludes creados, se restaurarán los accesos mediante el ripado de los mismos y se realizarán las plantaciones y/o siembras necesarias.

- **Medidas de restauración de las zonas afectadas por las obras de soterramiento del cableado de la L/400kV Colectora La Cereal-La Cereal REE en su cruce del arroyo Tejada (MC03).**

 Se llevarán a cabo las actuaciones necesarias para restaurar todas las zonas afectadas por las obras de soterramiento del cableado de la L/400kV Colectora La Cereal-La Cereal REE en su cruce del arroyo Tejada, de tal manera que se devuelva a la zona a sus condiciones ambientales previas a la ejecución de la obra. Para ello se perfilarán los taludes creados, se
restaurarán los accesos mediante el ripado de los mismos y se realizarán las plantaciones y/o siembras necesarias.

8.3.2 Medidas correctoras para movimientos de tierras y excedentes

Se han considerado las siguientes medidas correctoras relativas al movimiento de tierras necesario para la implantación del proyecto y la gestión de los excedentes de tierras:

- Reutilización de tierras
- Traslado de los excedentes de tierra no reutilizados al vertedero de inertes o venta a particular autorizado.

Reutilización de tierras (MC04)

Los excedentes de tierras procedentes de la implantación de los elementos proyectados, tanto la PFV como las líneas eléctricas, incluyendo las zanjas del tramo soterrado en la línea L/132 kV GR Colimbo – Colectora La Cereal y del tramo soterrado en la línea L/400 kV Colectora La Cereal – La Cereal REE, así como las hincas para sortear el arroyo Tejada y el río Guadalix, se reutilizarán en las labores de restauración, terraplénado y/o relleno, de forma que se tienda al balance "cero" de tierras.

Se llevará a cabo una correcta gestión de los acopios de tierras evitando, en la medida de lo posible, mezclar diferentes tipologías.

Los acopios de inertes se realizarán conforme a los siguientes requisitos:

- Se formarán caballones o artesas (de sección trapezoidal) cuya altura no excederá de 1,5 m.
- Se evitará el paso de los camiones de descarga por encima de la tierra apilada.
- El modelado del caballón se llevará a cabo, preferentemente, con tractor agrícola de modo que se evite una compactación excesiva del suelo.

Traslado de los excedentes de tierra no reutilizados a vertedero de inertes o venta a particular autorizado (MC05)

Según lo indicado en el apartado de efectos sobre los suelos, el excedente de tierras total asciende a 7.896 m³ (ver tabla).
Tabla 230. Excedentes de tierra (m3) del proyecto.

<table>
<thead>
<tr>
<th>Elemento del proyecto</th>
<th>Movimientos de tierra (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excedente PFV GR Colimbo</td>
<td>1.344</td>
</tr>
<tr>
<td>Excedentes en Líneas eléctricas</td>
<td>5.415</td>
</tr>
<tr>
<td>Excedentes en Subestaciones</td>
<td>1.137</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.896</td>
</tr>
</tbody>
</table>

Se proponen dos tipologías de gestión para los excedentes de tierra que, por motivos técnicos o por motivos de demanda, no puedan ser reutilizados en la construcción de los apoyos, Subestación y planta solar fotovoltaica:

- **Traslado a vertedero de inertes**: representa la alternativa menos favorable ambientalmente para la gestión de este tipo de materiales, que pasan a ser considerados residuos. La retirada, transporte y gestión de los residuos inertes deberá llevarse a cabo de acuerdo a los requisitos recogidos en la legislación de aplicación.

- **Gestión a través de canteras o particulares autorizados**: este tipo de gestión supone la reutilización del excedente de excavación y, por tanto, el cumplimiento de la jerarquía de gestión de residuos recogido en la Ley 22/2011, de 28 de julio, de residuos y suelos contaminados. La retirada y transporte de los inertes deberá cumplir los requisitos de la normativa de aplicación en la materia.

 - El hormigón desechado será eliminado en escombrera o bien extendido en caminos como mejora de firme. No obstante, según el artículo 11 del R.D. 105/200812, el hormigón que se considere residuo, deberá ser entregado a un gestor para su adecuado tratamiento, estando prohibida la eliminación directa en vertedero.

 - Será de aplicación la Orden APM-1007-201713 en la que se establece la posibilidad de valorización de los excedentes de excavación, debiendo ser contemplado en el proyecto de construcción de las PSFV, la cantidad máxima de tierras que se generarán y su gestión.

Estas medidas son de aplicación a la fase de construcción y desmantelamiento.

12 Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición.

13 Orden APM/1007/2017, de 10 de octubre, sobre normas generales de valorización de materiales naturales excavados para su utilización en operaciones de relleno y obras distintas a aquéllas en las que se generaron.
8.3.3 Adecuación de caminos y de las nuevas superficies generadas

Las medidas correctoras incluidas en este apartado tienen por objeto restaurar los suelos afectados por las plataformas de trabajo y por los accesos a las plantas. En el caso de los accesos, se incluyen las medidas necesarias para su adecuación, en particular, las obras de drenaje necesarias para su buena conservación y los taludes generados en determinados tramos de nuevos caminos a construir.

Estas medidas son de aplicación a la fase de construcción y desmantelamiento.

☐ **Estabilización de taludes (MC06)**

Los taludes de desmonte, al minimizar la superficie de ocupación del camino a construir, suelen tener pendientes muy elevadas, pudiendo ser 1H:2V e incluso 1H:3V. En estos casos, los procesos erosivos son muy intensos y es muy difícil y lenta su colonización por la vegetación. Por este motivo, en ocasiones, es necesario realizar operaciones que estabilicen estos taludes evitando los procesos erosivos y los desprendimientos. Por esta razón, durante la ejecución de los trabajos de construcción de accesos a los centros de transformación, se estudiará la posibilidad de realizar operaciones de refuerzo de taludes para mejorar la estabilidad de los mismos.

![Diagrama de secciones tipo de viales de acceso a los centros de transformación](image)

Figura 135. Secciones tipo de viales de acceso a los centros de transformación.

☐ **Tratamientos de adecuación de taludes (MC07)**

Los taludes se diseñarán con una pendiente adecuada para la colonización espontánea por vegetación natural y para la aplicación de medidas de plantación, de modo que se alcance la integración ecológica y paisajística del talud con el entorno.

Estas medidas son de aplicación a la fase de construcción y desmantelamiento.
8.3.4 Restauración del suelo y de la vegetación

- **Descompactación del suelo por laboreo o escarificado (MC08)**

Al finalizar los trabajos, se realizarán trabajos de laboreo o escarificado superficial de los primeros 20 cm en las zonas ocupadas por las campas de trabajo y otras ocupaciones temporales para evitar una posible compactación del terreno por el tránsito de la maquinaria sobre zonas cultivadas, dejando el terreno descompactado y con la porosidad adecuada.

Estas medidas son de aplicación a la fase de construcción y desmantelamiento.

- **Extensión de tierra vegetal (MC09)**

 - Gran parte de los trabajos se realizan en suelos que presentan poco desarrollo y la materia orgánica es escasa, por lo que el aporte de tierra vegetal podría cambiar las características físico-químicas del suelo y afectar a las semillas presentes en la zona, beneficiando la germinación de especies menos adaptadas al medio.

 - La tierra vegetal excavada se extenderá en las zonas a restaurar, de manera que los horizontes orgánicos queden en la parte más superficial. Quedará prohibida la extensión de otras tierras diferentes a las actualmente presentes, aunque estas representaran poco volumen.

 - La tierra vegetal procedente de la zona donde se ubicó la plataforma de trabajo se extenderá, una vez construido el apoyo, en dichas plataformas de trabajo tras el escarificado. Y, por otra parte, la tierra vegetal procedente de la excavación para crear la caja del camino será extendida en los taludes de terraplén, y si la pendiente lo permite, en los de desmonte, de los caminos de acceso o, en su defecto, en la zona de la plataforma de trabajo, o, si esto no fuera posible, cedida a ayuntamientos para obras de jardinería y restauración en sus términos.

 - En el caso de la PFV se llevarán a cabo actuaciones de favorecimiento de una cubierta vegetal herbáceo natural bajo seguidores. En su establecimiento se empleará la tierra vegetal extraída de la misma obra.

Igualmente se procederá a la extensión de tierra vegetal sobre las zanjas de excavación de la LSMT y de los tramos soterrados en las líneas L/132 kV GR Colimbo – Colectora La Cereal y L/400 kV Colectora La Cereal – La Cereal REE.

Estas medidas son de aplicación a la fase de construcción.

- **Revegetación mediante plantaciones y siembras (MC10)**

En este apartado se incluyen los aspectos y criterios clave de las medidas de revegetación, restauración y sus tratamientos, y que formarán parte de la restauración específica de este
proyecto y del Proyecto de Restauración Vegetal que acompañará al Proyecto de Construcción.

Los tratamientos de plantación se ejecutarán en el ámbito directo de afección del proyecto, igualando la estimación de vegetación natural afectada por las obras.

Se realizarán tratamientos de plantación y siembra con las especies disponibles características de la vegetación circundante y también de los hábitats de interés, en caso de haber teselas afectadas.

Una vez definidas las zonas donde se aplicarán estos tratamientos, como parte del proyecto de construcción se elaborará un “Proyecto de Restauración Vegetal” en el que se concretarán las especies a utilizar, así como la densidad de individuos a implantar en base a unidades de plantación de superficie definida.

Se realizará un seguimiento de las plantaciones realizadas para que en el caso de que los árboles o arbustos queden perjudicados o terminen en marras puedan ser repuestos con plantones de varias savias y asegurar en lo posible su viabilidad.

- **Plantación de arbolado por tala de ejemplares (MC11)**

En función del número de ejemplares arbóreos afectados por cada proyecto y de la superficie disponible apta para la plantación, se propondrá una proporción de ejemplares arbóreos a plantar que será consensuada con la administración competente.

8.3.5 Restauración de los HICs

- **Recuperación de HICs en teselas afectadas (MC12)**

Restauración de las teselas afectadas por los HICs, una vez que se identifiquen y cuantifiquen en un “*Estudio de los efectos de las líneas eléctricas y subestaciones del proyecto sobre los HICs*”, el cual servirá de referencia para proceder a la revegetación con especies características de los HICs afectados con objeto de facilitar la recuperación de los mismos.
8.3.6 Medidas correctoras para el tratamiento de restos vegetales

El tratamiento de restos vegetales es aplicable a todas las actuaciones del proyecto de construcción de los elementos proyectados, que impliquen desbroce o tala controlada.

- **Retirada y gestión de restos vegetales (MC13)**

Se plantean dos alternativas para la retirada y gestión de los restos vegetales derivados de las operaciones de desbroce y tala:

- **Mediante gestor autorizado.** Se justificará la gestión mediante entrega del documento de identificación de los residuos y toda la documentación relacionada con el alta del gestor autorizado.

- **Mediante cesión a un particular.** Se firmará un acuerdo de cesión por el que el particular será el depositario y responsable legal de los restos vegetales cedidos.

8.3.7 Medidas correctoras para la avifauna

- **Instalación de balizas salvapájaros (MC14)**

Con los resultados del proyecto técnico de ejecución se realizará un mapa de vulnerabilidad en el que se establecerán la tipología de las medidas anticolisión y su localización.

Las líneas aéreas se señalarán en su totalidad.

- **Seguimiento de mortalidad por accidentes por colisión y del estado de las medidas anticolisión (MC15)**

 - Se realizará un seguimiento de la eficacia de las medidas anticolisión del vallado.

 - Durante la fase de funcionamiento en el marco del programa de vigilancia ambiental (PVA) se llevará a cabo un seguimiento de la incidencia de la construcción de las líneas eléctricas proyectadas sobre la avifauna. Su objetivo será constatar que la ejecución del proyecto y la propia presencia de la línea existente, no produzca una siniestralidad que pueda considerarse significativa y que no afecte a especies protegidas o amenazadas, y en caso contrario, servir de base para programar medidas correctoras adicionales a las contempladas en el presente estudio.

 - La duración de este seguimiento sobre las aves será de un año, y a la luz de sus resultados la administración competente decidirá si procede continuar con el mismo.

 - De manera complementaria se revisará el estado de las medidas anticolisión para valorar su eficacia.
8.3.8 Medidas correctora en materia de espacios protegidos

- **Medidas de restauración de las zonas afectadas por el proyecto coincidentes con el Parque Regional Cuenca Alta del Manzanares, la ZEC ES3110004 Cuenca del río Manzanares y la Reserva de la Biosfera Cuenca Alta del Manzanares (MC16)**

Se llevarán a cabo medidas de restauración del medio en las zonas afectadas por el proyecto coincidentes con el Parque Regional Cuenca Alta del Manzanares, la ZEC ES3110004 Cuenca del río Manzanares y la Reserva de la Biosfera Cuenca Alta del Manzanares, tales como restauración del suelo mediante ripado y/o arado, restauración de la cubierta vegetal por hidrosiembras o plantaciones, de tal manera que se restituyan las superficies a su estado original.

8.4 MEDIDAS COMPENSATORIAS

8.4.1 Medidas compensatorias de la pérdida de HICs

- **Restauración de HICs en zonas degradadas aledañas a las zonas afectadas por la ST Colectora La Cereal y las líneas eléctricas (MCOMP1)**

Con objeto de compensar la superficie de HICs afectados, una vez que se identifiquen y cuantifiquen en un *Estudio específico de efectos del proyecto sobre los HICs*, se procederá a la revegetación con especies características de una superficie al menos igual a las teselas de HICs afectadas. Esta zona para la compensación de HICs se aplicará en zonas degradadas y cercanas a las afectadas, en especial en las proximidades de la ST Colectora La Cereal y los apoyos de las líneas eléctricas del proyecto, así como sus accesos.

8.4.2 Medidas compensatoria avifauna

- **Generación de biotopos de especies presa (MCOMP2)**

Con el objetivo de favorecer la proliferación de especies presa de las especies con zonas de la alimentación de especies de interés como el milano real, águila imperial ibérica, entre otras, y compensar los efectos negativos del proyecto, se propone la generación de hábitats de especies presa en las proximidades de la PFV.

La medida consiste en la Instalación de estructuras en 3 puntos aledañas o dentro de la PFV:

- Generación de puntos de agua para especies presa
- Refugios de perdiz o especies presa
- Majanos o muros de piedra para anfibios, reptiles y micromamíferos.
- Acúmulos de madera para el fomento de invertebrados. Se propone reutilizar la madera de los árboles aaceados para la creación de estos hábitats refugio
- Instalación de posaderos (postes) de 4-5 m de alto con listón superior para favorecer la presencia de rapaces
- Instalación de cajas nido para rapaces nocturnas y diurna, y quirópteros.

9 IDENTIFICACIÓN Y EVALUACIÓN DE LOS EFECTOS RESIDUALES

La presente evaluación de los efectos residuales se realiza sobre la información aportada por el proyecto básico y los efectos potenciales y medidas definidas a esta escala de trabajo.

De manera general la aplicación de las medidas de diseño consigue disminuir todos los factores de manera transversal.

En materia de contaminación atmosférica, las medidas habituales de buenas prácticas en obra, aplicadas en forma de medidas preventivas para la protección de la atmósfera durante la ejecución de las fases de construcción y desmantelamiento, harán que el efecto disminuya.

Las medidas de revegetación suponen un descenso en los efectos de pérdida de suelo, desbroce en la vegetación e HIC y a su vez en la integración paisajística de toda la instalación, lo cual contribuye a las diferencias que se aprecian entre impacto potenciales y residuales.

En materia de fauna la aplicación de medidas en fase de diseño del proyecto técnico de ejecución (instalación de salvapájaros y seguimientos de fauna), del correcto desarrollo durante la fase de construcción (aplicación de un cronograma de trabajos con parada biológica en caso de ser necesario, seguimiento control de la velocidad de circulación), harán que la importancia de los efectos de molestias y perturbaciones y pérdida de individuos disminuya en la valoración.

La siguiente tabla muestra el resumen de efectos residuales en los diferentes factores y variables ambientales, para las diferentes fases del proyecto.

9.1 PLANTA FOTOVOLTAICA

La siguiente tabla muestra el resumen de efectos residuales en los diferentes factores y variables ambientales, para las diferentes fases del proyecto.
<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>EFEKT</th>
<th>VALORACIÓN EFECTOS POTENCIALES</th>
<th>MEDIDAS</th>
<th>VALORACIÓN EFECTOS RESIDUALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio Climático</td>
<td>COM</td>
<td>COM</td>
<td>MOD</td>
<td>COM</td>
</tr>
<tr>
<td>ATMÓSFERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calidad del aire</td>
<td>COM</td>
<td>NO SIG</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>Incremento de los niveles semitropicales</td>
<td>COM</td>
<td>NO SIG</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>Contaminación lumínica</td>
<td>NO SIG</td>
<td>COM</td>
<td>POS</td>
<td>NO SIG</td>
</tr>
<tr>
<td>EFECTO GLOBAL SOBRE LA ATMOSFERA</td>
<td>COM</td>
<td>COM</td>
<td>MOD</td>
<td>COM</td>
</tr>
<tr>
<td>GELOGÍA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efectos sobre los Lugares de Interés Geológico</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td>EFECTO GLOBAL SOBRE LA GELOGÍA</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td>HIDROLOGÍA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modificación o alteración de la red de drenaje natural</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Alteración de la calidad de las aguas</td>
<td>MOD-MOD</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Efectos sobre las aguas superficiales</td>
<td>MOD</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Efectos en el DPH</td>
<td>MOD</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA HIDROLOGÍA</td>
<td>MOD</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>SUELOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modificación del relieve y de procesos geomorfológicos</td>
<td>COM- MOD</td>
<td>NO SIG</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Pérdida de suelo</td>
<td>MOD</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Erosión del suelo</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Abrición de la calidad de los suelos</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LOS SUELOS</td>
<td>MOD</td>
<td>MOD</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>VEGETACIÓN, FLORA Y HÍCOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alteración de la cubierta vegetal</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>Degradación de la vegetación circundante</td>
<td>COM</td>
<td>NO SIG</td>
<td>COM</td>
<td>MOD</td>
</tr>
<tr>
<td>Efectos en la flora amenazada</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td>Efectos en los HÍCOS</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td>EFECTO GLOBAL EN LA VEGETACIÓN, FLORA Y HÍCOS</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td>MOD</td>
</tr>
<tr>
<td>FAUNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malestias y perturbaciones</td>
<td>COM- MOD</td>
<td>NO SIG</td>
<td>COM-MOD</td>
<td>MOD</td>
</tr>
<tr>
<td>Alteración y pérdida de hábitats</td>
<td>MOD</td>
<td>MOD</td>
<td>POS</td>
<td>MOD</td>
</tr>
</tbody>
</table>

Fuente: Tabla 23I. Resumen de efectos residuales de las PPV en los diferentes factores y variables ambientales para las diferentes fases del proyecto.
<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>EFEKTIO</th>
<th>VALORACIÓN EFECTOS POTENCIALES</th>
<th>MEDIDAS</th>
<th>VALORACIÓN EFECTOS RESIDUALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F. CONST F. FUNC F. DESM</td>
<td></td>
<td>F. CONST F. FUNC F. DESM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOD MOD SEV POS</td>
<td></td>
<td>MOD MOD MOD POS</td>
</tr>
<tr>
<td>EFEKTIO GLOBAL SOBRE LA FAUNA</td>
<td></td>
<td>MOD MOD SEV POS</td>
<td></td>
<td>MOD MOD MOD POS</td>
</tr>
<tr>
<td>EFEKTIO GLOBAL EN ESPACIOS PROTEGIDOS</td>
<td></td>
<td>COM MOD COM MOD POS</td>
<td></td>
<td>COM COM POS</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>Activity económica y empleo</td>
<td>POS POS COM MOD</td>
<td></td>
<td>POS POS COM MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POS POS POS MOD</td>
<td></td>
<td>POS POS POS MOD</td>
</tr>
<tr>
<td>EFEKTIO GLOBAL EN LA SOCIOECONOMÍA</td>
<td></td>
<td>POS POS POS MOD</td>
<td></td>
<td>POS POS POS MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>Productividad agrícola</td>
<td>COM COM POS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso forestal</td>
<td>NO SIG NO SIG NO SIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso ganadero y dominio público pesquicio</td>
<td>NO SIG NO SIG NO SIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso eólico</td>
<td>COM COM POS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso minero</td>
<td>NO SIG NO SIG NO SIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFEKTIO GLOBAL SOBRE LOS USOS DEL SUELO</td>
<td></td>
<td>COM COM POS</td>
<td></td>
<td>COM COM POS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>Efectos sobre las infraestructuras</td>
<td>NO SIG NO SIG NO SIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salud y población</td>
<td>Efectos de los campos electromagnéticos</td>
<td>NO SIG NO SIG NO SIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>Limitaciones y efectos sobre el desarrollo urbanístico</td>
<td>COM COM POS</td>
<td></td>
<td>COM COM POS</td>
</tr>
<tr>
<td>Patrimonio</td>
<td>Efectos sobre el paisaje</td>
<td>COM MOD COM MOD COM MOD</td>
<td></td>
<td>COM COM COM COOM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>Efectos sobre los elementos del Patrimonio</td>
<td>COM MOD COM MOD COM MOD</td>
<td></td>
<td>COM COM COOM</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>Efectos sobre el paisaje</td>
<td>COM MOD COM MOD COM MOD</td>
<td></td>
<td>COM COM COOM</td>
</tr>
</tbody>
</table>
A modo de resumen, en la tabla siguiente se resumen los efectos residuales por factores, para las tres fases del proyecto:

Tabla 232. Resumen de efectos residuales en los diferentes factores, para las diferentes fases del proyecto.

<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>VALORACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fase de</td>
</tr>
<tr>
<td></td>
<td>construcción</td>
</tr>
<tr>
<td>Atmósfera</td>
<td>COM</td>
</tr>
<tr>
<td>Geología</td>
<td>NO SIG</td>
</tr>
<tr>
<td>Hidrología*</td>
<td>MOD</td>
</tr>
<tr>
<td>Suelos</td>
<td>COM-MOD</td>
</tr>
<tr>
<td>Vegetación, flora e HICs</td>
<td>COM</td>
</tr>
<tr>
<td>Fauna</td>
<td>MOD</td>
</tr>
<tr>
<td>Espacios Protegidos</td>
<td>COM</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>POS</td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>COM</td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>NO SIG</td>
</tr>
<tr>
<td>Salud y población</td>
<td>NO SIG</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>COM</td>
</tr>
<tr>
<td>Paisaje</td>
<td>COM</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>COM</td>
</tr>
</tbody>
</table>

9.2 LÍNEA ELÉCTRICA Y SUBESTACIÓN

La siguiente tabla muestra el resumen de efectos residuales en los diferentes factores y variables ambientales, para las diferentes fases del proyecto.
<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>Efecto</th>
<th>VALORACIÓN EFECTOS POTENCIALES</th>
<th>MEDIDAS</th>
<th>VALORACIÓN EFECTOS RESIDUALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F. CONST</td>
<td>F. FUNC</td>
<td>F. DESM</td>
</tr>
<tr>
<td>Atmósfera</td>
<td>Calidad del aire</td>
<td>CM</td>
<td>NO SIG</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td>Incremento de los niveles</td>
<td>CM</td>
<td>NO SIG</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td>contaminación de contaminantes</td>
<td>NO SIG</td>
<td>CM</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Cambio del clima</td>
<td>NO SIG</td>
<td>POS</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td>EFFECTO GLOBAL SOBRE LA ATMOSFERA</td>
<td>CM</td>
<td>CM</td>
<td>CM</td>
</tr>
<tr>
<td>Geología</td>
<td>Efectos sobre los lugares de</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
</tr>
<tr>
<td></td>
<td>interés geotécnico</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
</tr>
<tr>
<td></td>
<td>EFFECTO GLOBAL SOBRE LA GEOLOGÍA</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>Hidrogeología</td>
<td>Modificación o alteración de</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>la red de drenaje natural</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad de la</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>agua</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Efectos sobre las aguas</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>subterráneas</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>EFFECTO GLOBAL EN LA HIDROLOGÍA</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td>Suelos</td>
<td>Modificación del relieve y</td>
<td>MOD-SEV</td>
<td>NO SIG</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>de procesos geomecánicos</td>
<td>MOD-SEV</td>
<td>NO SIG</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Pérdida del suelo</td>
<td>MOD-SEV</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Enviolación del suelo</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>alteración de la calidad de los</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>suelos</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>EFFECTO GLOBAL EN LOS SUELOS</td>
<td>MOD</td>
<td>MOD</td>
<td>POS</td>
</tr>
<tr>
<td>Vegetación, flora e HICs</td>
<td>Alteración de la cubierta</td>
<td>MOD-SEV</td>
<td>NO SIG</td>
<td>MOD-SEV</td>
</tr>
<tr>
<td></td>
<td>vegetal</td>
<td>MOD-SEV</td>
<td>NO SIG</td>
<td>MOD-SEV</td>
</tr>
<tr>
<td></td>
<td>Gradación de la vegetación</td>
<td>COM</td>
<td>NO SIG</td>
<td>COM</td>
</tr>
<tr>
<td></td>
<td>circundante</td>
<td>COM</td>
<td>NO SIG</td>
<td>COM</td>
</tr>
<tr>
<td></td>
<td>Efectos de la flora amenazada</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>Efectos en los HICs</td>
<td>MOD</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>EFFECTO GLOBAL EN LA VEGETACIÓN, FLORA E HICs</td>
<td>MOD</td>
<td>COM-MOD</td>
<td>POS</td>
</tr>
<tr>
<td>Fauna</td>
<td>Molestias y perturbaciones</td>
<td>MOD-SEV</td>
<td>NO SIG</td>
<td>MOD-SEV</td>
</tr>
</tbody>
</table>

Tabla 23.3 Resumen de efectos residuales de las LE y ST en los diferentes factores y variables ambientales, para las diferentes fases del proyecto.
<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>EFECTO</th>
<th>VALORACIÓN EFECTOS POTENCIALES</th>
<th>MEDIDAS</th>
<th>VALORACIÓN EFECTOS RESIDUALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F. CONST</td>
<td>F. FUNC</td>
<td>F. DESM</td>
</tr>
<tr>
<td></td>
<td>Abstracción y pérdida de hábitat</td>
<td>MOD-SEV</td>
<td>MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>Efecto barrera</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>Pérdida de individuos de especies sensibles</td>
<td>NO SIG</td>
<td>SEV</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LA FAUNA</td>
<td>MOD-SEV</td>
<td>SEV</td>
<td>MOD</td>
</tr>
<tr>
<td>Espacios Protegidos</td>
<td>Efectos sobre los Espacios Protegidos</td>
<td>SEV</td>
<td>SEV</td>
<td>POS</td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>Actividad económica y empleo</td>
<td>POS</td>
<td>POS</td>
<td>COM-MOD</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL EN LA SOCIOECONOMÍA</td>
<td>POS</td>
<td>POS</td>
<td>COM-MOD</td>
</tr>
<tr>
<td>Uso del suelo</td>
<td>Productividad agrícola</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>Usos forestales</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>Uso ganadero y dominio público pesquicio</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>Usos drenerales</td>
<td>NO SIG</td>
<td>NO SIG</td>
<td>NO SIG</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LOS USOS DEL SUELO</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>Efectos sobre las infraestructuras</td>
<td>MOD</td>
<td>MOD</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LAS INFRAESTRUCTURAS</td>
<td>MOD</td>
<td>MOD</td>
<td>POS</td>
</tr>
<tr>
<td>Salud y población</td>
<td>Efectos de los campos electromagnéticos</td>
<td>NO SIG</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE LA SALUD Y LA POBLACIÓN</td>
<td>NO SIG</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td>Planificación urbana</td>
<td>Limitaciones y efectos sobre el desarrollo urbánico</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE EL PLANEAMIENTO</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
</tr>
<tr>
<td>Paisaje</td>
<td>Efectos sobre el paisaje</td>
<td>COM-MOD</td>
<td>MOD</td>
<td>COM-MOD</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE EL PAISAJE</td>
<td>COM-MOD</td>
<td>MOD</td>
<td>COM-MOD</td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>Efectos sobre los elementos del Patrimonio</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
</tr>
<tr>
<td></td>
<td>EFECTO GLOBAL SOBRE EL PATRIMONIO</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
<td>COM-MOD</td>
</tr>
</tbody>
</table>
A modo de resumen, en la tabla siguiente se resumen los efectos residuales por factores, para las tres fases del proyecto:

Tabla 234. Resumen de efectos residuales en los diferentes factores, para las diferentes fases del proyecto.

<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>VALORACIÓN</th>
<th>Fase de construcción</th>
<th>Fase de funcionamiento</th>
<th>Fase de desmantelamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmósfera</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>Geología</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>Hidrología</td>
<td>MOD</td>
<td>COM</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Suelos</td>
<td>MOD</td>
<td>COM</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Vegetación, flora e HICs</td>
<td>COM-MOD</td>
<td>COM</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>Fauna</td>
<td>MOD</td>
<td>MOD - SEV</td>
<td>MOD</td>
<td></td>
</tr>
<tr>
<td>Espacios Protegidos</td>
<td>MOD</td>
<td>MOD</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Socioeconomía</td>
<td>POS</td>
<td>POS</td>
<td>COM - MOD</td>
<td></td>
</tr>
<tr>
<td>Usos del suelo</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Infraestructuras</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Salud y población</td>
<td>NO SIG</td>
<td>COM</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>COM</td>
<td>COM</td>
<td>POS</td>
<td></td>
</tr>
<tr>
<td>Paisaje</td>
<td>COM</td>
<td>COM-MOD</td>
<td>COM</td>
<td></td>
</tr>
<tr>
<td>Patrimonio cultural</td>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td></td>
</tr>
</tbody>
</table>
10 PROGRAMA DE VIGILANCIA AMBIENTAL

10.1 OBJETIVOS

La función básica de un Programa de Vigilancia Ambiental (PVA) consiste en establecer un procedimiento que garantice la correcta ejecución y el cumplimiento de las medidas preventivas y correctoras establecidas en el Estudio de Impacto Ambiental, previa selección de parámetros representativos del sistema afectado, que resulten fácilmente medibles en función de las previsiones cuantitativas y cualitativas recogidas en el EsIA.

El cumplimiento de lo recogido en el PVA se considera fundamental para garantizar el cumplimiento del contenido de la Declaración de Impacto Ambiental que se emita, así como para la concreción de los requisitos legales que son de aplicación a la actividad de una obra, además de servir como documento marco de referencia para establecer las condiciones particulares de las especificaciones medioambientales de la obra que serán vinculantes en el contrato de adjudicación de las obras.

Además, con la aplicación del PVA, se garantiza el cumplimiento de los siguientes objetivos específicos:

- **Minimizar** y reducir el impacto sobre la vegetación, hábitats de interés comunitario, poblaciones cercanas derivado de la generación de ruido y las emisiones atmosféricas, sobre la avifauna, suelo, elementos patrimoniales, vías pecuarias y arbolado, y/o **reutilizar** los residuos y excedentes de excavación generados.

- **Determinar cómo y cuándo aplicar** las medidas preventivas y correctoras necesarias en cada caso en función de la cuantificación del impacto.

- **Controlar** la ejecución real de la obra y el grado real de magnitud de los impactos, pudiendo aplicarse las medidas de control oportunas para minimizar un impacto en el menor tiempo posible.
10.2 ALCANCE

El presente EsIA se desarrolla de acuerdo a un Proyecto de definición básica de las Líneas eléctricas, las subestaciones y la Planta solar fotovoltaica proyectadas.

Por ello, el presente PVA se trata de un documento vivo y versátil, que se desarrollará en mayor detalle con el desarrollo del proyecto técnico de ejecución, y que se adaptará a los cambios que pudieran surgir durante las diferentes fases de obra, en caso de ser necesario.

De acuerdo a lo anterior, atendiendo a la ausencia de detalle en varios de los elementos de proyecto, el presente programa de vigilancia ambiental desarrolla una propuesta metodológica de seguimiento y control que será de aplicación para aquellos factores ambientales en los que se generarían efectos potenciales significativos.

10.3 METODOLOGÍA DE CONTROL

El establecimiento de los procedimientos de control específicos queda sujeto al análisis real de los efectos potenciales conforme a una mayor definición de los elementos de proyecto.

Gracias a la aplicación en origen de las pertinentes medidas de diseño propuestas en el presente EsIA a partir del análisis de los efectos potenciales en fase de Proyecto Básico, se reducen los posibles impactos del proyecto y, en consecuencia, el PVA podrá aportar medidas de control ejecutables durante las distintas fases de obra.

A continuación, se detalla la metodología de aplicación para el desarrollo del PVA:

Diseño del procedimiento de control:

Para alcanzar el principal objetivo del PVA y establecer un procedimiento que garantice la ejecución de las medidas preventivas y correctoras establecidas, cada impacto será identificado y cuantificado, plantearo de este modo una correcta monitoreización del mismo, que se aplicará durante las fases de obra que le apliquen (accesos y plataformas de trabajo, obra civil, montaje e izado de los apoyos, tendido de conductores y cable de tierra, montaje de PFV acondicionamiento final de obra), y que identifica la programación espacial y temporal.

Los controles serán considerados como generales, cuando estén involucrados en todas las fases de obra, y como particulares, cuando sean específicos de determinadas acciones del proyecto, que tendrán efectos potenciales sobre variables ambientales concretas.

Para el correcto seguimiento de los impactos, se atenderá a diferentes umbrales de alerta, ya sean umbrales legales, o relativos a la presencia/ausencia de algún elemento de control.

Con el fin de evaluar la eficacia de las medidas preventivas y correctoras planteadas, así como con el fin de monitorear el seguimiento del impacto durante la ejecución de las obras, cada procedimiento de control recogerá uno o varios indicadores cuantitativos (m² de
superficies ocupadas, m3 de excedentes de excavación, número pies arbóreos talados, etc.) que, tras finalizar la obra, permitirán obtener un dato objetivo con el que medir y reportar la eficacia de las medidas.

Puntos de inspección:

Las medidas de control a aplicar serán presentadas en un programa de puntos de inspección en formato de fichas, en las que se incluirá, entre otra información relevante, la cuantificación de cada impacto y la monitorización que se llevará a cabo sobre el mismo durante la supervisión ambiental, diferenciando entre controles generales y particulares:

Los **controles generales** se realizarán sobre aquellos impactos que se dan a lo largo de todas las fases de obra, siendo estos: control sobre los contratistas, control de la calidad del aire y los niveles de ruido, control de los vertidos al medio, control de la gestión de residuos y prevención de incendios.

La valoración de la eficacia de las medidas, se realizará una vez termine la obra, aplicando para ello el cálculo de los indicadores cuantitativos para cada caso.

A continuación, se incluye una ficha a modo de ejemplo de uno de los controles generales que se llevará a cabo durante la aplicación del PVA, con los datos estimados en el presente EsI A a partir del Proyecto Básico:
CONTROL DE LA CALIDAD DEL AIRE Y LOS NIVELES DE RUIDO

OBJETIVOS
Verificar que no se produzcan afecciones superiores a las recogidas en la normativa vigente de referencia en relación a los niveles de partículas y sólidos en suspensión y niveles de ruido.

CONTROL

Descripción del impacto: Posible afección por emisiones de contaminantes atmosféricos y ruido.

Cuantificación:
- Se estima una emisión de 10.172,75 toneladas de CO$_2$
- En fase de construcción se estiman emisiones acústicas de entre 70 y 90 dBA en LE y ST, y de 132 dBA en las PFV.
- En fase de funcionamiento se estiman emisiones acústicas de 50 dBA en la LE y de entre 75 y 85 dBA en la ST. Las PFV no emiten ruido en funcionamiento.

Programación:
- Semanal

Fases de obra de aplicación:
- Todas

Responsable:
- Supervisor ambiental / promotor / contratista

INDICADOR

Cualitativo: Nivel sonoro perceptiblemente alto al oído; percepción de polvo en suspensión; deficiencias en la documentación aportada relativa a la maquinaria.

Cuantitativo: Nº días con niveles de ruido superiores al ruido de fondo/Nº de días de obra

UMBRAL DE ALERTA

Superaciones de los niveles de ruido (R.D. 1367/2007) y contaminantes atmosféricos permitidos

Ejecución de trabajos fuera del horario establecido

Incumplimiento de la Ley 34/2007, de 15 de noviembre, de calidad del aire y protección de la atmósfera y el Real Decreto 100/2011, de 28 de enero, por el que se actualiza el catálogo de actividades potencialmente contaminadoras de la atmósfera y se establecen las disposiciones básicas para su aplicación.

Incumplimiento del R.D. 212/2002, de 22 de febrero, por el que se regulan las emisiones sonoras en el entorno debidas a determinadas máquinas de uso al aire libre

MEDIDAS PREVENTIVAS Y CORRECTORAS

La supervisión ambiental se encargará de supervisar la aplicación de las medidas de control y de minimización que estén relacionadas con el control de la calidad del aire y los niveles de ruido, recogidas en el epígrafe 8 del estudio.

MONITOREZACIÓN

Se vigilará que se apliquen riegos periódicos en zonas de suelo desnudo y caminos con tránsito de vehículos, con especial atención a zonas cercanas a viviendas.

Se controlará que no se circule a una velocidad superior a los 20 Km/h en accesos y zonas de obra

Al comienzo de la obra, se verificará que la maquinaria empleada cumpla con lo establecido en su marcado CE, así como que tenga la ITV en vigor

Se controlará que no se genere polvo en las operaciones de varga y descarga de materiales
CONTROL DE LA CALIDAD DEL AIRE Y LOS NIVELES DE RUIDO

<table>
<thead>
<tr>
<th>Control de la calidad del aire y los niveles de ruido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se vigilará que el transporte de materiales sueltos en camiones se ejecute con lonas de protección</td>
</tr>
<tr>
<td>Se controlará que maquinaria y camiones no queden con el motor al ralentí</td>
</tr>
<tr>
<td>Se verificará que los trabajos con maquinaria pesada se realicen en período diurno, evitando el periodo nocturno</td>
</tr>
</tbody>
</table>

VERIFICACIÓN DE LA MEDIDA

Para evaluar la eficacia de las medidas, al finalizar la obra se evaluará el indicador cuantitativo descrito, determinando el nivel de afección a las poblaciones cercanas.

Los **controles particulares** se llevarán a cabo sobre aquellas variables ambientales concretas que pueden ser potencialmente afectadas por determinadas acciones del proyecto de ejecución: movimiento de tierras, obra civil, montaje electromecánico, desmantelamiento y restauración.

A continuación, se incluye una ficha a modo de ejemplo de uno de los controles particulares que se llevará a cabo durante la aplicación del PVA, sin datos estimados en el presente EsIA, puesto que para ello se requieren los datos concretos que se aportan en el Proyecto técnico de ejecución:
CONTROL DE LA AFECCIÓN SOBRE EL ARBOLADO

OBJETIVOS
Verificar que no se produzcan afecciones sobre el arbolado superiores a las estrictamente necesarias

<table>
<thead>
<tr>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del impacto</td>
</tr>
<tr>
<td>Cuantificación</td>
</tr>
<tr>
<td>Programación</td>
</tr>
<tr>
<td>Fases de obra de aplicación</td>
</tr>
<tr>
<td>Responsable</td>
</tr>
</tbody>
</table>

INDICADOR

<table>
<thead>
<tr>
<th>Cualitativo</th>
<th>Presencia de restos de tala y poda; ausencia de ejemplares arbóreos señalizados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuantitativo</td>
<td>Nº de pies afectados en ejecución / Nº de pies afectados en proyecto</td>
</tr>
</tbody>
</table>

UMbral de alerta
Afección a ejemplares arbóreos que deban ser conservados
Incumplimiento de la Ley 42/2007, de 13 de diciembre, del Patrimonio Natural y de la Biodiversidad

MEDIDAS PREVENTIVAS Y CORRECTORAS
La supervisión ambiental se encargará de supervisar la aplicación de las medidas de prevención y minimización que estén relacionadas con el de la afección sobre el arbolado, recogidas en el epígrafe 8 del estudio:

MONITORIZACIÓN
Previo al inicio de las obras, se señalarán aquellos pies arbóreos que pudiera ser necesario proteger por su cercanía a los elementos de proyecto, prestando especial atención a los individuos de más de 2m de talla de especies autóctonas.

Semanalmente, se revisará el estado de los ejemplares que deban ser conservados

En caso de finalmente ser necesarias podas y/o talas, previo al comienzo, se verificará que estos trabajos cuentan con la autorización autonómica competente.

Durante la época de talas y podas, se verificará la correcta ejecución de estos trabajos, comprobando que no se afecta a ejemplares que deban ser conservados, y que tras la poda se aplican los correctos tratamientos

Al finalizar las obras, se supervisará que se ejecutan los trabajos de revegetación

VERIFICACIÓN DE LA MEDIDA
Para evaluar la eficacia de la medida, al finalizar la obra, se realizarán prospecciones que permitan verificar la afección únicamente a los ejemplares arbóreos estrictamente necesarios. En caso de producirse afecciones no contempladas, se tomarán las medidas adecuadas de corrección y/o compensación.
Interpretación de los resultados:

Atendiendo a los datos e información obtenidos tras finalizar los trabajos de seguimiento ambiental de la fase de construcción, se podrá determinar la evolución de los sistemas afectados, la aparición de nuevas alteraciones, y la eficacia y operatividad de las medidas preventivas y correctoras desarrolladas en cada caso, pudiendo determinarse la necesidad de aplicar nuevas medidas correctoras para las fases de funcionamiento y/o desmantelamiento.

Emisión de informes:

Los informes a emitir, como mínimo, serán los siguientes:

- Antes del comienzo de las obras, para la fase de construcción, se emitirá la Propuesta del Programa de Vigilancia Ambiental adaptada al Proyecto de construcción redactado por la empresa Constructora, incorporando los requisitos de cumplimiento que establezca la Declaración de Impacto Ambiental.

- Durante la fase de obras, se emitirá un informe con periodicidad mensual, que hará referencia a los aspectos contemplados en la propuesta del programa de vigilancia ambiental.

- En caso de considerarse necesario, se emitirá un informe extraordinario cuando se presenten circunstancias o sucesos excepcionales que impliquen deterioros ambientales o situaciones de riesgo.

- A la finalización de las obras se emitirá el Informe final de obra.

Responsabilidades de la vigilancia ambiental:

Todo lo descrito será responsabilidad del Supervisor Ambiental, destacando entre sus tareas las siguientes:

- Elaboración del PVA de construcción y adaptación a los cambios que pudieran surgir en las diferentes fases de ejecución del proyecto.

- Redacción de los informes pertinentes requeridos en la Resolución Ambiental, así como aquellos estudios o informes requeridos por la Dirección del Proyecto.

- Vigilancia con el fin de que se cumplan los principios y procedimientos medioambientales establecidos y, más concretamente, para que todo el personal gestione las actividades de construcción de acuerdo a lo establecido en el PVA, en la Resolución Ambiental y en la Especificaciones medioambientales de obra, en caso de que las hubiera.

Apoyo técnico a la parte ejecutiva de obra en la búsqueda de soluciones a los problemas ambientales que se vayan planteando.
11 PRESUPUESTO

Sobre la base de las mediciones de las áreas de aplicación de las actuaciones del proyecto fotovoltaico, juntos con sus infraestructuras de evacuación de conexión adecuadas y, según bases de precios oficiales, el coste de las medidas de mitigación se expondrá tras la evaluación real de los efectos del proyecto sobre el proyecto técnico de ejecución.

A modo de avance el presupuesto de ejecución material de las medidas de mitigación ha sido valorado económicamente con un coste estimado total de 153.496,75 euros, IVA no incluido (ver tablas).

☐ **PFV GR COLIMBO**

<table>
<thead>
<tr>
<th>Medida</th>
<th>Unidad</th>
<th>Medición</th>
<th>Precio (€)</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seguimiento de avifauna de áreas sensibles/año</td>
<td>Seguimiento de avifauna</td>
<td>1</td>
<td>2.500,00</td>
<td>2.500</td>
</tr>
<tr>
<td>Estudio de integración paisajística</td>
<td>ud</td>
<td>1</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Placas señalizadoras vallado</td>
<td>longitud vallado</td>
<td>5.969</td>
<td>1.75</td>
<td>10.445,75</td>
</tr>
<tr>
<td>Generación de hábitats de especie presa</td>
<td>número PFV</td>
<td>1</td>
<td>2000</td>
<td>2.000</td>
</tr>
</tbody>
</table>

TOTAL 24.945,75

☐ **LÍNEAS ELÉCTRICAS Y SUBESTACIONES**

<table>
<thead>
<tr>
<th>Medida</th>
<th>Unidad</th>
<th>Medición</th>
<th>Precio (€)</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seguimiento de avifauna de áreas sensibles/año</td>
<td>Seguimiento de avifauna</td>
<td>1</td>
<td>20.000,00</td>
<td>20.000</td>
</tr>
<tr>
<td>Estabilización de taludes de desmonte y/o terraplén en todos los apoyos</td>
<td>km traza</td>
<td>40,691</td>
<td>0,33</td>
<td>13.428</td>
</tr>
<tr>
<td>Revegetación en zonas con vegetación natural (HICs)</td>
<td>km traza</td>
<td>40,691</td>
<td>0,42</td>
<td>17.091</td>
</tr>
<tr>
<td>Instalación de balizas salvapájaros</td>
<td>km traza aérea</td>
<td>39,015</td>
<td>2.000,00</td>
<td>78.032</td>
</tr>
</tbody>
</table>

TOTAL 128.551

12 DOCUMENTO DE SÍNTESIS

Como documento independiente se adjunta el Documento de Síntesis en el que, en términos asequibles a la comprensión general, se resume la información facilitada en los capítulos precedentes.
13 CONCLUSIONES

El proyecto objeto del presente estudio de impacto ambiental, PFV GR Colimbo, la línea 132 kV Colimbo – Colectora La Cereal, la línea 400 kV Colectora La Cereal – La Cereal REE, subestación transformadora 132/30 kV Colimbo y subestación transformadora 132/400 kV Colectora La Cereal, se enmarcan dentro de los objetivos del Plan Nacional Integrado de Energía y Clima 2021-2030 (PNIEC).

El proyecto ha sido diseñado para optimizar la red de transporte y minimizar los efectos ambientales. Las alternativas seleccionadas han sido resultantes de un análisis multicriterio en el que han intervenido las principales variables ambientales, así como el grado de sinergia/acumulación sobre el paisaje y la avifauna de la infraestructuras dentro del ámbito de estudio.

Los impactos potenciales de la alternativa seleccionada del proyecto, con definición de anteproyecto, más elevados residen en la pérdida de individuos por colisión, en los espacios protegidos, en la modificación del relieve y de la geomorfología, y en la alteración de la calidad de las aguas por los tramos soterrados de las líneas eléctricas, con valores de importancia moderado-severo o severo.

Tras la aplicación de medidas preventivas, principalmente de diseño del proyecto técnico de ejecución, correctoras y compensatorias estos efectos disminuirán su importancia de manera significativa.

Finalmente, es importante señalar también los efectos positivos que este proyecto de energía renovable tiene sobre el cambio climático, y que constituye básicamente el principal objetivo y justificación de su desarrollo.

Sobre la base de lo anterior, a escala de proyecto básico, y tras la implementación de las medidas descritas en el estudio, se concluye que no se identifican efectos ambientales significativos que inviabilicen ambientalmente el proyecto.

En Madrid, a 5 abril de 2021

Fdo. Roberto Vázquez Rodríguez
Licenciado en Ciencias Ambientales
Apéndice I. Marco normativo específico
General

- Real Decreto 2267/2004, de 3 de diciembre, por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales, publicado en BOE número 303 de 17 de diciembre de 2004.

- Real Decreto 349/2003, de 21 de marzo, por el que se modifica el Real Decreto 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo, y por el que se amplía su ámbito de aplicación a los agentes mutágenos, publicado en BOE número 82 de 5 de abril de 2003.

- Real Decreto 486/1997, de 14 de abril, por el que se establecen las disposiciones mínimas de seguridad y salud en los lugares de trabajo, publicado en BOE número 97 de 23 de abril de 1997.

- Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, publicado en BOE número 188 de 7 de agosto de 1997.

Electricidad

- Real Decreto-ley 23/2020, de 23 de junio, por el que se aprueban medidas en materia de energía y en otros ámbitos para la reactivación económica.

- Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, publicado en BOE número 139 de 9 de junio de 2014.

- Real Decreto 223/2008, de 15 de febrero, por el que se aprueba el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09, publicado en BOE 68 de 19 de marzo de 2008.

- Real Decreto 9/2013, de 12 de julio, por el que se adoptan medidas urgentes para garantizar la estabilidad financiera del sistema eléctrico, publicado en BOE número 167 de 13 de julio de 2013.

- Real Decreto 1110/07, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico, publicado en BOE número 224 de 18 de octubre de 2007.
Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión e Instrucciones Técnicas Complementarias (ITC) BT01 a BT51, publicado en BOE número 224 de 18 de octubre de 2002.

Guía Técnica de Aplicación del Reglamento Electrotécnico para Baja Tensión, editada por el Ministerio de Ciencia y Tecnología.

Real Decreto 1164/2001, de 26 de octubre, por el que se establecen tarifas de acceso a las redes de transporte y distribución, publicado en BOE número 268 de 8 de noviembre de 2001.

Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica, publicado en BOE número 310 de 27 de diciembre de 2000.

Orden de 12 de abril de 1999 por la que se dictan las Instrucciones Técnicas Complementarias al Reglamento de puntos de medida de los consumos y tránsitos de energía eléctrica, publicada en BOE número 95 de 21 de abril de 1999.

Ley 24/2013, de 26 de diciembre, del Sector Eléctrico, publicada en BOE número 310, de 27 de diciembre de 2013.

Real Decreto 1939/1986, de 6 de junio, por el que se declaran de obligado cumplimiento las especificaciones técnicas de los cables conductores desnudos de aluminio-acero, aluminio homogéneo y aluminio comprimido y su homologación por el Ministerio de Industria y Energía, publicado en BOE número 226, de 20 de octubre de 1986.

Real Decreto 187/2016, de 6 de mayo, por el que se regulan las exigencias de seguridad del material eléctrico destinado a ser utilizado en determinados límites de tensión.

Real Decreto 1075/1986, de 2 de mayo, por el que se establecen normas sobre las condiciones de los suministros de energía eléctrica y la calidad de este servicio, publicado en BOE número 135 de 6 de junio de 1986.

Real Decreto 1066/2001, de 28 de octubre, por el que se aprueba el Reglamento que establece condiciones de protección del dominio público radioeléctrico, restricciones a las emisiones radioeléctricas y medidas de protección sanitaria frente a emisiones radioeléctricas, publicado en BOE número 234, de 29 de octubre de 2001.

Resolución de 19 de junio de 1984, de la Dirección General de la Energía, por la que se establecen normas de ventilación y acceso de ciertos centros de transformación, publicada en BOE número 152 de 26 de junio de 1984.
- Real Decreto 144/2016, de 8 de abril, por el que se establecen los requisitos esenciales de salud y seguridad exigibles a los aparatos y sistemas de protección para su uso en atmósferas potencialmente explosivas y por el que se modifica el Real Decreto 455/2012, de 5 de marzo, por el que se establecen las medidas destinadas a reducir la cantidad de vapores de gasolina emitidos a la atmósfera durante el repostaje de los vehículos de motor en las estaciones de servicio.
- Normas particulares y Condicionado Técnico de las Compañías Eléctricas suministradoras.

Obra civil y estructuras

- Real Decreto 1247/2008, de 18 de julio, por el que se aprueba la Instrucción de hormigón estructural (EHE-2008), publicado en BOE número 203 de 22 de agosto de 2008.
- Real Decreto 256/2016, de 10 de junio, por el que se aprueba la Instrucción para la recepción de cementos (RC-16)
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de Edificación, publicado en BOE número 74 de 28 de marzo de 2006.
- Real Decreto 1371/2007, de 19 de octubre, por el que se aprueba el documento básico "DB-HR Protección frente al ruido" del Código Técnico de la Edificación y se modifica el Real Decreto 314/2006, publicado en BOE número 254 de 23 de octubre de 2007.
- Pliego de prescripciones técnicas generales para obras de carreteras y puentes (PG-3); Orden de 2 de julio de 1976 por la que se confiere efecto legal a la publicación del Pliego de prescripciones técnicas generales para obras de carreteras y puentes de la Dirección General de Carreteras y Caminos Vecinales, publicada en BOE número 162 de 7 de julio de 1976.
- Orden FOM/475/2002, de 13 de febrero, por la que se actualizan determinados artículos del Pliego de prescripciones técnicas generales para obras de carreteras y puentes relativos a hormigones y aceros, publicada en BOE número 56 de 6 de marzo de 2002.
- Orden FOM/1382/2002, de 16 de mayo, por la que se actualizan determinados artículos del Pliego de prescripciones técnicas generales para obras de carreteras y puentes relativos a la construcción de explanaciones, drenajes y cimentaciones, publicada en BOE número 139 de 11 de junio de 2002.
- Orden FOM/891/2004, de 1 de marzo, por la que se actualizan determinados artículos del Pliego de prescripciones técnicas generales para obras de carreteras y puentes, relativos a firmes y pavimentos, publicada en BOE número 83 de 6 de abril de 2004.
- Orden FOM/2523/2014, de 12 de diciembre, por la que se actualizan determinados artículos del Pliego de prescripciones técnicas generales para obras de carreteras y puentes, relativos a materiales básicos, a firmes y pavimentos, y a señalización, balizamiento y sistemas de contención de vehículos, publicada en BOE número 3 de 3 de enero de 2015

Seguridad y Salud

- Ley 31/95, de 8 de noviembre, de Prevención de Riesgos Laborales.
- Real Decreto 39/97. Reglamento de los servicios de Prevención.
- Ley 54/2003, de 12 de diciembre, de reforma del marco normativo de la Prevención de Riesgos Laborales.
- Real Decreto 171/2004, de 30 de enero, por el que se desarrolla el artículo 24 de la Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborales, en materia de coordinación de actividades empresariales.
- Real Decreto 1627/1997, de 24 de octubre, por el que se establecen las disposiciones mínimas de seguridad y salud en las obras de construcción.
- Real Decreto 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo en materia de trabajos temporales en altura.
- Ley 50/98. Modificación de la Ley 31/95 de Prevención de Riesgos Laborales.
- Real Decreto 681/2003, de 12 de junio, sobre la protección de la salud y la seguridad de los trabajadores expuestos a los riesgos derivados de atmósferas explosivas en el lugar de trabajo.
- Real Decreto 286/2006, de 10 de marzo, sobre la protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido.
- Real Decreto 130/2017, de 24 de febrero, por el que se aprueba el reglamento de explosivos.
- Ley 16/1987, de 30 de julio, de Ordenación de los Transportes Terrestres.
- Real Decreto 614/2.001, de 8 de junio, sobre disposiciones mínimas para protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico.
- Real Decreto 1215/1997, de 18 de julio por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo.
- Real Decreto 1644/2008, de 10 de octubre, por el que se establecen las normas para la comercialización y puesta en servicio de las máquinas.
- Real Decreto 773/97. Disposiciones Míminas de Seguridad y Salud relativas a la utilización por los trabajadores de Equipos de Protección Individual.
- Real Decreto 488/97. Disposiciones mínimas de seguridad y salud relativas al trabajo con equipos que incluyen pantallas de visualización.
- Real Decreto 487/97. Disposiciones mínimas de seguridad y salud relativas a manipulación manual de cargas que entrañen riesgos, en particular dorsolumbares, para los trabajadores.
- Real Decreto 486/97. Disposiciones mínimas de seguridad y salud en los lugares de trabajo.
- Real Decreto 485/97. Disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo.
- Orden FOM/534/2014, de 20 de marzo, por la que se aprueba la norma 8.1-IC señalización vertical de la Instrucción de Carreteras
- Orden de 9 de marzo de 1971 por la que se aprueba la Ordenanza General de Seguridad e Higiene en el Trabajo y sus modificaciones posteriores.
- Estatuto de los trabajadores.
- Convenio Colectivo Provincial de la Construcción.
- Código de circulación.
- Demás disposiciones oficiales relativas a la Seguridad, Higiene y Medicina del Trabajo, que puedan afectar a los trabajos que se realicen en la obra.

Otras

- Ordenanzas Municipales de los Ayuntamientos afectados en vigor.
- Cualquier disposición de nueva aparición que pueda complementar y/o modificar las anteriores.
CARTOGRAFÍA
Índice

Plano 1. Situación
Plano 2. Alternativas de proyecto
Plano 3. Localización del proyecto y de la alternativa seleccionada
Plano 4. Geología
Plano 5. Clinométrico
Plano 6. Hidrología
Plano 7. Riesgos del medio físico
Plano 8. Riesgo de incendios
Plano 9. Vegetación
Plano 10. Hábitats de interés comunitario
Plano 11. Fauna
Plano 12. Espacios naturales protegidos
Plano 13. Medio socioeconómico
Plano 14. Patrimonio cultural
Plano 15. Paisaje: Calidad paisajística
Plano 16. Síntesis ambiental

Sistema de referencia: ETRS 1989 UTM Huso 30N

Tamaño impresión: DIN-A1

Hoja: __________

Plano nº: Fecha: __________

Código Proyecto: __________

Título del Plano: __________

Título del Proyecto: __________

Promotor: __________

Consultor: __________

Escala: __________

Escala gráfica: 0 250 500 750 1.000 metros

Alternativas de proyecto

Ámbito de estudio 1:50.000

Alternativa A (Preferente)

Alternativa B

Alternativa C

Alternativa A (Preferente)

Alternativa B

Alternativa C (Preferente)

Alternativa B

Alternativa C

Alternativa A
Proyecto: Trazas

PFV GR Colimbo
Subestaciones de transformación

1:5.000
Proyecto:
Trazas:
1:5.000
Proyecto

Trazas

1:5,000
Proyecto

PFV GR Colimbo

Subestaciones de transformación

Infraestructuras existentes

Título del Plano:

Título del Proyecto:

Promotor:

Consultor:

Escala:

Escala gráfica:

Código Proyecto:

Fecha:

Plano nº:

Trazas

Fauna

Red Natura 2000

Reserva de la Biosfera

Parque Regional
Proyecto: Trámites y Proyectos
Subestaciones de transformación
Infraestructuras existentes

1:50.000

Síntesis ambiental
Red Natura 2000
Reserva de la Biosfera
Important Bird Area (BirdLife International)
Parque Regional
Corredores ecológicos (Fuente: Com. de Madrid)
Red hidrográfica
Patrimonio cultural
Vías pecuarias

Promotor:
Consultor:
Escala:
Escala gráfica:
Código Proyecto:
Título del Plano:
Título del Proyecto:
Fecha:
Plano nº:
Hoja:

Proyecto: Trámites y Proyectos
Subestaciones de transformación
Infraestructuras existentes

1:50.000

Síntesis ambiental
Red Natura 2000
Reserva de la Biosfera
Important Bird Area (BirdLife International)
Parque Regional
Corredores ecológicos (Fuente: Com. de Madrid)
Red hidrográfica
Patrimonio cultural
Vías pecuarias

Promotor:
Consultor:
Escala:
Escala gráfica:
Código Proyecto:
Título del Plano:
Título del Proyecto:
Fecha:
Plano nº:
Hoja:
ANEXO 1. ESTUDIO ANUAL DE AVIFAUNA
ESTUDIO ANUAL DE AVIFAUNA PARA LA PLANTA SOLAR FOTOVOLTAICA “GR COLIMBO” Y SUS INFRAESTRUCTURAS DE EVACUACIÓN (COMUNIDAD DE MADRID).

C/ COMUNIDAD VALENCIANA 57.
19180 MARCHAMALO
ESTUDIO ANUAL DE AVIFAUNA PARA LA PLANTA SOLAR FOTOVOLTAICA “GR COLIMBO” Y SUS INFRAESTRUCTURAS DE EVACUACIÓN (COMUNIDAD DE MADRID).

Trabajo de campo y redacción del informe por:

Jorge Meltzer Gómez-Escalonilla.
Máster en Biología de la Conservación.
Colegiado P2590-M

Fecha de presentación: 8 de abril de 2021
ÍNDICE

1 INTRODUCCIÓN Y OBJETIVOS .. 1
2 ÁREA DE ESTUDIO .. 2
 2.1 Hábitats para la avifauna... 3
 2.1.1 Envolvente de las PSFV .. 3
 2.1.2 Envolvente de la LE .. 4
 2.2 Espacios protegidos y lugares de importancia para las aves .. 5
 2.3 Legislación relativa a la catalogación de especies .. 7
3 METODOLOGÍA.. 8
 3.1 Censo de aves esteparias y aves rapaces .. 8
 3.1.1 Método .. 8
 3.1.2 Periodicidad .. 9
 3.2 Censo de aves nocturnas .. 10
 3.2.1 Método ... 10
 3.2.2 Periodicidad .. 10
 3.3 Riqueza de especies .. 11
 3.4 Revisión bibliográfica ... 11
 3.5 Definición de impactos .. 11
 3.5.1 Pérdida de hábitat ... 12
 3.5.2 Mortalidad no natural de fauna ... 12
4 RESULTADOS .. 14
 4.1 Riqueza de especies .. 14
 4.2 Resumen del muestreo de aves rapaces, esteparias y otras especies de interés 15
 4.3 Especies de avifauna de interés ... 17
5 CONCLUSIONES .. 24
6 BIBLIOGRAFÍA ... 25
7 EQUIPO DE TRABAJO ... 29
ANEXO I: DETALLE DEL INVENTARIO DE AVIFAUNA ... 30
1 INTRODUCCIÓN Y OBJETIVOS

El presente informe de resultados y el trabajo de campo necesario para su elaboración ha sido encargado por GR Colimbo Renovables S.L.U. a Jorge Meltzer Gómez-Escalonilla en diciembre de 2020.

En él se presentan los resultados del estudio de avifauna realizado entre diciembre de 2020 y la primera quincena de marzo de 2021, para la ejecución de la planta solar fotovoltaica (en adelante, PSFV) del proyecto “GR GR COLIMBO” (25MWp), en el término municipal de Torremocha del Jarama (Madrid), y sus infraestructuras de evacuación (en adelante, LE). Este informe se engloba dentro de un estudio anual, cuyo objetivo fundamental es obtener información en el área de estudio delimitada sobre la abundancia, uso del espacio y distribución de las especies de avifauna de interés, fundamentalmente aves esteparias y aves rapaces, con el fin de determinar la posible afección de la implantación de las PSFV proyectada y su LE sobre dichas comunidades orníticas.

Los criterios escogidos para determinar cuáles son las aves de interés sobre las que se ha centrado el esfuerzo de muestreo han sido: (1) su catalogación a nivel regional, nacional y europeo; (2) sus tamaños poblacionales, tanto en la zona de estudio como en la Comunidad de Madrid; y (3) sus características ecológicas y comportamentales. De cara a evaluar las posibles afecciones de las infraestructuras proyectadas sobre las aves y plantear las posibles medidas de mitigación (si fuera necesario), estos tres criterios centran la atención del estudio de avifauna fundamentalmente en dos grandes grupos de especies: las aves rapaces y las aves esteparias.

El análisis de la comunidad ornítica estudiada se ha completado con información bibliográfica relevante sobre las poblaciones de la avifauna de interés presente en la zona de estudio.
2 ÁREA DE ESTUDIO

La PSFV proyectada se encuentra íntegramente en el T. M. de Torremocha del Jarama, al NE de la Comunidad de Madrid, ocupando una superficie de 30,8 ha sobre suelo agrícola. En torno a ella se ha delimitado un área de estudio que abarca una envolvente de 2 km a su alrededor e incluye una superficie de 2.996 ha. Su superficie se distribuye fundamentalmente por los municipios de Torremocha del Jarama y Torrelaguna (Comunidad de Madrid) y de manera residual por Patones (Comunidad de Madrid) y Uceda (Provincia de Guadalajara). En su interior se encuentra el núcleo urbano de Torremocha del Jarama y de manera parcial los núcleos urbanos de Torrelaguna, Patones de Abajo (T.M. de Patones) y la urbanización Caraquiz (T.M de Uceda). En su tercio Norte, el área de estudio es atravesada por la carretera M-102.

La LE proyectada atraviesa los municipios de Colmenar Viejo, El Molar, El Vellón, San Agustín del Guadalix, Torrelaguna, Torremocha de Jarama y Tres Cantos, en la Comunidad de Madrid. Se ha delimitado una envolvente de 1 km a su alrededor, que incluye una superficie de 8.393 ha. Esta se distribuye por los municipios de Algete, Colmenar Viejo, El Molar, Vellón, San Agustín del Guadalix, Talamanca de Jarama, Torrelaguna, Torremocha de Jarama y Tres Cantos.

El área de estudio delimitada en torno a las PSFV y la LE (Figura 1), descontando la superficie en que ambas se solapan (561 ha), abarca una superficie de 10.828 ha. Las cuadrículas UTM10x10 en las que se incluye el total del área de estudio son las siguientes: 30TVK3090, 30TVK4090, 30TVL3000, 30TVL4000, 30TVL5000, 30TVL5010 y 30TVL5020.

Figura 1. Área de estudio.
2.1 Hábitats para la avifauna

2.1.1 Envolvente de las PSFV

El área delimitada por la envolvente de la zona de implantación presenta un relieve ondulado ocupado fundamentalmente por una agricultura de secano que conforma un paisaje de carácter pseudoestepario, salpicado puntualmente por cultivos leñosos como olivos (Olea europaea) o almendros (Prunus dulcis). Este hábitat pseudoestepario es el que potencialmente puede acoger a la mayor parte de las especies de interés de la zona de estudio, entre las que destacan la avutarda común (Otis tarda), el sisón (Tetrax tetrax), el aguilucho cenizo (Circus pygargus) y el cernícalo primilla (Falco naumanni).

Los cerros no cultivados están tapizados por vegetación natural formada por tomillares (Thymus sp.) con esparto (Stipa tenacissima) y retama (Retama sphaerocarpa), y aulagares (Genista scorpius) con zarzas (Rubus ulmifolius) o majuelos (Crataegus monogyna). Estos cerros acogen una buena población de conejo de monte (Oryctolagus cuniculus), presa clave para muchas de las aves rapaces que acuden a la zona de estudio para cazar. Destaca la presencia de pequeñas canteras en los cerros del cuadrante SO del área de estudio, aparentemente inactivas actualmente.

De Norte a Sur la zona de estudio es atravesada por el canal de La Parra (Canal de Isabel II), y asociados a este aparecen formaciones riparias con ejemplos de pequeño porte de álamo blanco (Populus alba) acompañados de zarzas y juncos churreros (Scirpus holoschoenus).

En el flanco Este del área de estudio destaca el curso del Jarama, perteneciente a la ZEC Cuencas de los ríos Jarama y Henares (ver Tabla 1 y Figura 2), con interesantes formaciones de bosque de ribera, con presencia de pies de gran porte de álamo blanco y sauce (Salix alba). Estas zonas arboladas son el hábitat potencial de nidificación de varias especies de aves rapaces que nidifican sobre árbol, como el milano real (Milvus milvus).

En el extremo NO del área de estudio aparecen las escarpadas laderas de la Sierra Norte de Madrid en su límite con el valle del curso medio del Jarama. Estas laderas son cruzadas longitudinalmente por los canales del Alto Jarama y del Atazar (Canal de Isabel II) y verticalmente por los arroyos Mortero y de San Román, que han generado pequeños roquedos de roca caliza. La vegetación natural consiste en etapas seriales de degradación del encinar (Quercus rotundifolia) dominadas por retamares.

Cabe destacar finalmente la presencia de algunas construcciones dispersas en el área de estudio, algunas de ellas ocupadas o activas hoy en día y otras en desuso o en ruinas. Todas estas construcciones ofrecen posibilidades de nidificación para aves como el cernícalo primilla, la cigüeña blanca o la lechuza común (Tyto alba).

La combinación de todos estos elementos citados anteriormente, unidos a la presencia de ganado ovino, genera una heterogeneidad de hábitat y una disponibilidad de presas que
propicia el interés del área de estudio como zona de alimentación para varias especies de aves rapaces.

2.1.2 Envolvente de la LE

De cara a la descripción de los hábitats para la avifauna, el área delimitada por la envolvente de la línea de evacuación se puede dividir en dos zonas: el extremo norte, que discurre en dirección norte-sur entre la zona de implantación y la autovía A-1 a la altura de San Agustín de Guadalix; y el extremo sur, que discurre en dirección este-oeste y norte-sur entre la autovía A-1 a la altura de San Agustín de Guadalix y el núcleo urbano de Tres Cantos.

El extremo norte se circunscribe al flanco oeste del valle del Jarama, río al que vierten sus empinadas rampas. El terreno, marcadamente ondulado, se encuentra ocupado por un mosaico de cultivos herbáceos de secano y zonas de pastizal-matorral con presencia de arbustos como la retama. Este mosaico se encuentra salpicado puntualmente por cultivos leñosos como olivares o almendros y viñedos (*Vitis vinifera*) en vaso. Existe también una importante mancha de encinar en ladera con presencia de otras especies como el enebro de la miera (*Juniperus oxycedrus*). La zona es además pastoreada por varios rebaños de ovejas. En los fondos de valle, ligados a arroyos estacionales, aparecen arboledas lineales con presencias de chopos (*Populus* sp.), entre otras especies arbóreas, que ofrecen sustrato de nidificación potencial para aves rapaces forestales como el milano real. Finalmente, existe un red de cortados y cárcavas de cierta entidad, que ofrecen hábitat de nidificación aves rapaces nocturnas como el búho real (*Bubo bubo*). Este hábitat heterogéneo acoge una importante población de conejo de monte, lo que, unido a la presencia de ganado, propicia que la zona sea concurrida por diferentes especies de aves rapaces en busca de alimento.

El extremo sur de la envolvente de la LE presenta también un terreno ondulado, aunque la heterogeneidad del hábitat es menor, estando este claramente dominado por las presencia de pastizales con mayor o menor presencia de retamas, en ocasiones intensamente pastoreados por ganado equino, bovino y ovino. Puntualmente, aparecen también encinas en estos pastizales que pueden llegar a formar pequeños bosquetes. Los fondos están ocupados por bosquetes lineales de chopos y fresnos ligados a arroyos estacionales. Cabe destacar además el bosque de ribera del río Guadalix, con ejemplares de chopo y álamo de buen porte. Tanto los citados bosquetes lineales como el bosque de ribera del Guadalix son el hábitat potencial de nidificación de diferentes especies de aves rapaces forestales, como el milano real.
2.2 Espacios protegidos y lugares de importancia para las aves

Con el fin de obtener información precisa sobre la localización de espacios protegidos en relación con el área de estudio, a fecha de marzo de 2021, se ha revisado la información cartográfica disponible en el servicio de información ambiental de la Comunidad de Madrid (https://www.comunidad.madrid/servicios/mapas/geoportal-comunidad-madrid) y en el Ministerio para la Transición Ecológica (https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza).

En la Tabla 1 se describen y en la Figura 2 se muestran los espacios protegidos y de interés que se encuentran próximos o coinciden parcialmente con el área de estudio delimitada para el presente informe.

<table>
<thead>
<tr>
<th>Tipo de espacio</th>
<th>Nombre</th>
<th>Normativa</th>
<th>Superf. total (ha)</th>
<th>Superf. solapamiento área de estudio (ha)</th>
<th>Superf. solapamiento PSFV (ha)</th>
<th>Long. tramo LE (m)</th>
<th>Objetivos de conservación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espacio Natural Protegido</td>
<td>Parque Regional de la Cuenca Alta del Manzanares</td>
<td>LEY 1/1985, de 23 de enero, de declaración de Parque Regional de la Cuenca Alta del Manzanares</td>
<td>42.583</td>
<td>741</td>
<td>0</td>
<td>0</td>
<td>Diversidad faúnica, botánica, geomorfológica y paisajística</td>
</tr>
<tr>
<td>Reserva de la Biosfera</td>
<td>Cuencas altas de los ríos Manzanares, Lozoya y Guadarrama</td>
<td>Designada Reserva de la Biosfera por la UNESCO el 9 de noviembre de 1992, ampliada por la UNESCO el 19 de junio de 2019, a petición de la Comunidad de Madrid.</td>
<td>105.725</td>
<td>788</td>
<td>0</td>
<td>3.379</td>
<td>Diversidad biológica, sistemas tradicionales de uso, gestión de actividad recreativa, investigación, vigilancia, educación formación y cooperación entre grupos sociales afectados</td>
</tr>
<tr>
<td>Red Natura 2000</td>
<td>ZEC ES31100004 “Cuencas de los ríos Jarama y Henares”</td>
<td>Decreto 172/2011, de 3 de noviembre, del Consejo de Gobierno, por el que se declara Zona Especial de Conservación el lugar de importancia comunitaria “Cuencas de los ríos Jarama y Henares” y se aprueba el Plan de Gestión de los Espacios Protegidos Red Natura 2000 de la Zona de Especial Protección para las Aves denominada “Estepas cerealistas de los ríos Jarama y Henares” y de la Zona Especial de Conservación denominada “Cuencas de los ríos Jarama y Henares”</td>
<td>36.063</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>Aves esteparias</td>
</tr>
<tr>
<td></td>
<td>ZEPAR ES0000139 “Estepas cerealistas de los ríos Jarama y Henares”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZEC ES31100003 “Cuenca del río Guadalix”</td>
<td>Decreto 106/2014, de 3 de septiembre, del Consejo de Gobierno, por el que se declara Zona Especial de Conservación el Lugar de Importancia Comunitaria “Cuenca del río Guadalix”</td>
<td>2.477</td>
<td>36</td>
<td>0</td>
<td>155 (soterrado)</td>
<td>Flora y fauna mediterránea y comunidades acuáticas e invernantes</td>
</tr>
</tbody>
</table>
ESTUDIO ANUAL DE AVIFAUNA PARA LA PLANTA SOLAR FOTOVOLTAICA “COLIMBO” Y SUS INFRAESTRUCTURAS DE EVACUACIÓN (COMUNIDAD DE MADRID).

<table>
<thead>
<tr>
<th>Tipo de espacio</th>
<th>Nombre</th>
<th>Normativa</th>
<th>Superf. total (ha)</th>
<th>Superf. solapamiento área estudio (ha)</th>
<th>Superf. solapamiento PSFV (ha)</th>
<th>Long. tramo LE (m)</th>
<th>Objetivos de conservación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEC ES3110004</td>
<td>“Cuenca del río Manzanares”</td>
<td>Decreto 102/2014, de 3 de septiembre, del Consejo de Gobierno, por el que se declara Zona Especial de Conservación el Lugar de Importancia Comunitaria “Cuenca del río Manzanares” y se aprueba su plan de gestión y el de las Zonas De Especial Protección para las Aves “Monte del Pardo” y “Soto de Viñuelas”</td>
<td>63.000</td>
<td>788</td>
<td>0</td>
<td>3.779 (soterrado)</td>
<td>Hábitats prioritarios; flora y fauna catalogada a nivel regional</td>
</tr>
<tr>
<td>ZEPA ES0000011</td>
<td>“Monte del Pardo”</td>
<td></td>
<td>15.299</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Águila imperial y otras rapaces forestales</td>
</tr>
<tr>
<td>ZEPA ES0000012</td>
<td>“Soto de Viñuelas”</td>
<td></td>
<td>3.072</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Águila imperial y otras rapaces forestales</td>
</tr>
</tbody>
</table>

Áreas Importantes para las Aves

IBA 74	“Talamanca-Camarma”	-	52.982	3	0	0	Aves esteparias
IBA 71 “El Pardo-Viñuelas”	-		35.872	1.767	0	8.500	Águila imperial y otras rapaces forestales
IBA 77 “Sierra de Ayllón”	-		183.678	785	0	0	Flora y fauna y comunidades vegetales de alta montaña y eurosiberianas

Figura 2. Distribución de la red de espacios protegidos y lugares de importancia para las aves en el área de estudio y su entorno.
Además, la RESOLUCIÓN de 6 de julio de 2017, de la Dirección General del Medio Ambiente, por la que se dispone la delimitación y la publicación de las zonas de protección existentes en la Comunidad de Madrid en las que serán de aplicación las medidas para la protección de la avifauna contra la colisión y la electrocución en las líneas eléctricas aéreas de alta tensión recogidas en el Real Decreto 1432/2008, de 29 de agosto, establece los siguientes espacios en su ámbito de aplicación:

- Las Zonas de Especial Protección para las Aves (ZEPA) aprobadas en el territorio de la Comunidad de Madrid, de acuerdo con los artículos 43 y 44 de la Ley 42/2007, de 13 de diciembre, de Patrimonio Natural y de la Biodiversidad.
- Los Lugares de Importancia Comunitaria (LIC) y las Zonas Especiales de Conservación (ZEC), aprobados en territorio de la Comunidad de Madrid de acuerdo con los artículos 42 y 44 de la Ley 42/2007, de 13 de diciembre, de Patrimonio Natural y de la Biodiversidad.
- El Parque Nacional de la Sierra de Guadarrama en su superficie incluida en la Comunidad de Madrid y los Parques Regionales de la Comunidad de Madrid legalmente aprobados.

2.3 **Legislación relativa a la catalogación de especies**

A este respecto, la legislación relativa a la catalogación de especies aplicable a la zona de estudio se puede dividir en tres niveles geográficos, según se expone en la **Tabla 2**.

Tabla 2. Legislación sobre catalogación de especies de aplicación en el área de estudio.

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Catálogo/Directiva</th>
<th>Categorías</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>Catálogo Regional de Especies Amenazadas de la Comunidad de Madrid. Decreto 18/1992, de 26 de marzo, por el que se aprueba el Catálogo Regional de Especies Amenazadas de Fauna y Flora Silvestres de la Comunidad de Madrid.</td>
<td>“En Peligro de Extinción” “Vulnerable” “De Interés Especial” “Sensible a la Alteración del Hábitat”</td>
</tr>
<tr>
<td>Nacional</td>
<td>Catálogo Español de Especies Amenazadas. Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas, y en este último caso, la categoría de protección</td>
<td>“En Peligro de Extinción” “Vulnerable” Presencia en el LERSPE</td>
</tr>
</tbody>
</table>
3 METODOLOGÍA

3.1 Censo de aves esteparias y aves rapaces

3.1.1 Método

El método empleado se ha basado en metodologías contrastadas para el censo de aves esteparias (García de la Morena et al, 2018; Alonso et al, 2005) y para el censo de aves rapaces (Fuller y Mosher, 1981). Consiste en la realización de recorridos en vehículo a baja velocidad (15-20 km/h) con paradas periódicas (máximo cada 1 km, variable en función de la visibilidad y la orografía del terreno) y utilizando puntos elevados para realizar barridos visuales, utilizando en la medida de lo posible toda la red de caminos, pistas y carreteras para garantizar la cobertura homogénea de toda zona de estudio. En los casos en los que no se ha podido cubrir de manera homogénea un zona concreta por el mal estado o la ausencia de accesos, se ha reforzado el muestreo mediante puntualmente mediante la realización de estaciones de observación. Todos los contactos son mapeados y para cada ave o grupo de aves detectado siempre se anotó la siguiente información:

- Fecha y hora.
- Coordenadas geográficas.
- Especie.
- Nº de individuos.
- Edad.
- Sexo.
- Comportamiento (tipo de vuelo, territorialidad, etc.).
- Hábitat.
- Altura de vuelo (0m, 0-20m, 20-40m, >40m).
- Dirección de vuelo.
- Observaciones.

Además, durante la realización de los muestreos se procuró, en la medida de lo posible, localizar nidos, zonas de nidificación, dormideros, zonas de alimentación y otros puntos clave para la avifauna de interés, anotando la siguiente información:

- Coordenadas geográficas.
- Tipo de lugar (nido, colonia, dormidero, etc.).
- Especie.
- Sustrato.
- Hábitat.
- Nº (individuos, parejas, pollos).
- Observaciones
Toda la información recogida sobre los contactos con aves y la localización de puntos clave permite conocer de manera detallada la abundancia, el uso del espacio y la distribución espacial y temporal de las especies de interés en la zona de estudio.

Para la realización de los censos en invierno se han utilizado todas las horas de luz de la jornada, siendo en muchos casos el factor limitante las inclemencias meteorológicas. Sin embargo, en los meses de verano, cuando muchas especies disminuyen notablemente su actividad en las horas centrales del día debido al aumento de las temperaturas, se aprovecharán en la medida de lo posible los momentos de mayor actividad de las aves, es decir, las primeras horas de la mañana y las últimas horas del atardecer. Se trata, por tanto, de un método dirigido al censo de especies diurnas, aunque ocasionalmente también sirve como método complementario para el específico censo de aves nocturnas (ver apartado 3.2). Durante todo el periodo de estudio se evitaron en la medida de lo posible las condiciones meteorológicas desfavorables (vientos fuertes, precipitaciones o niebla densa).

Para la observación e identificación de las especies se emplearon unos prismáticos de óptica 10x42 y un telescopio terrestre de óptica 25-50x80. Además, para el registro de las observaciones se empleó la aplicación Mapit Spatial (Mapit GIS, 2020).

3.1.2 Periodicidad

A grandes rasgos, en la Tabla 3 se muestra un calendario resumido de la fenología de las principales aves de interés en la zona de estudio. Con el fin de garantizar la mejor cobertura posible del área de estudio durante todo el periodo de muestreo y de acuerdo a la fenología de la avifauna, se estableció un esfuerzo de muestreo de una visita completa (5-6 jornadas de campo/visita) del área de estudio al mes, duplicando el esfuerzo durante los meses de marzo a junio, por corresponderse estos meses con los momentos clave de la reproducción de las principales especies de interés. Así pues, se ha planificado la realización de 16 visitas completas (69 jornadas de campo) del área de estudio a lo largo del ciclo anual.

<table>
<thead>
<tr>
<th>Fenología</th>
<th>dic-20</th>
<th>ene-21</th>
<th>feb-21</th>
<th>mar-21</th>
<th>abr-21</th>
<th>may-21</th>
<th>jun-21</th>
<th>jul-21</th>
<th>ago-21</th>
<th>sep-21</th>
<th>oct-21</th>
<th>nov-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invernada</td>
<td></td>
</tr>
<tr>
<td>Migración prenupcial</td>
<td></td>
</tr>
<tr>
<td>Reproducción</td>
<td></td>
</tr>
<tr>
<td>Migración postnupcial</td>
<td></td>
</tr>
<tr>
<td>Nº visitas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 3. Calendario y distribución del esfuerzo de muestreo en relación a la fenología de las aves.
3.2 **Censo de aves nocturnas**

3.2.1 **Método**

El método de censo de aves nocturnas se ha basado en la metodología del programa NOCTUA de SEO/BirdLife consistente en la realización de estaciones de censo de una duración de 10 minutos cada una y alejadas entre sí una distancia mínima de 1,5 km.

En cada estación se contabilizarán todas las aves detectadas (vistas u oídas). El horario de censo comienza aproximadamente 15 minutos después del ocaso y termina antes de dos horas después del ocaso. Para cada ave o grupo de aves detectado se anotará:

- Hora.
- Especie.
- Nº de individuos.
- Edad.
- Sexo.
- Observaciones.

Se evitarán las condiciones meteorológicas desfavorables (vientos fuertes, precipitaciones o nieblas).

El listado de especies nocturnas se completará con las observaciones puntuales de estas especies realizadas durante el censo de aves esteparias y aves rapaces, pues algunas de estas especies, por ejemplo el mochuelo común (*Athene noctua*), presentan cierta actividad diurna.

3.2.2 **Periodicidad**

Siguiendo las indicaciones de la metodología del programa Noctua de SEO/BirdLife, se planificarán tres visitas distribuidas de la siguiente manera a lo largo del ciclo anual:

- Visita 1: 1 de diciembre-15 de febrero.
- Visita 2: 1 de marzo-15 de mayo.
- Visita 3: 16 de abril-30 de junio.
3.3 **Riqueza de especies**

Con el objetivo de obtener información sobre la riqueza de aves en la zona de estudio se han anotado todas las especies de aves vistas u oídas durante la realización de los censos de aves esteparias y aves rapaces diurnas y los censos de aves nocturnas. Para la observación e identificación de las especies se emplearon unos prismáticos de óptica 10x42 y un telescopio terrestre de óptica 25-50x80. No obstante, muchas de las especies inventariadas, y en particular las aves paseriformes, fueron identificadas por sus cantos.

3.4 **Revisión bibliográfica**

El estudio de avifauna se ha completado con una consulta de las bases de datos y el servicio WMS del Inventario Español de Especies Terrestres (IEET, 2015) de las cuadrículas UTM 10x10 30TVK3090, 30TVK4090, 30TVL3000, 30TVL4000, 30TVL5000, 30TVL5010 y 30TVL5020, así como los Atlas y Libros Rojos, los censos nacionales de aves realizados en el marco de los programas de seguimiento de SEO/BirdLife y otros documentos de carácter científico y técnico.

3.5 **Definición de impactos**

La producción de energía eléctrica libre emisiones de dióxido de carbono por parte de las PSFV supone una oportunidad para reducir el impacto del cambio climático, que ha sido identificado como la principal amenaza para la vida silvestre, incluidas las aves (Urban, 2015). Sin embargo, como todas las formas de desarrollo, los proyectos solares tienen una incidencia sobre el medio ambiente. Implican alteraciones de los paisajes naturales allí donde se implantan, influyendo de manera directa o indirecta sobre sus especies (Hernández et al., 2014; Boroski 2019).

Aún hoy en día existe poca información acerca de la influencia de la energía solar sobre la fauna (Harrison et al., 2016; Boroski, 2019) y, en comparación con la energía eólica, su impacto sobre las aves apenas ha sido estudiado (Smith & Dwyer, 2016). Se han descrito afecciones relacionadas con la contaminación atmosférica, acústica y lumínica, los campos electromagnéticos o el uso del agua, pero los impactos más comunes sobre la fauna el desplazamiento por la pérdida de hábitat y la mortalidad (Lovich & Ennen, 2011; Hernández et al., 2014; Harrison et al., 2016; Smith & Dwyer, 2016; Gibson et al., 2017). No obstante, la expresión y magnitud de estos impactos están muy condicionados por las características intrínsecas de cada proyecto, así como de los ecosistemas y especies existentes en la zona de implantación (Harrison et al., 2016; Smith & Dwyer, 2016). Una adecuada ubicación de los proyectos fotovoltaicos es esencial para minimizar los impactos sobre la biodiversidad (McDonald et al., 2009). Por ejemplo, DeVault et al. (2014) sugieren que la instalación de
proyectos fotovoltaicos sobre cubiertas herbáceas u otras cubiertas terrestres naturales presentes en los aeropuertos podría disminuir el riesgo de choques de aves con aeronaves.

En el presente informe se analizarán la pérdida de hábitat y la mortalidad no natural de fauna como los impactos potenciales por ser los más comunes y mejor definidos y contrastados para este tipo de proyectos.

3.5.1 Pérdida de hábitat

La pérdida de hábitat es uno de los principales impactos derivados de la implantación sobre el territorio de infraestructuras como las PSFV (Murphy-Mariscal et al., 2018). Sus efectos sobre la avifauna se pueden resumir en dos consecuencias principales:

- Desplazamiento de individuos, debido a la ocupación del terreno por la propia infraestructura y al incremento de las molestias generadas por el tránsito de personas, vehículos y, en general, la contaminación lumínica y sonora derivada del desarrollo de la propia actividad (Benítez-López et al., 2010). Las respuestas de la fauna silvestre pueden variar desde el desplazamiento temporal de individuos lejos de las perturbaciones durante las actividades de construcción hasta el desplazamiento permanente de individuos debido a la pérdida de hábitat (Murphy-Mariscal et al., 2018). Así, diferentes autores documentan que la densidad y diversidad de especies de aves resulta inferior en el interior de las plantas solares que en las áreas circundantes (DeVault et al., 2014; Visser, 2016).

- Fragmentación del hábitat, debido a la disminución del tamaño medio de los fragmentos de hábitat resultantes y al aumento de su número, además de un aumento de la distancia entre estos. Conlleva también un aumento del efecto borde que origina un deterioro de la calidad del hábitat en regresión (Santos & Tellería, 2006). La fragmentación del hábitat ocasionada por la infraestructura de energía solar, incluidas las carreteras, los vallados y las líneas eléctricas, puede reducir el movimiento de animales y su capacidad de dispersión en el entorno de las instalaciones solares (Murphy-Mariscal et al., 2018).

3.5.2 Mortalidad no natural de fauna

La mortalidad de fauna generada por las PSFVs y sus infraestructuras asociadas afecta fundamentalmente a las aves y se puede dividir en dos causas principales: la colisión y la electrocución. Las infraestructuras concretas responsables de la colisión son:

- Los vallados perimetrales, en particular para algunas especies de aves, especialmente de hábitos esteparios, como la avutarda, el sisón u otras especies de vuelo raso y
lento, que pueden sufrir mortalidad por colisión con vallados, por lo cual estos deberán equiparse con señales que aumenten su visibilidad (MAGRAMA, 2015).

- Los propios paneles solares pueden ser confundidos con masas de agua por las aves (Kagan et al., 2014), y en algunas regiones del mundo se ha demostrado su incidencia negativa sobre las aves acuáticas al verse atraídas por los paneles (Grippo et al. 2015; Kosciuch et al, 2020). Los insectos también pueden sentirse atraídos por las instalaciones fotovoltaicas, lo que puede aumentar la probabilidad de colisión de aves con la infraestructura fotovoltaica (Fthenakis et al., 2011; Jenkins et al., 2015).

- Las líneas aéreas de evacuación de la electricidad, que suponen un importante riesgo de colisión para las aves (Bernardo et al., 2018; Walston et al., 2016). Las aves con baja maniobrabilidad como avutardas, grullas, cigüeñas, o aves acuáticas se encuentran entre las especies más propensas a chocar con las líneas eléctricas (Bevanger, 1998; Janss, 2000). Las especies con campos visuales estrechos, como las aves rapaces, también tienen una alta probabilidad de chocar con las líneas eléctricas (Martin y Shaw, 2010). D’Amico et al. (2019) señalan tres principales grupos de aves prioritarias en la Península Ibérica en relación a su exposición al riesgo de colisión, sus características físicas y comportamiento y su estado de conservación: (1) aves esteparias como la avutarda; (2) grandes aves acuáticas como la espátula común (Platalea leucorodia); y (3) grandes rapaces como el buitre negro. Las medidas de mitigación pueden reducir el riesgo de colisión de forma significativa, pero en la mayoría de los casos no pueden eliminarlo completamente (Barrientos et al., 2011, 2012; Bernardino et al., 2018) mientras que, sin lugar a dudas, la medida más efectiva es un adecuado diseño del trazado de la línea eléctrica, que evite posibles puntos críticos de colisión, como colonias de nidificación, zonas de alimentación y corredores utilizados por las aves (Bagli et al., 2011; Bernardino et al., 2018; Morkill y Anderson, 1991). Finalmente, el soterramiento de tramos de línea eléctrica elimina el riesgo residual (Jenkins et al., 2010; Bernardino et al., 2018), aunque se trata de una medida muy costosa (Bernardino et al., 2018; Bevanger, 1994).

Respecto al riesgo de electrocución, este depende del comportamiento del ave (utilización frecuente de apoyos, nidificación, etc.) y de su tamaño, siendo las de mayor envergadura las más susceptibles (Ferrer, 2012). Varios estudios han identificado la electrocución en líneas eléctricas como un problema de conservación para varias especies de aves rapaces y en peligro de extinción en todo el mundo, incluidos el águila imperial ibérica (Aquila adalberti; López-López et al, 2011), el águila perdicera (Aquila fasciata; Rollan et al., 2010) y el búho real (Bubo bubo; Martínez et al., 2006). La electrocución se encuentra también entre las principales causas de mortalidad no natural de otras especies de gran envergadura como la cigüeña blanca (Ciconia ciconia; Kaluga et al., 2011) y la cigüeña negra (Ciconia nigra; Cano Alonso, 2016). La reducción del riesgo de electrocución pasa por un diseño inicial adecuado de los postes y aisladores, así como por el aislamiento o corrección de los apoyos que no hayan sido diseñados para evitar las electrocuciones (MITECO, 2018).
4 RESULTADOS

A continuación se presentan los resultados obtenidos tras la realización de las cuatro primeras repeticiones que, como se indica en la Tabla 4, han abarcado gran parte de la invernada, el comienzo de la migración prenupcial y el comienzo de la reproducción, en particular, de las grandes rapaces (buitre leonado, águila real, águila imperial y milano negro) y la avutarda.

Tabla 4. Calendario de las visitas realizadas para la elaboración del presente informe.

<table>
<thead>
<tr>
<th>Fenología</th>
<th>dic-20 (días)</th>
<th>ene-21 (días)</th>
<th>feb-21 (días)</th>
<th>mar-21 (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invernada</td>
<td>21, 22 y 28</td>
<td>27, 29, 31</td>
<td>17, 18 y 19</td>
<td></td>
</tr>
<tr>
<td>Migración prenupcial</td>
<td></td>
<td></td>
<td>2, 4, 5 y 9</td>
<td></td>
</tr>
<tr>
<td>Reproducción</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº visitas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Debido a las inclemencias meteorológicas, hasta la fecha de redacción del presente informe no se ha podido realizar ninguna de las jornadas de censo de aves nocturnas.

Cabe destacar que los resultados presentados a continuación se refieren tan solo a la cuarta parte de las 16 visitas planificadas para el estudio anual, faltando, por tanto, la mayor parte de la información correspondiente a la migración prenupcial y reproducción, y el total de la información relativa a la migración postnupcial. Por ello, deben ser tomados con precaución y, aunque aportan información de gran interés, no permiten todavía extraer conclusiones sobre la potencial afección de la implantación de las PSFVs y su LE sobre la avifauna de la zona de estudio.

4.1 Riqueza de especies

En la tabla del ANEXO I: DETALLE DEL INVENTARIO DE AVIFAUNA se indica el detalle de las especies de aves detectadas en el muestreo realizado, además de las que aparecen en el Inventario Español de Especies Terrestres (IEET, 2015) en las cuadrículas UTM10x10 30TVK3090, 30TVK4090, 30TVL3000, 30TVL4000, 30TVL5000, 30TVL5010 y 30TVL5020, así como la información relativa a su catalogación a nivel regional (CRCM), nacional (CEEA) y europeo (Directiva Aves).

En el trabajo de campo realizado se han inventariado 64 especies de aves diferentes, frente a las 156 que aparecen en el IEET para las siete cuadrículas UTM10x10 en las que se ubica el área de estudio. Entre las 64 especies detectadas, cinco de ellas no aparecen en el IEET. A este respecto cabe destacar que el área de estudio tiene una superficie casi siete veces menor que la superficie incluida en las siete cuadrículas UTM10x10 (10.828 ha frente a 70.000 ha), y
además faltan por muestrear tres cuartas partes del ciclo anual, por lo que cabe esperar que al final del estudio anual la cifra de especies observadas se eleve considerablemente.

Entre las 64 especies inventariadas encontramos que, según el Catálogo Español de Especies Amenazadas, dos especies se encuentran catalogadas como “En Peligro de Extinción”, una como “Vulnerable” y 42 se encuentran incluidas en el LESRPE. Según el Catálogo Regional de la Comunidad de Madrid encontramos dos especies catalogadas como “En Peligro de Extinción”, tres como “Sensible a la Alteración del Hábitat”, tres como “Vulnerable” y tres como “De Interés Especial”. Finalmente, cabe destacar la presencia de 14 especies incluidas en el Anexo I de la Directiva Aves.

4.2 **Resumen del muestreo de aves rapaces, esteparias y otras especies de interés**

En la Tabla 5 se presenta el resumen de las observaciones acumuladas de especies de interés durante el periodo estudiado. Para cada especie se indica el nº de individuos observados (restando los posibles contactos duplicados), su porcentaje respecto al total de individuos, nº de observaciones y su catalogación a nivel regional, nacional y europeo.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Nº indivs.</th>
<th>Porcentaje (%)</th>
<th>Nº de observ.</th>
<th>CRCM</th>
<th>CEEA</th>
<th>Directiva Aves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accipiter nisus</td>
<td>4</td>
<td>0,16</td>
<td>4</td>
<td></td>
<td></td>
<td>LESRPE</td>
</tr>
<tr>
<td>Aegypius monachus</td>
<td>61</td>
<td>2,46</td>
<td>26</td>
<td>PE</td>
<td>VU</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Aquila adalberti</td>
<td>7</td>
<td>0,28</td>
<td>7</td>
<td>PE</td>
<td>PE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Aquila chrysaetos</td>
<td>2</td>
<td>0,08</td>
<td>1</td>
<td>SAH</td>
<td>LESRPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Athene noctua</td>
<td>2</td>
<td>0,08</td>
<td>2</td>
<td></td>
<td></td>
<td>LESRPE</td>
</tr>
<tr>
<td>Buteo buteo</td>
<td>67</td>
<td>2,70</td>
<td>60</td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Ciconia ciconia</td>
<td>14</td>
<td>0,56</td>
<td>7</td>
<td>VU</td>
<td></td>
<td>LESRPE</td>
</tr>
<tr>
<td>Circus aeruginosus</td>
<td>7</td>
<td>0,24</td>
<td>7</td>
<td>SAH</td>
<td></td>
<td>LESRPE</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>6</td>
<td>0,24</td>
<td>6</td>
<td>IE</td>
<td>LESRPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Falco columbarius</td>
<td>1</td>
<td>0,04</td>
<td>1</td>
<td></td>
<td></td>
<td>LESRPE</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>1</td>
<td>0,04</td>
<td>1</td>
<td>VU</td>
<td></td>
<td>LESRPE</td>
</tr>
<tr>
<td>Falco tinnunculus</td>
<td>34</td>
<td>1,37</td>
<td>32</td>
<td></td>
<td></td>
<td>Anexo I</td>
</tr>
<tr>
<td>Grus grus</td>
<td>1718</td>
<td>69,16</td>
<td>3</td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
</tbody>
</table>
En la Figura 3 se presenta la distribución del total de observaciones realizadas (incluyendo los posibles duplicados) en el área de estudio y su entorno.

![Figura 3. Distribución de las observaciones acumuladas de aves rapaces, aves esteparias y otras especies de interés en relación al área de estudio.](image)

Entre las especies que presentan una mayor abundancia destaca la grulla común (*Grus grus*), ave que pasa el invierno y hace el viaje migratorio siempre agrupada en grandes bandos (el total de individuos observados se concentra en tres bandos en migración prenupcial), seguida del buitre leonado (*Gyps fulvus*) y el milano real, ambas especies abundantes en la zona de estudio durante todo el periodo de muestreo y que, especialmente el buitre leonado pero también el milano real, presentan cierta tendencia al gregarismo. Aunque en menor medida, destacan también en la zona de estudio el buitre negro (*Aegypius monachus*) y el busardo ratonero (*Buteo buteo*).
Otras especies destacadas no por su abundancia pero sí por su interés de conservación son el águila imperial (*Aquila adalberti*), el águila real (*Aquila chrysaetos*), el aguilucho pálido (*Circus cyaneus*), el aguilucho lagunero (*Circus aeruginosus*), el halcón peregrino (*Falco peregrinus*), la chova piquirroja (*Pyrrhocorax pyrrhocorax*), la avutarda (*Otis tarda*) y la cigüeña blanca (*Ciconia ciconia*).

4.3 **Especies de avifauna de interés**

En este apartado se analiza de manera específica las especies de mayor interés de conservación observadas en la zona de estudio en relación a: (1) su catalogación a nivel regional, nacional y europeo; (2) sus tamaños poblacionales, tanto en la zona de estudio como en la Comunidad de Madrid; y (3) sus características ecológicas y comportamentales. No obstante, en este informe se ha descartado analizar la situación de especies de las que aún se dispone de muy poca o ninguna información, como es el caso del sisón, el aguilucho cenizo, el milán negro o el halcón peregrino, postergando el análisis a la espera de recopilar más datos a lo largo del estudio anual de avifauna.

Buitre negro (*Aegypius monachus*)

El buitre negro se encuentra catalogado a nivel regional como “En peligro de Extinción”, a nivel nacional como “Vulnerable” y se encuentra incluido en el Anexo I de la Directiva Aves.

Durante el periodo estudiado se han observado 61 individuos en 26 observaciones (Figura 4), distribuyéndose de manera homogénea por la práctica totalidad del área de estudio. Se trata aparentemente de individuos en busca de alimento, dado que en el área de estudio no existe ninguna colonia de cría.
Los resultados del censo nacional llevado a cabo en el año 2017 (Del Moral, 2017), señalan una cifra de 148 parejas reproductoras en la Comunidad de Madrid, concentrándose la mayoría de ellas en el Valle Alto del Lozoya (123 parejas, el 83% del total). Además, otras tres colonias o zonas de nidificación de la especie, las del Bajo Lozoya, Cuenca Alta del Manzanares y Sierra de La Cabrera, se encuentran próximas al área de estudio. Sus poblaciones están experimentando una evolución positiva la Comunidad de Madrid y a nivel nacional (Del Moral, 2017).

Buitre leonado (Gyps fulvus)

El buitre leonado se encuentra catalogado como “De Interés Especial” en el Catálogo Regional de Especies Amenazadas de la Comunidad de Madrid. Además, está incluido en el Listado de Especies Silvestres en Régimen de Protección Especial (LESRPE) y en el Anexo I de la Directiva Aves.

Durante el periodo estudiado se han observado 61 individuos en 46 observaciones (Figura 4), distribuyéndose de manera homogénea por la práctica totalidad del área de estudio. Se trata aparentemente de individuos en busca de alimento. No obstante, se ha detectado un colonia con dos nidos activos de la especie en el extremo norte del área de estudio.

La población reproductora de buitre leonado en el conjunto regional se compone de 557 parejas (Del Moral y Molina, 2018). En función de los datos del censo nacional de 2018, la
población nidificante de buitre leonado en la Comunidad de Madrid se reparte entre 41 colonias y 3 parejas aisladas, todas ellas, distribuidas a lo largo de la Sierra de Guadarrama, ocupando una amplia banda que abarca desde su límite suroeste hasta su límite norte. Sus poblaciones están experimentando una evolución positiva tanto a nivel nacional como de la Comunidad de Madrid (Del Moral y Molina, 2018).

Águila imperial ibérica (Aquila adalberti)

El águila imperial ibérica se encuentra catalogada tanto a nivel regional como nacional como “En peligro de Extinción” y se encuentra incluida en el Anexo I de la Directiva Aves.

En total se han realizado ocho observaciones (Figura 3), en todos los casos individuos aislados, tratándose en cinco ocasiones de individuos jóvenes, con plumajes de tipo pajizo o damero claro, probablemente en fase de dispersión. En otra ocasión se observó un individuo de edad indeterminada reclamando en vuelo. Finalmente, se han detectado dos nidos de la especie fuera del área de estudio pero en su proximidad, a 1085 y 1.280 m de la LE, ambos sobre torre de alta tensión y en ambos casos se observó un individuo arreglando el nido, por lo que pueden considerarse activos.

Figura 5. Distribución de las observaciones acumuladas de águila real, águila imperial y nidos de águila imperial.
En la Comunidad de Madrid la especie presenta una tendencia al alza. Según la información ofrecida por el Centro de Recuperación de Animales Silvestres (CRAS) de la Comunidad de Madrid, desde 2009 la especie ha duplicado su presencia en 2020 ascendió a un total de 73 parejas.

Águila real (Aquila chrysaetos)

El águila real se encuentra catalogada como “Sensible a la alteración de su hábitat” en la Comunidad de Madrid. Está incluida, además, en el LESRPE y en el Anexo I de la Directiva Aves.

Hasta la fecha tan solo se ha observado una pareja de la especie al norte del área de estudio (Figura 5), por lo que la información obtenida sobre la especie aún es muy escasa.

Respecto a la situación de la especie a nivel regional, los últimos datos publicados (Del Moral, 2009) determinan para la Comunidad de Madrid en 2008 una población de águila real de 17 parejas aunque solamente 10 de ellas fueron reproductoras. Su evolución en 2008 fue estable en el número de parejas pero negativa respecto a su productividad. Por otro lado, según la información ofrecida por el Centro de Recuperación de Animales Silvestres (CRAS) de la Comunidad de Madrid, en 2020 se contabilizaron 28 parejas repartidas por los 34 territorios históricos donde habita esta especie en la región.

Milano real (Milvus milvus)

El milano real se encuentra catalogado como “Vulnerable” en la Comunidad de Madrid y “En Peligro de Extinción” a nivel nacional, estando incluido a su vez en el Anexo I de la Directiva Aves.
La especie ha resultado muy abundante durante todo el periodo estudiado, habiéndose observado sobre todo individuos en busca de alimento, pero también se han detectado un mínimo de tres nidos activos de la especie, uno de ellos en el río Guadalix a la altura del polígono industrial de San Agustín de Guadalix, donde se observó a un individuo echado en el nido, y otros dos en los que se observó a un individuo aportando material o arreglando el nido.

En enero de 2019 en la Comunidad de Madrid se registró el récord de ejemplares invernantes: un mínimo de 2.543 milanos repartidos en 11 dormideros, uno de ellos en el Parque del Sureste con 752 ejemplares (Molina et al., 2020).

En el último censo nacional realizado en 2014 (Molina, 2015) la población reproductora se estimó en un mínimo de 63 parejas seguras y 73 territorios. Esta cifra sitúa a la Comunidad de Madrid entre las diez provincias con un mayor número de parejas nidificantes. Estos datos, comparados con los del censo del año 2004 (Cardiel, 2006) en el que se contabilizaron 36 parejas en la Comunidad de Madrid, indican una tendencia positiva de la especie en la región.

Aguilucho lagunero (Circus aeruginosus)

El aguilucho lagunero se encuentra catalogado como “Sensible a la Alteración de su Hábitat” en la Comunidad de Madrid y se encuentra incluido en el LESRPE y en el Anexo I de la Directiva Aves.
Durante el periodo estudiado se han realizado siete observaciones de siete individuos solitarios, correspondiéndose con tres machos, dos hembras y dos indeterminados. La mayor parte de las observaciones se han concentrado en el norte del área de estudio (Figura 7), en concreto en la envolvente de las PSFVs.

Figura 7. Distribución de las observaciones acumuladas de aguilucho lagunero, aguilucho pálido y avutarda.

Según los datos del último censo nacional de la especie, la población reproductora en la Comunidad de Madrid se estimó una cifra de 61-69 parejas (Molina y Martínez, 2008). Su distribución se centra en los valles de los ríos Henares, Jarama, Tajo, Tajuña y Guadarrama, por orden de importancia. Al menos hasta el 2008, la población se encontraba en crecimiento en la región (Molina y Martínez, 2008).

Aguilucho pálido (Circus cyaneus)

El aguilucho pálido se encuentra catalogado como “De Interés Especial” en la Comunidad de Madrid. Está incluido, además, en el LESRPE y en el Anexo I de la Directiva Aves.

La especie se ha detectado en seis ocasiones, tratándose siempre de individuos solitarios que se identificaron como dos machos, tres hembras y un indeterminado. Todas las observaciones se han concentrado en el norte del área de estudio (Figura 7), en la envolvente de la PSFV.
Los resultados del último censo nacional de la especie (Arroyo et al., 2019) estiman una población reproductora de aguilucho pálido en la Comunidad de Madrid de 6 parejas (IC 6-11). Se trata de una población pequeña y situada en el límite sur de su área de distribución nacional. La comparación de los datos de este censo con el anterior realizado en 2006 indica un acusado declive de parejas reproductoras en la comunidad, del 52-74% (Arroyo et al., 2019).

Avutarda Común (Otis tarda)

La avutarda común se encuentra catalogada como “Sensible a la alteración de su hábitat” en la Comunidad de Madrid y está incluida en el LERSPPE y en el Anexo I de la Directiva Aves.

Durante el trabajo de campo realizado hasta la fecha únicamente se han efectuado dos observaciones de la especie, tratándose en ambos casos de individuos solitarios. Una de las observaciones consistió en un ejemplar de edad y sexo indeterminados que atravesó volando la envolvente de la LE en dirección O, mientras que el otro se trató de un macho posado en un campo de rastrojo en la envolvente de la PSFV (Figura 7).

Palacín et al. (2006) indican para el periodo 2002-2004 una estima de la población madrileña de avutarda de 1.300 ejemplares y una tendencia a la estabilización de la población a escala regional a partir de finales de los noventa.

Chova piquirroja (Pyrrhocorax pyrrhocorax)

La chova piquirroja se encuentra catalogada como de “Interés Especial” en la Comunidad de Madrid, mientras que a nivel nacional no aparece en el CEEA ni en el LERSPPE. Por otro lado, se encuentra incluido en el Anexo I de la Directiva Aves.

En el trabajo de campo realizado se han registrado dos observaciones de la especie, de cinco y 16 individuos, ambas muy próximas y en el extremo norte del área de estudio.

Según los resultados de los programas SACRE y SACIN de SEO/BirdLife (Escandell y Escudero, 2019), la población reproductora de la zona “Mediterránea Norte” de la especie presenta una tendencia estable para el periodo 1998 y 2019, mientras que la población invernante presenta una tendencia de declive moderado en el periodo 2008/9-2018/19.
5 CONCLUSIONES

A continuación se presentan las principales conclusiones del estudio de avifauna. Cabe recordar que, al tratarse de un informe en el que tan solo se ha analizado la información de una cuarta parte del ciclo anual, correspondiente fundamentalmente a la invernada de las aves, las conclusiones expuestas a continuación son todavía preliminares y deben tomarse con precaución, a la espera de terminar el estudio del ciclo anual de la avifauna y obtener unos resultados más concluyentes.

- En el trabajo de campo realizado se han inventariado 64 especies de aves. Entre ellas, según el Catálogo Español de Especies Amenazadas, dos especies se encuentran catalogadas como “En Peligro de Extinción”, una como “Vulnerable” y 42 se encuentran incluidas en el LERSPE. Según el Catálogo Regional de la Comunidad de Madrid encontramos dos especies catalogadas como “En Peligro de Extinción”, tres como “Sensible a la Alteración del Hábitat”, tres como “Vulnerable” y tres como “De Interés Especial”. Finalmente, 14 especies se encuentran incluidas en el Anexo I de la Directiva Aves.

- Entre las aves rapaces y grandes esteparias, con la mayor abundancia destaca la grulla común, aunque se trató de aves en migración, seguida del buitre leonado y el milàn real, ambas especies abundantes en la zona de estudio durante todo el periodo de muestreo. En menor medida, destaca también en la zona de estudio el buitre negro y el busardo ratonero. Otras especies destacadas por su interés de conservación son el águila imperial, el águila real, el aguilucho pálido, el aguilucho lagunero, el halcón peregrino, la chova piquirroja, la avutarda y la cigüeña blanca.

- El buitre negro y el buitre leonado han sido observados en numerosas ocasiones, tratándose fundamentalmente de individuos en busca de alimento en la zona de estudio. No obstante, se han localizado dos nidos activos de buitre leonado en el extremo norte del área de estudio.

- El águila imperial ibérica presenta una posible zona de dispersión dentro del área de estudio y dos zonas de nidificación con sendos nidos activos fuera del área de estudio pero muy próximos a esta, a 1085 y 1.280 m de la LE.

- El milàn real ha resultado muy abundante en el periodo estudiado por toda la zona de estudio. Fundamentalmente se han observado individuos en búsqueda de alimento, pero también se han localizado varios nidos potenciales de la especie dentro del área de estudio.

- En la zona norte del área de estudio, coincidiendo con la envolvente de la zona de implantación de la PSFV, se han observado varios ejemplares de especies de aves esteparias, concretamente de aguilucho pálido, aguilucho lagunero y una avutarda.
6 BIBLIOGRAFÍA

• Martin, G. R., & Shaw, J. M. (2010). Bird collisions with power lines: failing to see the way ahead?. Biological Conservation, 143(11), 2695-2702.

ESTUDIO ANUAL DE AVIFAUNA PARA LA PLANTA SOLAR FOTOVOLTAICA "COLIMBO" Y SUS INFRAESTRUCTURAS DE EVACUACIÓN (COMUNIDAD DE MADRID).

- Referencias en Internet:
 - Ministerio de Agricultura, Alimentación y Medio Ambiente: www.magrama.gob.es
 - Comunidad de Madrid: www.madrid.org
 - Sistema de información de las plantas de España: www.anthos.es
 - Sociedad Española de Ornitología: www.seo.org
 - Instituto Geográfico Nacional: www.ign.es
 - Infraestructura de Datos Espaciales de España: www.idee.es
 - Infraestructura de datos espaciales de la Comunidad de Madrid: http://www.comunidad.madrid/servicios/mapas/geoportal-comunidad-madrid
 - Geoportal: http://sig.magrama.es/geoportal/
7 EQUIPO DE TRABAJO

La redacción de este informe y los censos de avifauna necesarios para su elaboración han corrido a cargo de:

Jorge Meltzer Gómez-Escalonilla.
Máster en Biología de la Conservación.
Colegiado P2590-M.

En Marchamalo, a 08 de abril de 2021.
ANEXO I: DETALLE DEL INVENTARIO DE AVIFAUNA

<table>
<thead>
<tr>
<th>Especie</th>
<th>Nombre común</th>
<th>VK 39</th>
<th>VK 49</th>
<th>VL 30</th>
<th>VL 40</th>
<th>VL 50</th>
<th>VL 51</th>
<th>VL 52</th>
<th>Muestreo</th>
<th>CRC M</th>
<th>CEEA/L ESRRPE</th>
<th>Directiva Aves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accipiter gentilis</td>
<td>Azor común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LESRPE</td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
</tr>
<tr>
<td>Accipiter nisus</td>
<td>Gaviárn común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>-No definido-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrocephalus arundinaceus</td>
<td>Carricero tordal</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migr. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrocephalus scirpaceus</td>
<td>Carricero común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migr. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actitis hypoleucus</td>
<td>Andarrios chico</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migr. pres. reg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aegithalos caudatus</td>
<td>Mito</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeopygius monachus</td>
<td>Buitre negro</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>PE</td>
<td>VU</td>
<td>Anexo I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alauda arvensis</td>
<td>Alondra común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo Ilb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcedo atthis</td>
<td>Martín pescador común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alectoris rufa</td>
<td>Perdiz roja</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anas clypeata</td>
<td>Cuchará común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo Ia y Ilb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anas platyrhynchos</td>
<td>Ánade azulón</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo Ia y Ilb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anas strepera</td>
<td>Ánade friso</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo Ia y Ilb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthus campestris</td>
<td>Bitisba campestre</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthus pratensis</td>
<td>Bitisba pratense</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apus apus</td>
<td>Vencejo común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquila adalberti</td>
<td>Águila imperial ibérica</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquila chrysaetos</td>
<td>Águila real</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ardea cinerea</td>
<td>Garza real</td>
<td>Anexo I</td>
<td></td>
</tr>
<tr>
<td>Asia atus</td>
<td>Búho chico</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athene noctua</td>
<td>Mochuelo europeo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aythya ferina</td>
<td>Perrón europeo</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo Ia y Ilb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubu bubo</td>
<td>Búho real</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>VU</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burhinus oedicnemus</td>
<td>Alcaraván común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buteo bueo</td>
<td>Busardo ratonero</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calandrella brachyactyla</td>
<td>Terrera común</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprimulgus europaeus</td>
<td>Chotacabras gris</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprimulgus ruficollis</td>
<td>Chotacabras cuellirojo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carduelis cannabina</td>
<td>Pardillo común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carduelis carduelis</td>
<td>Jilguero</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carduelis chloris</td>
<td>Verderón común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carduelis spinus</td>
<td>Lujano</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cecropis dauria</td>
<td>Golondrina dáurica</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cettia brachyactyla</td>
<td>Agataedor común</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cettia cetti</td>
<td>Ruizñor bastardo</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charadrius dubius</td>
<td>Chorlitejo chico</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciconia ciconia</td>
<td>Cigüeñez blanca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciconia nigra</td>
<td>Cigüeñez negra</td>
<td>X</td>
<td>PE</td>
<td>VU</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinculus cincclus</td>
<td>Mirlo acuático</td>
<td>X</td>
<td>IE</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circus circaetus</td>
<td>Culebrera europea</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circus aeruginosus</td>
<td>Aguilucho lagunero occidental</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circus cyanus</td>
<td>Aguilucho pálido</td>
<td>X</td>
<td>X</td>
<td>IE</td>
<td>LERSEPE</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circus pygargus</td>
<td>Aguilucho cenizo</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisticola juncidis</td>
<td>Buitrón</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamator glandarius</td>
<td>Críalo europeo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Anexo I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ESPECIES DE AVES INVENTARIADAS EN EL IET Y EN EL MUESTREO REALIZADO Y SUS CATEGORÍAS EN EL CATÁLOGO REGIONAL DE LA COMUNIDAD DE MADRID (CRCM; PE: En peligro de extinción, SAH: Sensible a la Alteración del Hábitat, IE: De interés especial, VU: Vulnerable), en el CEEA/LESRPE (PE: En peligro de extinción, VU: Vulnerable, LERSEPE: incluido en el LERSEPE) y en la Directiva Aves.
<table>
<thead>
<tr>
<th>Especie</th>
<th>Nombre común</th>
<th>VK 39</th>
<th>VK 49</th>
<th>VL 30</th>
<th>VL 40</th>
<th>VL 50</th>
<th>VL 51</th>
<th>Muestreo</th>
<th>CRC M</th>
<th>CEEA/L ESMEPE</th>
<th>Directiva Aves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccothraustes</td>
<td>Picogordo</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Coccothraustes</td>
<td></td>
<td>Anexo Il</td>
</tr>
<tr>
<td>Columba livia/domestica</td>
<td>Paloma bravía</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Anexo IIb</td>
</tr>
<tr>
<td>Columba oenas</td>
<td>Paloma zurita</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anexo IIb</td>
</tr>
<tr>
<td>Columba palumbus</td>
<td>Paloma torcaz</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Coracias garrulus</td>
<td>Carraca europea</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>VU</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Corvus corax</td>
<td>Cuervo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Corvus corone</td>
<td>Corneja</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Corvus monedula</td>
<td>Grajilla</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Coturnix coturnix</td>
<td>Codorniz común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Cuculus canorus</td>
<td>Cucú común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Cyanopica cyano</td>
<td>Rabiliargo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Delichon urbicum</td>
<td>Avión común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Dendrocopos leucotos</td>
<td>Pico dorsiblanco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>PE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Dendrocopos major</td>
<td>Pico picapinos</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE</td>
</tr>
<tr>
<td>Eretrota garzetta</td>
<td>Garceta común</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td></td>
<td>LESPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Emberiza calandra</td>
<td>Trigüero</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Emberiza cia</td>
<td>Escribano montesino</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Emberiza cilius</td>
<td>Escribano soteño</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Emberiza hortulana</td>
<td>Escríbano hortelano</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>LESPE Anexo I</td>
</tr>
<tr>
<td>Erithacus rubecula</td>
<td>Petirrojo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Falco columbarius</td>
<td>Esmerejón</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>LESPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Falco naumanni</td>
<td>Cernicalo primilla</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Falco pelegrinoides</td>
<td>Halcón tagarote</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>Halcón peregrino</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>LESPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Falco subbuteo</td>
<td>Alcón europeo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Falco tinnunculus</td>
<td>Cernicalo vulgar</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Ficedula hypoleuca</td>
<td>Papamoscas cerrojillo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Fringilla coelebs</td>
<td>Pinzón vulgar</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Fulica atra</td>
<td>Focha común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo Ila y llb</td>
</tr>
<tr>
<td>Galerida cristata</td>
<td>Cogujada común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Galerida thekla</td>
<td>Cogujada montesina</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo I</td>
</tr>
<tr>
<td>Gallinula chloropus</td>
<td>Gallineta común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Garrulus glandarius</td>
<td>Arrendajo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo IIb</td>
</tr>
<tr>
<td>Grus grus grus</td>
<td>Grulla común</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE</td>
</tr>
<tr>
<td>Gyps fulvus</td>
<td>Buitre leonado</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>IE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Hieraetus fasciatus</td>
<td>Aguila-azor perdicera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PE</td>
<td>VU Anexo I</td>
</tr>
<tr>
<td>Hieraetus pennatus</td>
<td>Aguila calzada</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>IE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Himantopus himantopus</td>
<td>Cigüeñuela común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo I</td>
</tr>
<tr>
<td>Hippolais polyglotta</td>
<td>Zarcero común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Hirundo rustica</td>
<td>Golondrina común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Ixobrychus minutus</td>
<td>Avetorillo común</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAH</td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Jynx torquilla</td>
<td>Torceuelo euroasiático</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>IE</td>
<td></td>
<td>LESPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Lanius excubitor</td>
<td>Alcaudón real</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Lanius senator</td>
<td>Alcaudón común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Larus ridibundus</td>
<td>Gaviota reidora</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo Iib</td>
</tr>
<tr>
<td>Loxia curvirostra</td>
<td>Piquituerto común</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo I</td>
</tr>
<tr>
<td>Lullula arborea</td>
<td>Alondra totovia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Luscinia megarhynchos</td>
<td>Ruseñor común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Melanocorypha calandra</td>
<td>Calandria común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>LESPE Anexo I</td>
</tr>
<tr>
<td>Merops apiaster</td>
<td>Abejaruco europeo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Milvus migrans</td>
<td>Milano negro</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Anexo I</td>
</tr>
<tr>
<td>Milvus milvus</td>
<td>Milano real</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>VU PE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Monticola saxatilis</td>
<td>Roquero rojo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Monticola solitarius</td>
<td>Roquero solitario</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LESPE Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Especie</td>
<td>Nombre común</td>
<td>VK 39</td>
<td>VK 49</td>
<td>VL 30</td>
<td>VL 40</td>
<td>VL 50</td>
<td>VL 51</td>
<td>Muestreo</td>
<td>CRC M</td>
<td>CEEA/L ESRPE</td>
<td>Directiva Aves</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Motacilla alba</td>
<td>Lavandera blanca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Motacilla cinerea</td>
<td>Lavandera cascadera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Motacilla flava</td>
<td>Lavandera boyera</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Muscicapa striata</td>
<td>Papamoscas gris</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Myiopsitta monachus</td>
<td>Cotorra argentina</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>-No incluido-</td>
<td></td>
</tr>
<tr>
<td>Nycticorax nycticorax</td>
<td>Martinet común</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAH</td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Oenanthe hispanica</td>
<td>Collalba rubia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Oenanthe leucura</td>
<td>Collalba negra</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Oenanthe oenanthe</td>
<td>Collalba gris</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Oriolus oriolus</td>
<td>Oropéndola</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Otis tarda</td>
<td>Avutarda común</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAH</td>
<td>LERSPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Otus scops</td>
<td>Autillo europeo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Parus ater</td>
<td>Carbonero garrafinos</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Parus caeruleus</td>
<td>Herrerillo común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Parus cristatus</td>
<td>Herrerillo capuchino</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Parus major</td>
<td>Carbonero común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Passer domesticus</td>
<td>Gorrión común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Passer hispaniolensis</td>
<td>Gorrión moruno</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Passer montanus</td>
<td>Gorrión molinero</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Pernis apivorus</td>
<td>Abejero europeo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>LERSPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Petronia petronia</td>
<td>Gorrión chillón</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Phalacrocorax carbo</td>
<td>Cormorán grande</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Phoenicurus ochrurus</td>
<td>Colirrojo tízón</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Phoenicurus phoenicus</td>
<td>Colirrojo real</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>VU</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Phylloscopus bonelli</td>
<td>Mosquitero papialbo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Phylloscopus collybita/ibericus</td>
<td>Mosquitero común/ibérico</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Pica pica</td>
<td>Urraca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Anexo I Iib</td>
</tr>
<tr>
<td>Picus viridis</td>
<td>Pito real</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Podiceps cristatus</td>
<td>Somormujo lavanco</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Podiceps nigricollis</td>
<td>Zampullín cuellinegro</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Prunella modularis</td>
<td>Acentor común</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Pterocles orientalis</td>
<td>Ganga ortega</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAH</td>
<td>VU</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Pytonoprogne rupestris</td>
<td>Avión roquero</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Pyrrhocorax pyrrhocorax</td>
<td>Chova piquirroja</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>IE</td>
<td>LERSPE</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Rallus aquaticus</td>
<td>Rascón europeo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>LERSPE</td>
<td>Anexo I Iib</td>
</tr>
<tr>
<td>Regulus ignicapilla</td>
<td>Reyezuelo listado</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Remiz pendulinaeus</td>
<td>Pájaro moscón</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Riparia riparia</td>
<td>Avión zapador</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Saxicola rubicola</td>
<td>Tarabila común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Serinus serinus</td>
<td>Verdecillo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sitta europaea</td>
<td>Trepador azul</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Streptopelia daecaucto</td>
<td>Tórtola turca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Anexo I Iib</td>
</tr>
<tr>
<td>Streptopelia turtur</td>
<td>Tórtola común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Anexo I Iib</td>
</tr>
<tr>
<td>Strix aluco</td>
<td>Cárcabo común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sturnus unicolor</td>
<td>Estornino negro</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia atricapilla</td>
<td>Currucha capirotada</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia bori</td>
<td>Currucha mosquitera</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aves Migrat. pres. reg.</td>
<td></td>
</tr>
<tr>
<td>Sylvia cantillans</td>
<td>Currucha carrasqueña</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia communis</td>
<td>Currucha zarcera</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia conspicillata</td>
<td>Currucha tomillerca</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia hortensis</td>
<td>Currucha mirlonera</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia melanocephala</td>
<td>Currucha cabecinegra</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>IE</td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Sylvia undata</td>
<td>Currucha rabilarga</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anexo I</td>
<td></td>
</tr>
<tr>
<td>Tachybaptus ruficollis</td>
<td>Zampullín común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LERSPE</td>
<td>Aves Migrat. pres. reg.</td>
</tr>
<tr>
<td>Tetrax tetrax</td>
<td>Sisón común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>SAH</td>
<td>VU</td>
<td>Anexo I</td>
</tr>
<tr>
<td>Especie</td>
<td>Nombre común</td>
<td>VK 39</td>
<td>VK 49</td>
<td>VL 30</td>
<td>VL 40</td>
<td>VL 50</td>
<td>VL 51</td>
<td>VL 52</td>
<td>Muestra</td>
<td>CRC M</td>
<td>CEEA/L ESRPE</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>Troglodytes troglodytes</td>
<td>Chocín</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turdus merula</td>
<td>Mirlo común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turdus philomelos</td>
<td>Zorzal común</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turdus viscivorus</td>
<td>Zorzal charlo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyto alba</td>
<td>Lechuza común</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upupa epops</td>
<td>Abubilla</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanellus vanellus</td>
<td>Avefria europea</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IE</td>
<td></td>
</tr>
</tbody>
</table>
ESTUDIO DE IMPACTO AMBIENTAL DE LA PFV COLIMBO Y SUS INFRAESTRUCTURAS DE EVACUACIÓN.

ANEXO 4. VULNERABILIDAD DEL PROYECTO FRENTE A ACCIDENTES GRAVES Y CATÁSTROFES
Contenido

1 INTRODUCCIÓN .. 1
 1.1 MARCO LEGAL .. 1
 1.2 OBJETIVOS .. 2

2 METODOLOGÍA ... 3

3 IDENTIFICACIÓN Y CARACTERIZACIÓN DE LOS POSIBLES RIESGOS 8
 3.1 PELIGROSIDAD SÍSMICA .. 8
 3.2 RIESGO POR FENÓMENOS METEOROLÓGICOS ADVERSOS 10
 3.3 RIESGOS POR INUNDACIONES Y AVENIDAS ... 12
 3.4 RIESGOS GEOLÓGICOS LITOLÓGICOS ... 17
 3.5 RIESGO POR INCENDIOS FORESTALES .. 18
 3.6 RIESGOS TECNOLÓGICOS ... 20
 3.6.1 Infraestructuras viarias ... 20
 3.6.2 Infraestructuras ferroviarias ... 21
 3.6.3 Infraestructuras eléctricas .. 22
 3.6.4 Infraestructuras de transporte de combustible .. 24
 3.6.5 Servidumbres aeronáuticas .. 25

4 CLASIFICACIÓN DE LOS RIESGOS .. 26
 4.1 CLASIFICACIÓN DEL RIESGO SEGÚN LA PROBABILIDAD DE OCURRENCIA Y
 AFECCIÓN AL PROYECTO .. 27
 4.2 CLASIFICACIÓN DE LA MAGNITUD DE IMPACTO DEL PROYECTO AFECTADO
 POR UN ACCIDENTE O CATÁSTROFE NATURAL ... 29

5 EVALUACIÓN DE LOS RIESGOS ... 30
 5.1 RESUMEN DE RESULTADOS ... 30
 5.2 MATRIZ DE RIESGOS ... 32
 5.3 DISCUSIÓN DE LOS RESULTADOS .. 32
 5.3.1 Peligrosidad sísmica .. 32
 5.3.2 Riesgo por fenómenos meteorológicos adversos 33
 5.3.3 Riesgo por inundaciones y avenidas ... 33
 5.3.4 Riesgos geológicos litológicos ... 34
 5.3.5 Riesgos por incendios forestales ... 34
 5.3.6 Riesgos tecnológicos .. 34

6 CONCLUSIÓN ... 35

APÉNDICE
FUENTES DOCUMENTALES
1 INTRODUCCIÓN

1.1 MARCO LEGAL

La Ley 9/2018, de 5 de diciembre\(^1\) define en el apartado Tres de su Artículo único, la vulnerabilidad del proyecto de la siguiente manera:

“Vulnerabilidad del proyecto”: características físicas de un proyecto que pueden incidir en los posibles efectos adversos significativos que sobre el medio ambiente se puedan producir como consecuencia de un accidente grave o una catástrofe.

Esta compleja definición se aclara si se contextualiza en el ámbito de los riesgos, como la probabilidad que tienen los componentes de un proyecto de verse afectados por peligros a amenazas procedentes de accidentes graves de origen humano o por catástrofes naturales.

En dicho apartado Tres de la Ley 9/2018 se definen también de la siguiente manera los conceptos “Accidente grave” y “Catástrofe”:

“Accidente grave”: suceso, como una emisión, un incendio o una explosión de gran magnitud, que resulte de un proceso no controlado durante la ejecución, explotación, desmantelamiento o demolición de un proyecto, que suponga un peligro grave, ya sea inmediato o diferido, para las personas o el medio ambiente.

“Catástrofe”: suceso de origen natural, como inundaciones, subida del nivel del mar o terremotos, ajeno al proyecto que produce gran destrucción o daño sobre las personas o el medio ambiente.

Además, la Directiva 2014/52/UE, dice textualmente:

“Al objeto de garantizar un alto nivel de protección del medio ambiente, deben tomarse medidas preventivas respecto de determinados proyectos que, por su vulnerabilidad ante accidentes graves o catástrofes naturales, como inundaciones, subida del nivel del mar o terremotos, pueden tener efectos adversos significativos para el medio ambiente. Respecto de esos proyectos, es importante tomar en consideración su vulnerabilidad (exposición y resiliencia) ante accidentes graves o catástrofes, el riesgo de que se produzcan dichos accidentes o catástrofes y las implicaciones en la probabilidad de efectos adversos significativos para el medio ambiente”.

\(^1\) Ley 9/2018, de 5 de diciembre, por la que se modifica la Ley 21/2013, de 9 de diciembre, de evaluación ambiental, la Ley 21/2015, de 20 de julio, por la que se modifica la Ley 43/2003, de 21 de noviembre, de Montes y la Ley 1/2005, de 9 de marzo, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero.
El apartado Catorce del Artículo único de la Ley 9/2018 recoge literalmente lo siguiente:

“d) Se incluirá un apartado específico que incluya la identificación, descripción, análisis y si procede, cuantificación de los efectos esperados sobre los factores enumerados en la letra c), derivados de la vulnerabilidad del proyecto ante riesgos de accidentes o catástrofes, sobre el riesgo de que se produzcan dichos accidentes o catástrofes, y sobre los probables efectos adversos significativos sobre el medio ambiente, en caso de ocurrencia de los mismos, o bien informe justificativo sobre la no aplicación de este apartado al proyecto”.

Asimismo, el apartado Cuarenta y uno, que modifica el Anexo VI de la Ley 21/2013, indica que el estudio de impacto ambiental debe incluir la siguiente información:

“7. Vulnerabilidad del proyecto.

Una descripción de los efectos adversos significativos del proyecto en el medio ambiente a consecuencia de la vulnerabilidad del proyecto ante el riesgo de accidentes graves y/o catástrofes relevantes, en relación con el proyecto en cuestión. Para este objetivo, podrá utilizarse la información relevante disponible y obtenida a través de las evaluaciones de riesgo realizadas de conformidad con otras normas, como la normativa relativa al control de los riesgos inherentes a los accidentes graves en los que intervengan sustancias peligrosas (SEVESO), así como la normativa que regula la seguridad nuclear de las instalaciones nucleares. En su caso, la descripción debe incluir las medidas previstas para prevenir y mitigar el efecto adverso significativo de tales acontecimientos en el medio ambiente, y detalles sobre la preparación y respuesta propuesta a tales emergencias”.

1.2 OBJETIVOS

El objetivo del presente anexo es dar cumplimiento a lo especificado en la Ley 9/2018 y analizar la vulnerabilidad del proyecto frente a accidentes graves y catástrofes. Este objetivo general se concreta en los siguientes objetivos específicos:

- **Objetivo 1:** identificar el riesgo de que se produzcan accidentes graves o catástrofes naturales en el ámbito de estudio, así como describir y caracterizar cada riesgo y los efectos adversos significativos sobre el medio ambiente, en caso de ocurrencia.

- **Objetivo 2:** describir la vulnerabilidad del proyecto o la probabilidad que tiene de verse afectado por accidentes graves o catástrofes naturales.
Objetivo 3: describir los efectos adversos significativos sobre medio ambiente derivados de la vulnerabilidad del proyecto ante accidentes graves o catástrofes naturales.

Objetivo 4: evaluar el riesgo a partir de los resultados obtenidos en los objetivos 2 y 3.

2 METODOLOGÍA

La evaluación de riesgos específicos y de que lleguen a producirse accidentes graves o catástrofes naturales, así como efectos adversos significativos sobre el medio ambiente derivados de la vulnerabilidad del proyecto ante accidentes graves o catástrofes naturales, se basa en el documento de orientación para la evaluación y el cálculo del coste de los pasivos ambientales “Guidance on assessing and costing environmental liabilities. Wexford, Ireland. Environmental Protection Agency, 2014” de la Environmental Protection Agency (EPA).

Las fases metodológicas para la evaluación de riesgos específicos, así como su relación con los objetivos específicos expuestos en el capítulo anterior, son las siguientes:

- **Fase 1.** Identificación y caracterización del riesgo (Objetivo 1).
- **Fase 2.** Clasificación del riesgo según su probabilidad de ocurrencia y efectos sobre el proyecto (Objetivo 2).
- **Fase 3.** Clasificación de la magnitud del impacto como consecuencia de que el proyecto sufra un accidente o catástrofe natural (Objetivo 3).
- **Fase 4.** Evaluación de riesgo (Objetivo 4).

Se describen a continuación las fases anteriores:

Fase 1. Identificación de los posibles riesgos e inventario de la información básica existente para su caracterización

Se consideran los riesgos plausibles, es decir, aquellos incidentes anormales pero plausibles que pueden ocurrir en el ámbito del proyecto.

Sobre la base de la información existente para cada uno de los posibles riesgos, en esta fase se recopila la información básica relativa a las causas y la magnitud de los riesgos, para su posterior análisis.

El desarrollo de esta fase se encuentra en el capítulo 3. Por otra parte, en el Apéndice incluido al final del documento se resumen las fuentes bibliográficas utilizadas para llevar a cabo esta fase 1.
Fase 2. Clasificación del riesgo según la probabilidad de ocurrencia y efectos sobre el proyecto

Una vez identificado el riesgo potencial, se evalúa su probabilidad de ocurrencia. Para ello se analizan de los procedimientos de seguridad existentes y los controles ambientales propuestos, al objeto de estimar la probabilidad de que ocurran los riesgos potenciales identificados. A continuación, se definen las categorías para la clasificación del riesgo según su probabilidad de ocurrencia:

- **Categoría 1. Extremadamente improbable**
- **Categoría 2. Muy improbable**
- **Categoría 3. Improbable**
- **Categoría 4. Probable**
- **Categoría 5. Muy probable**

Estas categorías se establecen considerando los siguientes criterios que las definen:

CATEGORÍA 1. EXTREMADAMENTE IMPROBABLE
- Puede ocurrir sólo en circunstancias excepcionales.
- Una vez cada 500 o más años.

CATEGORÍA 2. MUY IMPROBABLE
- No se espera que ocurra; y/o ningún incidente registrado o evidencia anecdótica; y/o muy pocos incidentes en organizaciones, instalaciones o comunicaciones asociadas; y/o poca oportunidad, razón o medio para que ocurra.
- Puede ocurrir una vez cada 100 - 500 años.

CATEGORÍA 3. IMPROBABLE
- Puede ocurrir en algún momento; y/o pocos incidentes poco frecuentes, registrados al azar o poca evidencia anecdótica; algunos incidentes comparables en organizaciones en todo el mundo; alguna oportunidad, razón o medios para que ocurra.
- Puede ocurrir una vez cada 10 - 100 años.

CATEGORÍA 4. PROBABLE
- Probable o puede ocurrir; incidentes registrados regularmente y evidencia anecdótica fuerte.
- Probablemente ocurrirán una vez cada 1 - 10 años.
CATEGORÍA 5. MUY PROBABLE

- Muy probable que ocurra; alto nivel de incidentes registrados y/o evidencia anecdótica fuerte.
- Probablemente ocurrirá más de una vez al año.

El desarrollo de esta fase se encuentra en el capítulo 4.1. **Clasificación del riesgo según la probabilidad de ocurrencia y afección al proyecto.**

Fase 3. Clasificación de la magnitud de impacto sobre el proyecto como consecuencia de que sufra un accidente o catástrofe natural

Debe tenerse en cuenta que, al clasificar el riesgo según las consecuencias del impacto, la calificación asignada asume que todas las medidas de mitigación propuestas y los procedimientos de seguridad no han logrado evitar el accidente y/o desastre mayor.

Se establece una clasificación de riesgo en categorías según los factores ambientales afectados, distinguiendo entre efectos medioambientales (tanto en el medio biótico como en el medio físico) y efectos socioeconómicos (que incluye personas afectadas, salud, pérdidas económicas y efectos en los servicios y en las infraestructuras). Estas categorías son las siguientes:

- **Categoría 1. Impacto menor.**
 - Efectos medioambientales:
 o Efectos espacialmente localizados.
 o Efectos temporales de duración, tan sólo, a corto plazo (menor a 1 año).
 o Contaminación nula.
 - **Efectos socioeconómicos:**
 o Número de personas afectadas: nulo o bajo
 o Efectos en la salud: pequeño número de lesiones menores con tratamiento de primeros auxilios.

Estas categorías se establecen considerando los siguientes criterios que las definen:

CATEGORÍA 1. IMPACTO MENOR
- Efectos económicos: menores a 0,5 millones de euros.
- Efectos en los servicios o infraestructuras: interrupción localizada menor. Efectos durante menos de 6 horas.

CATEGORÍA 2. IMPACTO LIMITADO

- **Efectos medioambientales:**
 - Efectos localizados.
 - Efectos a medio plazo (prolongación menor a 5 años).
 - Contaminación simple.

- **Efectos socioeconómicos:**
 - Número de personas afectadas: limitado.
 - Efectos en la salud: algunas lesiones graves requiriendo hospitalización y tratamiento médico.
 - Efectos económicos: entre 0,5 y 3 millones de euros.
 - Efectos en los servicios o infraestructuras: desplazamiento localizado de un pequeño número de personas durante 6-24 horas. Apoyo personal a través de medios locales. Funcionamiento normal de la comunidad con algunos inconvenientes.

CATEGORÍA 3. IMPACTO GRAVE

- **Efectos medioambientales:**
 - Efectos con cierta extensión espacial (Has).
 - Efectos a largo plazo (duración prolongada superior a 5 años).
 - Contaminación con dispersión de efectos.

- **Efectos socioeconómicos:**
 - Número de personas afectadas: número significativo de personas en el área afectada impactada con varias muertes (<5).
 - Efectos en la salud: múltiples lesiones graves o extensas (20), hospitalización significativa.
 - Efectos económicos: entre 3 y 10 millones de euros.
 - Efectos en los servicios o infraestructuras: gran cantidad de personas desplazadas durante 6 a 24 horas o posiblemente más allá; hasta 500 evacuados. Recursos externos necesarios para el apoyo personal. Comunidad sólo parcialmente funcionando, algunos servicios disponibles.
CATEGORÍA 4. IMPACTO MUY GRAVE

- **Efectos medioambientales:**
 - Efectos espacialmente extensos.
 - Efectos de duración prolongada o permanente.
 - Contaminación intensa.

- **Efectos socioeconómicos:**
 - Número de personas afectadas: de 5 a 50 víctimas.
 - Efectos en la salud: hasta 100 heridos graves.
 - Efectos económicos: entre 10 y 25 millones de euros.
 - Efectos en los servicios o infraestructuras: hasta 2.000 evacuados.

Funcionamiento deficiente de la comunidad, servicios mínimos disponibles.

CATEGORÍA 5. IMPACTO CATASTRÓFICO

- **Efectos medioambientales:**
 - Efectos de gran amplitud geográfica.
 - Efectos generalizados de muy larga duración y/o permanentes.
 - Contaminación muy intensa.

- **Efectos socioeconómicos:**
 - Número de personas afectadas: gran número de personas afectadas con un número significativo de víctimas mortales (> 50).
 - Efectos en la salud: más 100 heridos graves.
 - Efectos económicos: más 25 millones de euros.
 - Efectos en los servicios o infraestructuras: más de 2.000 evacuados. Daños graves a la infraestructura que causan interrupciones significativas o pérdida de servicios clave durante un período prolongado. La comunidad no puede funcionar sin un apoyo significativo.

El desarrollo de esta fase se encuentra en el capítulo 4.2. Clasificación de la magnitud de impacto del proyecto afectado por un accidente o catástrofe natural.

Fase 4: Evaluación del riesgo

Para la evaluación de riesgos (ver capítulo 5) se emplean las clasificaciones de probabilidad de ocurrencia y consecuencia del impacto.
Previo resumen de la información más relevante para cada uno de los riesgos, y cálculo del valor del riesgo (capítulo 5.1) se construye una matriz de riesgo (capítulo 5.2) para representar la naturaleza de cada riesgo y asignarle un escenario de riesgo determinado. Esta matriz está codificada por colores que representan escenarios de alto, medio y bajo riesgo.

Finalmente, sobre la base de los objetivos inicialmente planteados y los resultados obtenidos, se discuten y concluye, sin olvidar el marco general del estudio de impacto ambiental. Esta discusión se incluye en el capítulo 5.3 y las conclusiones finales se incluyen en el capítulo 5.4.

3 IDENTIFICACIÓN Y CARACTERIZACIÓN DE LOS POSIBLES RIESGOS

Se describen a continuación los aspectos de la peligrosidad relativos a catástrofes o accidentes graves en el área de estudio, que se han considerado de relevancia para la zona.

Existe información básica concerniente a los aspectos relacionados con las catástrofes naturales, que se encuentra en el apartado de descripción del medio del estudio de impacto ambiental (en los apartados de clima, hidrología, geología, etc.).

3.1 PELIGROSIDAD SÍSMICA

La peligrosidad sísmica está ligada a las zonas del territorio donde se producen terremotos. En la Resolución de 5 de mayo de 1995 de la Secretaría de Estado de Interior, por la que se dispone la publicación del Acuerdo del Consejo de Ministros por la que se aprueba la Directriz Básica de Planificación de Protección Civil ante el Riesgo Sísmico, se incluye un mapa de Peligrosidad Sísmica en España para un período de retorno de 500 años, del Instituto Geográfico Nacional. Asimismo, se citan los términos municipales de las áreas donde son previsibles sismos de intensidad igual o superior a los de grado VII en la escala de Mercalli (ver figura siguiente).
Figura 1. Mapa de peligrosidad sísmica de España según escala de Mercalli. Fuente IGN.

A esta escala, el grupo VI se corresponde con un daño potencial moderado y el VII con daño moderado-fuerte.

Sobre la base de esta información **ninguno de los términos del ámbito del proyecto se encuentra en el listado del anexo II de la citada Resolución de 5 de mayo de 1995, en la que se incluyen aquellos términos municipales cuyo grado de peligrosidad es igual o superior a VII.**

Otra forma de medir la peligrosidad sísmica es mediante el parámetro de aceleración sísmica básica, que mide directamente las aceleraciones que sufre la superficie del suelo usando como factor de referencia la aceleración de la gravedad ($g = 9,81 \text{ m/s}^2$).

A diferencia de otras medidas que cuantifican terremotos como la Escala Richter, el parámetro de aceleración sísmica básica no es una medida de la energía total liberada del terremoto, por lo que no se trata de una medida de magnitud, sino de intensidad. Se puede medir con simples acelerómetros y es sencillo correlacionar con la Escala de Mercalli (ver tabla siguiente).
Tabla 1. Equivalencias entre los valores de la escala de Mercalli y la aceleración sísmica, así como la percepción del temblor y el daño potencial.

<table>
<thead>
<tr>
<th>Escala de Mercalli</th>
<th>Aceleración sísmica (m/s²)</th>
<th>Percepción del temblor</th>
<th>Potencial de daño</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>< 0,0017 g</td>
<td>No apreciable</td>
<td>Ninguno</td>
</tr>
<tr>
<td>II - III</td>
<td>0,0017 g – 0,014 g</td>
<td>Muy leve</td>
<td>Ninguno</td>
</tr>
<tr>
<td>IV</td>
<td>0,014 g – 0,039 g</td>
<td>Leve</td>
<td>Ninguno</td>
</tr>
<tr>
<td>V</td>
<td>0,039 g – 0,092 g</td>
<td>Moderado</td>
<td>Muy leve</td>
</tr>
<tr>
<td>VI</td>
<td>0,092 g – 0,18 g</td>
<td>Fuerte</td>
<td>Leve</td>
</tr>
<tr>
<td>VII</td>
<td>0,18 g – 0,34 g</td>
<td>Muy fuerte</td>
<td>Moderado</td>
</tr>
<tr>
<td>VIII</td>
<td>0,34 g – 0,65 g</td>
<td>Severo</td>
<td>Moderado – Fuerte</td>
</tr>
</tbody>
</table>

En coherencia con lo que se observa en el mapa de peligrosidad sísmica según la escala de Mercalli, el ámbito de estudio (ver figura siguiente) se encuentra en la zona de aceleración sísmica más baja, por tanto, donde la intensidad de la actividad sísmica es menor en el contexto geográfico peninsular.

Figura 2. Mapa de peligrosidad sísmica de España en valores de intensidad, con la localización del ámbito de estudio. Fuente IGN.

3.2 RIESGO POR FENÓMENOS METEOROLÓGICOS ADVERSOS

De acuerdo con la clasificación establecida por la D.G. de Protección Civil y Emergencias, los fenómenos meteorológicos adversos a tener en cuenta en los planes especiales que se
establecen en el artículo 15 de la Ley 17/2015 del Sistema de Protección Civil son: altas temperaturas, costeros, frío intenso, lluvias intensas, nevadas, tormentas y rayos y vientos fuertes. Sin embargo, las líneas eléctricas sólo resultan susceptibles de verse afectadas significativamente por rachas de viento fuerte.

De acuerdo con el Plan Nacional de Predicción y Vigilancia de Fenómenos Meteorológicos Adversos de AEMET (METEOALERTA), cuya finalidad es la de discriminar la peligrosidad del fenómeno y su posible adversidad, se establecen para cada uno de estos fenómenos, tres umbrales específicos que dan origen a cuatro niveles definidos por colores:

- **Nivel verde**: no existe riesgo por debajo de su valor.
- **Nivel amarillo**: no existe riesgo para la población, en general, aunque sí para alguna actividad concreta.
- **Nivel naranja**: existe un riesgo meteorológico importante; se trata de fenómenos meteorológicos no habituales y con cierto grado de peligro para las actividades usuales.
- **Nivel rojo**: el riesgo meteorológico es extremo; se trata de fenómenos meteorológicos no habituales, de intensidad excepcional y con un nivel de riesgo para la población muy alto.

Los umbrales establecidos para la comunidad de Madrid para los fenómenos meteorológicos adversos se recogen en el Anexo 1 del citado Plan y se muestran en la tabla siguiente:

Tabla 2. Umbrales establecidos para la Comunidad de Madrid en cuanto a los fenómenos meteorológicos adversos. Fuente: D.G. de Protección Civil y Emergencias.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Racha Máxima (Km/h)</th>
<th>Nieve 24 h (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra de Madrid</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>40</td>
</tr>
<tr>
<td>Metropolitana y Henares</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td>Sur, Vegas y Oeste</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>20</td>
</tr>
</tbody>
</table>

No obstante, analizados los datos meteorológicos históricos de AEMET sobre la velocidad del viento medida en la estación de Colmenar Viejo² (Madrid) en el período 1989-2021 (ver figura siguiente), la racha máxima diaria medida fue de 117 Km/h (registrada el 10 de abril de 1990). Por otro lado, el máximo de las velocidades medias diarias fue de 56,16 Km/h.

Por tanto, puede deducirse que, en la zona de estudio, estos sucesos resultan excepcionales, aunque no son descartables en periodos de tiempos amplios.

² Estación meteorológica considerada para la elaboración del capítulo 5.1 Clima, del Estudio de Impacto Ambiental de la PFV Colimbo y sus infraestructuras de evacuación.

3.3 RIESGOS POR INUNDACIONES Y AVENIDAS

El ámbito de estudio se localiza en la Cuenca Hidrológica del Tajo, por lo que, para estudiar las zonas inundables, se ha consultado la información de la Confederación Hidrográfica del Tajo (CHT).

En el ámbito de estudio se encuentran presentes tramos de los ríos Guadalix y Jarama, así como 91 arroyos, 15 barrancos y 1 reguero:

Tabla 3. Ríos y arroyos presentes en el ámbito de estudio. Fuente: CHT.

<table>
<thead>
<tr>
<th>Cauce</th>
<th>Longitud (Km)</th>
<th>Cauce</th>
<th>Longitud (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Jarama</td>
<td>10,59</td>
<td>Arroyo del Gitano</td>
<td>1,70</td>
</tr>
<tr>
<td>Arroyo Tejada</td>
<td>10,23</td>
<td>Arroyo del Caño</td>
<td>1,68</td>
</tr>
<tr>
<td>Arroyo de Salobral</td>
<td>8,64</td>
<td>Arroyo de Valdemajadas</td>
<td>1,66</td>
</tr>
<tr>
<td>Arroyo del Morenillo</td>
<td>8,22</td>
<td>Arroyo de San Benito</td>
<td>1,66</td>
</tr>
<tr>
<td>Arroyo de la Fresneda</td>
<td>7,38</td>
<td>Arroyo de los Chociegos</td>
<td>1,61</td>
</tr>
<tr>
<td>Arroyo de San Vicente</td>
<td>6,10</td>
<td>Arroyo de Almenara</td>
<td>1,58</td>
</tr>
<tr>
<td>Arroyo de las Cañas de la Parrilla</td>
<td>5,88</td>
<td>Arroyo del Regachuelo</td>
<td>1,57</td>
</tr>
<tr>
<td>Arroyo de la Solana</td>
<td>5,35</td>
<td>Arroyo de las Becerras</td>
<td>1,56</td>
</tr>
<tr>
<td>Río Guadalix</td>
<td>4,91</td>
<td>Arroyo de las Carcavillas</td>
<td>1,55</td>
</tr>
<tr>
<td>Arroyo de Buitre</td>
<td>4,51</td>
<td>Arroyo de la Mocita</td>
<td>1,50</td>
</tr>
<tr>
<td>Arroyo del Monte</td>
<td>4,34</td>
<td>Arroyo del Barranco Hondo</td>
<td>1,49</td>
</tr>
<tr>
<td>Arroyo de los Cañitos</td>
<td>4,32</td>
<td>Arroyo de Valdecamas</td>
<td>1,44</td>
</tr>
<tr>
<td>Arroyo de la Casita</td>
<td>3,86</td>
<td>Arroyo de Valdeño</td>
<td>1,41</td>
</tr>
<tr>
<td>Arroyo de la Zurita</td>
<td>3,83</td>
<td>Arroyo del Registro</td>
<td>1,38</td>
</tr>
<tr>
<td>Arroyo de Valdearenas</td>
<td>3,67</td>
<td>Arroyo de Valdecorzas</td>
<td>1,17</td>
</tr>
<tr>
<td>Arroyo de la Hocecilla</td>
<td>3,66</td>
<td>Arroyo de Valdehondiguilla</td>
<td>1,14</td>
</tr>
<tr>
<td>Arroyo de Valdecalera</td>
<td>3,59</td>
<td>Arroyo de las Parras</td>
<td>1,12</td>
</tr>
<tr>
<td>Cauce</td>
<td>Longitud (Km)</td>
<td>Cauce</td>
<td>Longitud (Km)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
<td>------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Arroyo de la Fuente de Lucas</td>
<td>3,58</td>
<td>Arroyo del Escobar</td>
<td>1,08</td>
</tr>
<tr>
<td>Arroyo de Navalcapallo</td>
<td>3,50</td>
<td>Arroyo de la Fuente del Toro</td>
<td>1,05</td>
</tr>
<tr>
<td>Arroyo de las Praderas</td>
<td>3,34</td>
<td>Arroyo de Cabeza Cana</td>
<td>1,01</td>
</tr>
<tr>
<td>Arroyo de la Colada</td>
<td>3,33</td>
<td>Arroyo de la Dehesa de Abajo</td>
<td>1,00</td>
</tr>
<tr>
<td>Arroyo de las Casillas</td>
<td>3,23</td>
<td>Arroyo de la Fuente de la Cerca</td>
<td>1,00</td>
</tr>
<tr>
<td>Arroyo de las Vargas</td>
<td>3,14</td>
<td>Arroyo de Valdelatorre</td>
<td>0,99</td>
</tr>
<tr>
<td>Arroyo de la Canaleja</td>
<td>3,07</td>
<td>Arroyo de Sanderrincano</td>
<td>0,97</td>
</tr>
<tr>
<td>Arroyo de los Barrancos</td>
<td>3,06</td>
<td>Arroyo de Madroñalejo</td>
<td>0,94</td>
</tr>
<tr>
<td>Arroyo de Navacabera</td>
<td>2,98</td>
<td>Arroyo de la Pastelera</td>
<td>0,94</td>
</tr>
<tr>
<td>Arroyo Segoviela</td>
<td>2,82</td>
<td>Arroyo del Recuenco</td>
<td>0,94</td>
</tr>
<tr>
<td>Arroyo de la Soledad</td>
<td>2,75</td>
<td>Arroyo de las Mimbreras</td>
<td>0,90</td>
</tr>
<tr>
<td>Arroyo de la Calera</td>
<td>2,73</td>
<td>Arroyo del Río Seco</td>
<td>0,83</td>
</tr>
<tr>
<td>Arroyo de San Román</td>
<td>2,71</td>
<td>Arroyo de Valdemayón</td>
<td>0,83</td>
</tr>
<tr>
<td>Arroyo Mortero</td>
<td>2,69</td>
<td>Arroyo de la Cabezuela</td>
<td>0,79</td>
</tr>
<tr>
<td>Arroyo de las Veguillas</td>
<td>2,62</td>
<td>Arroyo de las Horcajos</td>
<td>0,78</td>
</tr>
<tr>
<td>Arroyo de Monteviejo</td>
<td>2,59</td>
<td>Arroyo del Pradillo</td>
<td>0,72</td>
</tr>
<tr>
<td>Arroyo de Ventamoros Quemados</td>
<td>2,47</td>
<td>Arroyo de Valdelacasa</td>
<td>0,67</td>
</tr>
<tr>
<td>Arroyo de Valdecarrizo</td>
<td>2,40</td>
<td>Arroyo de Navacabera</td>
<td>0,67</td>
</tr>
<tr>
<td>Arroyo de la Dehesilla</td>
<td>2,30</td>
<td>Arroyo de Valdelacoja</td>
<td>0,64</td>
</tr>
<tr>
<td>Arroyo Valdenmedio</td>
<td>2,26</td>
<td>Arroyo de Charola</td>
<td>0,62</td>
</tr>
<tr>
<td>Arroyo del Arenal</td>
<td>2,24</td>
<td>Arroyo del Barracón</td>
<td>0,60</td>
</tr>
<tr>
<td>Arroyo del Patatero</td>
<td>2,14</td>
<td>Arroyo de las Cabanillas</td>
<td>0,48</td>
</tr>
<tr>
<td>Arroyo del Tejar</td>
<td>2,11</td>
<td>Arroyo de las Vaguillas</td>
<td>0,43</td>
</tr>
<tr>
<td>Arroyo de los Mojones</td>
<td>2,08</td>
<td>Arroyo de Barbotoso</td>
<td>0,31</td>
</tr>
<tr>
<td>Arroyo Colmenarejo</td>
<td>2,05</td>
<td>Arroyo del Mulo</td>
<td>0,26</td>
</tr>
<tr>
<td>Arroyo de Majapán</td>
<td>2,01</td>
<td>Arroyo de la Higueruela</td>
<td>0,14</td>
</tr>
<tr>
<td>Arroyo de Ollera</td>
<td>1,95</td>
<td>Arroyo del Espino</td>
<td>0,13</td>
</tr>
<tr>
<td>Arroyo de los Camorchones</td>
<td>1,93</td>
<td>Arroyo de Peñarrubia</td>
<td>0,02</td>
</tr>
<tr>
<td>Arroyo del Moralejo</td>
<td>1,80</td>
<td>Arroyo del Pajar</td>
<td>0,00</td>
</tr>
<tr>
<td>Arroyo del Casetón</td>
<td>1,72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Además de estos cauces existen otros innominados de menor entidad. Incluyendo estos cauces innominados, la longitud total de cauces dentro del ámbito es de 202,29 Km.
Algunos de estos arroyos presentan un caudal importante, en el que se debe tener en cuenta las zonas que pueden quedar inundadas en época de crecida de los ríos.

Para el desarrollo de la Directiva 2007/60/CE del Parlamento Europeo y del Consejo, relativa a la evaluación y gestión de los riesgos de inundaciones, el Ministerio para la Transición Ecológica, ha puesto en marcha el Sistema Nacional de Cartografía de Zonas Inundables (SNCZI), un instrumento de apoyo a la gestión del espacio fluvial, la prevención de riesgos, la planificación territorial y la transparencia administrativa. Empleando Sistemas de Información Geográfica, se han estudiado aquellas zonas con riesgo de inundación para los periodos de tiempo de 10, 50, 100 y 500 años.

Dentro del ámbito de estudio existen varias zonas con riesgo de inundación para los periodos indicados anteriormente:
Figura 5. Zonas con probabilidad de inundación en periodos de 10, 50, 100 y 500 años.
Fuente: MITERD.

En las imágenes siguientes, de norte a sur, se muestran detalles de las zonas de inundación identificadas:

Figura 6. Detalle de la zona con probabilidad de inundación al noreste del ámbito. Fuente: MITERD.
Figura 7. Detalle de la zona con probabilidad de inundación al noreste del ámbito. Fuente: MITERD.

Figura 8. Detalle de la zona con probabilidad de inundación al este del ámbito. Fuente: MITERD.
Estas zonas de inundación se deben a la presencia del Arroyo San Román, al norte, que genera una pequeña zona con probabilidad de inundación para el periodo de 10 años así como a los ríos Jarama (al este) y Guadalix (en la zona central del ámbito).

Únicamente el tramo soterrado perteneciente a la L/132 kV GR Colimbo – Colectora La Cereal podría verse afectado por la zona de inundación del río Guadalix. El resto de infraestructuras del proyecto, PFV GR Colimbo, ST Colimbo, ST Colectora La Cereal y L/400 kV Colectora La Cereal – La Cereal REE, están lo suficientemente alejadas de las zonas inundables como para considerar que no habrá afecciones por inundación sobre dichas infraestructuras eléctricas.

3.4 RIESGOS GEOLÓGICOS LITOLÓGICOS

Los riesgos geológicos litológicos son los asociados a la existencia de un determinado tipo de roca y/o mineral. Entre estos riesgos encontramos los riesgos cárticos, la expansividad de arcillas, la radioactividad natural y radón, la presencia de minerales asbestiformes, entre otros.

Como refleja la imagen siguiente, en gran parte del ámbito de estudio, a lo largo del trazado de la L/132 kV GR Colimbo - Colectora La Cereal, se identifica riesgo geológico litológico por presencia de arcillas expansivas, si bien, este riesgo se califica como bajo – nulo.
No se han encontrado otros riesgos geológicos asociados a la litología presentes en el ámbito analizado.

Durante la ejecución del proyecto se deberán aplicar las medidas preventivas oportunas para evitar posibles problemas provocados por la presencia de arcillas expansivas.

3.5 RIESGO POR INCENDIOS FORESTALES

Para la estimación del riesgo por posibles incendios forestales se ha partido del mapa de Zonificación y Priorización del Riesgo de Incendios Forestales en la Comunidad de Madrid (ver figura siguiente):

Este mapa es el resultado de un estudio del nivel de riesgo de incendios, encuadrado en el Plan de Defensa Contra Incendios Forestales de la Comunidad de Madrid, de abril de 2013. Según el citado Plan, el cálculo del nivel de riesgo contempla un Estudio Meteorológico y de Peligrosidad Potencial.

El Estudio Meteorológico integra un estudio de las series horarias y diarias de las temperaturas máximas y mínimas, un estudio de la precipitación, de la humedad relativa y de viento.

Por otra parte, la Peligrosidad Potencial considera el peligro estático, esto es, el nº total de incendios, la superficie quemada y la causalidad; y el peligro estructural, que considera el MDT, la pendiente, la orientación, los modelos de combustible y la humedad del combustible.

Como se observa en la figura anterior, la mayor parte del ámbito se localiza sobre áreas de nivel IV, siendo minoritarias las áreas pertenecientes a los niveles I y II.

Se observa que las zonas de mayor riesgo coinciden con las zonas de mayor carga de combustible, mayor inflamabilidad y mayor velocidad de propagación. De manera habitual, las zonas de mayor pendiente y vegetación natural son las zonas más inaccesibles y las que presentan mayor dificultad para la extinción de incendios.

En cuanto a la frecuencia de incendios forestales en el periodo 2001 – 2014 (ver figura siguiente) se observa que la zona sur del ámbito es la que presenta mayor frecuencia de...
incendios forestales, con un total de 85 incendios en el periodo considerado. Por el contrario, al norte, donde se localiza la PFV GR Colimbo y la ST Colimbo, la frecuencia de incendios forestales es baja, con 6 incendios en el periodo considerado:

![Frecuencia de incendios forestales](image)

3.6 RIESGOS TECNOLÓGICOS

Los riesgos tecnológicos proceden de la presencia de infraestructuras en el ámbito analizado.

3.6.1 Infraestructuras viarias

Dentro del ámbito de estudio se han identificado las siguientes infraestructuras viarias (ver figura siguiente): A-1, N-320, M-129, M-122 y M-607. Todas ellas son interceptadas en algún punto por la L/132 kV GR Colimbo – Colectora La Cereal.
Figura 13. Infraestructuras viarias en el ámbito de estudio. Fuente: elaboración propia a partir de la información de la Base Topográfica Nacional escala 1:25.000. CNIG.

3.6.2 Infraestructuras ferroviarias

Por el ámbito discurre también el trazado de la línea de alta velocidad Madrid – Segovia – Valladolid, en un tramo de 9,5 Km, que sería sobrevolado por la L/132 kV GR Colimbo – Colectora La Cereal, y el trazado de una línea de ferrocarril convencional en un tramo de aproximadamente 10,8 Km:
3.6.3 Infraestructuras eléctricas

Según la información cartográfica del Centro Nacional de Información Geográfica, por el ámbito de estudio discurren 4 líneas eléctricas de alta tensión, tres de ellas de 220 kV y otra de 400 kV de potencia:
Figura 15. Líneas eléctricas de alta tensión presentes en el ámbito de estudio. Fuente: CNIG.

La L/132 kV GR Colimbo – Colectora la Cereal interceptaría dos de las L/220 kV existentes. Una de estas intercepciones se produciría en un punto en el que las dos infraestructuras existentes se localizan a pocos metros la una de la otra, sobre terreno con pendiente:
Figura 16. Presencia de dos líneas de 220 kV en la zona donde se proyecta el trazado de la L/132 kV GR Colimbo - Colectora la Cereal.

3.6.4 Infraestructuras de transporte de combustible

Además de las infraestructuras anteriores, en el ámbito de estudio se ha identificado el trazado de dos gasoductos que resultarían interceptados por la L/132 kV GR Colimbo – Colectora La Cereal:
Figura 17. Infraestructuras de transporte de combustible presentes en el ámbito de estudio. Fuente: elaboración propia a partir de la información de la Base Topográfica Nacional escala 1:25.000. CNIG.

3.6.5 Servidumbres aeronáuticas

Por último, como muestra la imagen siguiente, el ámbito de estudio está afectado por las servidumbres aeronáuticas del Aeropuerto Internacional Adolfo Suarez Madrid – Barajas, por un helipuerto y por un campo de ultraligeros.
4 CLASIFICACIÓN DE LOS RIESGOS

En el apartado anterior se han identificado los siguientes riesgos:

1. Sísmico.
2. Fenómenos meteorológicos adversos.
3. Inundaciones y avenidas.
4. Litológicos.
5. Incendios forestales.
6. Tecnológicos.

La clasificación de estos riesgos es la clave para la cuantificación y evaluación posterior de los mismos. Se distinguen dos clasificaciones:

- Clasificación del riesgo de afectar o vulnerar significativamente al proyecto, mediante las probabilidades de ocurrencia.

- Clasificación del riesgo según la magnitud y las consecuencias en cuanto a impacto ambiental, en el caso de que el proyecto fuera afectado.
4.1 CLASIFICACIÓN DEL RIESGO SEGÚN LA PROBABILIDAD DE OCURRENCIA Y AFECCIÓN AL PROYECTO

En el caso de los paneles solares fotovoltaicos, la vulnerabilidad de los componentes del proyecto se puede reducir a la probabilidad de que se produzca la caída, rotura o daño de elementos constructivos, como consecuencia de las catástrofes potenciales que se puedan producir (terremotos, fuertes vientos, inundaciones, inestabilidad del terreno, incendios forestales y riesgos tecnológicos).

Como se ha explicado en el capítulo 2, una vez identificado el riesgo potencial, se evalúa la probabilidad, no sólo de que ocurra el accidente o catástrofe natural, sino también de que dicho accidente o catástrofe produzca efectos sobre el proyecto. A continuación, se clasifica el riesgo según la probabilidad de ocurrencia:

- **Categoría 1.** Extremadamente improbable
- **Categoría 2.** Muy improbable
- **Categoría 3.** Improbable
- **Categoría 4.** Probable
- **Categoría 5.** Muy probable

En cuanto al primero de los riesgos identificados, la peligrosidad sísmica, la probabilidad de ocurrencia es extremadamente improbable por encontrarse el proyecto en la zona de menor actividad sísmica de la península.

Entre los fenómenos meteorológicos adversos, en la zona de estudio podrían sucederse, de manera excepcional, vientos fuertes, si bien no son descartables en periodos de tiempos amplios. Por este motivo podemos categorizarlos como improbables, siendo muy improbable atendiendo a la posibilidad de afectar significativamente al proyecto.

En lo relativo a inundaciones y avenidas, sólo se ha localizado una zona asociada al río Guadalix, con probabilidad de afectar al proyecto:
Figura 19. Detalle del área con probabilidad de inundación en la zona central del ámbito analizado. Fuente: MITERD.

Esta zona se localiza en el tramo de la línea L/132 kV GR Colimbo – Colectora La Cereal que irá soterrado. Por tanto, se considera que el riesgo es improbable.

El resto de infraestructuras del proyecto están lo suficientemente alejadas de las zonas inundables como para considerar que no habrá afecciones por inundación sobre dichas infraestructuras eléctricas.

Por otra parte, este riesgo bajo - nulo por la presencia de zonas con arcillas expansivas en gran parte del ámbito. No obstante, puesto que se tomarán las medidas preventivas necesarias, se puede calificar la probabilidad de afectar al proyecto como improbable.

Respecto al riesgo de incendios forestales, como se ha comentado anteriormente, la mayor parte del ámbito se localiza sobre áreas de nivel IV, siendo tan solo una superficie minoritaria las áreas de nivel I y II. La PFV GR Colimbo coincide con un área de nivel IV, si bien en sus proximidades se identifican áreas de nivel I y II, por lo que la probabilidad de incendio se clasifica como improbable.

Por último, en cuanto a los riesgos tecnológicos, se puede clasificar como de muy improbable que ocurra un accidente de tráfico, de ferrocarril o de una infraestructura de conducción de combustible que pueda afectar al proyecto.

En la tabla siguiente se muestra un resumen con la clasificación de los riesgos considerados, según la probabilidad de ocurrencia y afección al proyecto:
Tabla 4. Riesgos y probabilidad de ocurrencia en el ámbito de estudio.

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Probabilidad de ocurrencia</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sísmico</td>
<td>Extremadamente improbable</td>
<td>1</td>
</tr>
<tr>
<td>Fenómenos meteorológicos adversos</td>
<td>Muy improbable</td>
<td>2</td>
</tr>
<tr>
<td>Inundaciones y avenidas</td>
<td>Improbable</td>
<td>3</td>
</tr>
<tr>
<td>Litológicos</td>
<td>Improbable</td>
<td>3</td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>Improbable</td>
<td>3</td>
</tr>
<tr>
<td>Tecnológicos</td>
<td>Muy improbable</td>
<td>2</td>
</tr>
</tbody>
</table>

4.2 CLASIFICACIÓN DE LA MAGNITUD DE IMPACTO DEL PROYECTO AFECTADO POR UN ACCIDENTE O CATÁSTROFE NATURAL

En el presente capítulo se estiman la magnitud y las consecuencias en cuanto a impactos ambientales que se producirían en caso de ocurrir alguno de los accidentes o eventos catastróficos, cuya probabilidad de ocurrencia se han estimado en el apartado anterior.

Convenga aclarar que, al clasificar el riesgo según las consecuencias del impacto, la calificación asignada asume que todas las medidas de mitigación propuestas y los procedimientos de seguridad no han logrado evitar el accidente y/o desastre mayor.

Como se indicó en la metodología de la presente evaluación de riesgos, se establece una clasificación de la magnitud del impacto en categorías, según los factores ambientales afectados, considerando efectos medioambientales y socioeconómicos.

En caso de seísmo, la caída de elementos de las infraestructuras proyectadas tendría un impacto limitado y cuantitativamente quizás insignificante respecto de los impactos que podría producir el propio seísmo. Por esta razón, la afección a la infraestructura se valora como impacto limitado.

Las consecuencias que la ocurrencia de vientos fuertes pudiera tener sobre el proyecto tendrían un efecto limitado, ya que, en el caso más extremo podrían provocar la caída de uno o varios elementos, por lo que el impacto que tendría sobre el medio sería también limitado.

Considerando la distancia a la que se localiza la PFV GR Colimbo, en caso de que se produjeran avenidas o inundaciones, los efectos ambientales tendrían una magnitud muy limitada.

Los impactos que se pudieran producir en caso de pequeños fenómenos de inestabilidad de los elementos de las infraestructuras en zonas con arcillas expansivas, son de carácter menor, especialmente por la velocidad de estos procesos.

Respecto al riesgo de incendios forestales, podría provocar efectos menores, ya que, aunque podría afectar a varios elementos, la presencia de perímetros de seguridad y la ausencia de vegetación disminuiría la intensidad del fuego al no tener material combustible.
Por último, en cuanto a los riesgos tecnológicos, un accidente provocaría un impacto menor ya que se limitaría al impacto ambiental provocado por la interrupción del suministro eléctrico y el derribo de algún elemento.

Tabla 5. Riesgos, magnitud y consecuencias del impacto sobre el proyecto.

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Magnitud y consecuencias del impacto</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sísmico</td>
<td>Limitado</td>
<td>2</td>
</tr>
<tr>
<td>Fenómenos meteorológicos adversos</td>
<td>Limitado</td>
<td>1</td>
</tr>
<tr>
<td>Inundaciones y avenidas</td>
<td>Limitado</td>
<td>2</td>
</tr>
<tr>
<td>Litológicos</td>
<td>Menor</td>
<td>1</td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>Menor</td>
<td>1</td>
</tr>
<tr>
<td>Tecnológicos</td>
<td>Limitado</td>
<td>2</td>
</tr>
</tbody>
</table>

5 EVALUACIÓN DE LOS RIESGOS

5.1 RESUMEN DE RESULTADOS

De manera previa a la definición de la matriz de riesgos, se resume a continuación, en formato de tabla, la información más relevante para cada uno de los riesgos analizados. En esta tabla se incluyen los siguientes campos:

- Vulnerabilidad del proyecto, estimada mediante la probabilidad de ocurrencia de que el proyecto se vea afectado por accidente grave o catástrofe natural y el valor del índice de vulnerabilidad (V) estimado para la evaluación del riesgo.

- Magnitud de los efectos ambientales, que se produjeran en caso de que el proyecto fuera afectado por accidente grave o catástrofe natural y valor del índice de magnitud de los efectos ambientales (M) estimado para la evaluación del riesgo.

- Evaluación del riesgo mediante un índice (R) que resulta del producto del valor del índice de vulnerabilidad (V) y el valor del índice de magnitud de los efectos ambientales (M). Es decir, \(R = V \times M \).
<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Vulnerabilidad del proyecto (Probabilidad de ocurrencia de afección al proyecto)</th>
<th>V</th>
<th>Magnitud de efectos ambientales (en caso que el proyecto fuera afectado)</th>
<th>M</th>
<th>R = V x M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sísmico</td>
<td>Extremadamente improbable</td>
<td>1</td>
<td>Limitado</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fenómenos meteorológicos adversos</td>
<td>Muy improbable</td>
<td>2</td>
<td>Limitado</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Inundaciones y avenidas</td>
<td>Improbable</td>
<td>3</td>
<td>Limitado</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Litológicos</td>
<td>Improbable</td>
<td>3</td>
<td>Menor</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Incendios forestales</td>
<td>Improbable</td>
<td>3</td>
<td>Menor</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tecnológicos</td>
<td>Muy improbable</td>
<td>2</td>
<td>Limitado</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
5.2 MATRIZ DE RIESGOS

Para la evaluación de riesgos se emplean las clasificaciones de probabilidad de ocurrencia y de vulnerabilidad del proyecto frente a la magnitud de impacto, causado por el proyecto en caso de que sucediera el accidente grave o catástrofe natural. Se emplea una matriz de riesgo para representar la naturaleza de cada riesgo y asignarle un escenario determinado, codificada del siguiente modo:

- El área roja representa "escenarios de riesgo alto".
- El área naranja representa "escenarios de riesgo medio".
- El área verde representa "escenarios de riesgo bajo".

Tabla 7. Matriz de riesgo en la que se ubican los escenarios de cada uno de los riesgos contemplados, considerando la probabilidad de ocurrencia de afección al proyecto y los efectos ambientales asociados al proyecto, en caso de producirse accidente grave o catástrofe natural.

<table>
<thead>
<tr>
<th>Probabilidad de ocurrencia de afección al proyecto</th>
<th>Probable</th>
<th>Improbable</th>
<th>Muy improbable</th>
<th>Extremadamente improbable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy probable</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Probable</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Improbable</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Muy improbable</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Extremadamente improbable</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Como se comprueba en la tabla anterior, **todos los riesgos se encuentran en escenarios de riesgo bajo**.

5.3 DISCUSIÓN DE LOS RESULTADOS

Se discuten a continuación los resultados obtenidos para cada uno de los riesgos analizados.

5.3.1 Peligrosidad sísmica

En cuanto al riesgo derivado de la peligrosidad sísmica, el aspecto más destacable del análisis efectuado es que la probabilidad de ocurrencia de un seísmo en el ámbito considerado es extremadamente improbable, por encontrarse en la zona de menor actividad sísmica de la península. En su caso, la caída de elementos que ocasionaría dicho seísmo, tendría un impacto limitado, insignificante respecto de los impactos que podría producir el
propio seísmo. Por ello, considerando ambos aspectos, el escenario que resulta es de bajo riesgo (valor de R = 2).

5.3.2 Riesgo por fenómenos meteorológicos adversos

Los fenómenos meteorológicos adversos, en particular los vientos fuertes, son sucesos muy improbables. Además, dadas las características del proyecto, es muy improbable que afecten significativamente a las infraestructuras, por lo que el impacto sería limitado. Considerando ambos motivos, el escenario que resulta es de bajo riesgo (valor de R = 4). Comparado con el riesgo anterior (peligrosidad sísmica), podemos decir que existe mayor probabilidad de que ocurra, pero si así lo hiciera, tanto la posibilidad de afectar al proyecto, como los impactos como consecuencia de esta posible afectación, ocasionarían un escenario de riesgo bajo.

5.3.3 Riesgo por inundaciones y avenidas

Las zonas inundables se circunscriben a una pequeña zona localizada al norte del ámbito, asociada al Arroyo de San Román, varias zonas al noreste y este asociadas al río Jarama y un área en la zona central del ámbito asociada al río Guadalix.

Figura 20. Zonas con probabilidad de inundación en periodos de 10, 50, 100 y 500 años.
Fuente: MITERD.
Únicamente el área inundable localizada en la zona central del ámbito podría afectar al proyecto, concretamente, a la línea L/132 kV GR Colimbo – Colectora La Cereal. Sin embargo, es en esta zona donde se localiza el tramo soterrado de la línea, por lo que se considera que el riesgo es improbable.

El resto de infraestructuras del proyecto están lo suficientemente alejadas de las zonas inundables como para considerar que no habrá afecciones por inundación sobre dichas infraestructuras eléctricas.

Debido a las características del proyecto se considera que la probabilidad de ocurrencia de efectos por inundación sobre las infraestructuras eléctricas es improbable. En caso de que se produjeran efectos, su magnitud sería limitada, por lo que el escenario de riesgo es bajo (valor de R = 6).

5.3.4 Riesgos geológicos litológicos

El riesgo por la presencia de zonas con arcillas expansivas potencialmente inestables es bajo. No obstante, por las medidas preventivas a implantar (mejora de la cimentación), se puede calificar la probabilidad de afectar al proyecto como improbable y los impactos de carácter menor, especialmente por la velocidad de estos procesos y la vigilancia de las medidas que se implementen. Por todo ello, el escenario que resulta es de bajo riesgo (valor de R = 3).

5.3.5 Riesgos por incendios forestales

Respecto al riesgo de incendios forestales, la mayor parte del ámbito se localiza en área de nivel IV, siendo tan solo una superficie minoritaria las áreas de nivel I y II.

La PFV GR Colimbo se localiza en áreas de nivel IV, si bien, próxima a áreas de nivel I y II por lo que se considera improbable la ocurrencia de un incendio en esas zonas. Además, con la presencia de perímetros de seguridad y ausencia de vegetación, es muy improbable que se afectase a los elementos del proyecto. El escenario de riesgo seguiría siendo por tanto bajo (valor de R = 3).

5.3.6 Riesgos tecnológicos

En cuanto a los riesgos tecnológicos, se puede valorar como muy improbable que un accidente asociado a un riesgo de este tipo pueda afectar al proyecto. En caso de ocurrencia, provocaría un impacto limitado, ya que se limitaría al impacto ambiental provocado por la interrupción del suministro eléctrico y el derribo de algún/os elemento/os. De todo esto, se desprende que el escenario de riesgo sería bajo (valor de R = 4).
6 CONCLUSIÓN

Conforme al análisis realizado en el presente documento, se concluye que todos los escenarios de riesgo derivados de los efectos que el proyecto pudiera sufrir por accidentes graves o catástrofes naturales son bajos.

En Madrid, a 5 de abril de 2021
APÉNDICE
FUENTES DOCUMENTALES

Las fuentes bibliográficas empleadas para la elaboración del presente anexo han sido las siguientes:

1. A nivel nacional

 ● Aspectos metodológicos.

 ● Peligrosidad Sismica.
 - Atlas Nacional de España del IGN.
 o Mapas (capas en formato *.shp) de aceleración básica para España.
 - Mapas (formato *.jpg) de áreas donde son previsibles sismos de diferentes grados de intensidad (I a VII) según la escala EMS-98 (Escala Macrosismica Europea) o de Mercalli (periodo de retorno de 500 años) (según Resolución de 5 de mayo de 1995, de la Secretaría de Estado de Interior, por la que se dispone la publicación del Acuerdo del Consejo de Ministros por el que se aprueba la Directriz Básica de Planificación de Protección Civil ante el Riesgo Sísmico).

 ● Peligrosidad por fenómenos meteorológicos adversos.
 - AEMET.
 o Datos históricos de variables meteorológicas disponibles según la estación meteorológica. En particular, datos sobre vientos en: https://datosclima.es/Aemethistorico/Viento.php).
 - Dirección General de Protección Civil y Emergencias / AEMET.

 - CSIC.
 o Estudio sobre la peligrosidad del fenómeno de vientos fuertes en España (Piserra, MT & del Río J.,1992 CSIC).

 - IDEA.
 o Mapa de velocidad Media Anual del viento.

 - Base de datos de Clima.
- **Riesgo de inundación.**

 - MITERD.

- **Riesgo geotécnico.**

 - ITGME / MITERD.

 - Mapa previsor de riesgo por Expansividad de Arcillas de España a escala 1/1.000.000, clasificado en cuatro grupos: nula a baja, baja a moderada, moderada a alta y alta a muy alta.

 - Mapa de Movimientos del Terreno de España a escala 1/1.000.000, clasificado en cuatro grandes grupos: componente horizontal en zonas continentales, componente vertical en zonas continentales, áreas inestables ligadas a zonas litorales y movimientos relacionados con explotaciones mineras.

- **Riesgo de incendio.**

 - Dirección General de Protección Civil y Emergencias de la Comunidad de Madrid.

 - Mapa de riesgo de incendios.

 - Centro de Coordinación de la Información Nacional de Incendios Forestales (CCINIF).

 - Estadística General de Incendios Forestales (EGIF). Frecuencia de incendios forestales por términos municipales para el periodo 2001-2014.

- **Riesgos tecnológicos.**

 - Plan Especial de Protección Civil de Mercancías Peligrosas por Carretera y Ferrocarril.
- Tramos de carretera con riesgo en el transporte de mercancías peligrosas por carretera.
- Mapas de flujos de los transportes por ferrocarril (datos anuales).

2. **A nivel nacional autonómico y local**

- **Riesgo de incendio.**
 - Órdenes autonómicas para determinar zonas de alto riesgo de incendio, especialmente de terrenos que tengan la consideración de monte, conforme a lo previsto en el artículo 5 de la Ley 43/2003, de 21 de noviembre.
 - Estadísticas de las CC.AA.

- **Riesgos tecnológicos.**
 - Normativa autonómica derivada del Real Decreto 1254/1999, relativa a listados actualizados de establecimientos que almacenan sustancias y productos peligrosos (establecimientos SEVESO).
ANEXO 3. ESTUDIO DE AFECCIONES PATRIMONIALES DEL PROYECTO DE LA PLANTA FOTOVOLTAICA GR COLIMBO Y SU LÍNEA DE EVACUACIÓN
ESTUDIO DE AFECCIONES PATRIMONIALES DEL PROYECTO DE LA PLANTA FOTOVOLTAICA GR COLIMBO Y SU LÍNEA DE EVACUACIÓN (MADRID)

GR COLIMBO RENOVABLES, S.L.

MARZO 2021
<table>
<thead>
<tr>
<th>2.5. SUBESTACIÓN ELÉCTRICA COLECTORA LA CEREAL 400/132 kV</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1. Características generales</td>
<td>40</td>
</tr>
<tr>
<td>2.5.2. Sistema 400 kV</td>
<td>41</td>
</tr>
<tr>
<td>2.5.3. Sistema 132 kV</td>
<td>41</td>
</tr>
<tr>
<td>2.5.4. Autotransformador de potencia</td>
<td>42</td>
</tr>
<tr>
<td>2.5.5. Instalaciones auxiliares</td>
<td>42</td>
</tr>
<tr>
<td>2.6. OBRA CIVIL DE LAS SUBESTACIONES</td>
<td>43</td>
</tr>
<tr>
<td>2.6.1. Explanación y acondicionamiento del terreno</td>
<td>43</td>
</tr>
<tr>
<td>2.6.2. Cerramiento perimetral</td>
<td>43</td>
</tr>
<tr>
<td>2.6.3. Accesos y viales interiores</td>
<td>44</td>
</tr>
<tr>
<td>2.6.4. Edificio</td>
<td>44</td>
</tr>
<tr>
<td>2.6.5 Bancada del transformador y depósito de aceite</td>
<td>45</td>
</tr>
<tr>
<td>2.6.6. Cimentaciones</td>
<td>45</td>
</tr>
<tr>
<td>2.6.7 Canalizaciones eléctricas</td>
<td>46</td>
</tr>
<tr>
<td>2.6.8. Drenaje de aguas pluviales</td>
<td>46</td>
</tr>
<tr>
<td>2.6.9. Terminado de la subestación</td>
<td>46</td>
</tr>
<tr>
<td>2.7. LAT 132 kV SET COLIMBO→SET COLECTORA LA CEREAL</td>
<td>46</td>
</tr>
<tr>
<td>2.7.1. Características generales</td>
<td>47</td>
</tr>
<tr>
<td>2.7.2. Apoyos</td>
<td>48</td>
</tr>
<tr>
<td>2.7.3. Cimentaciones</td>
<td>49</td>
</tr>
<tr>
<td>2.7.4. Tomas de tierra</td>
<td>50</td>
</tr>
<tr>
<td>2.8. OBRA CIVIL LAT 132 kV SET COLIMBO→SET COLECTORA LA CEREAL</td>
<td>54</td>
</tr>
<tr>
<td>2.8.1. Zanja de cable</td>
<td>54</td>
</tr>
<tr>
<td>2.8.2. Arqueta de telecomunicaciones</td>
<td>55</td>
</tr>
<tr>
<td>2.8.3. Perforación dirigida</td>
<td>56</td>
</tr>
<tr>
<td>2.9. LASAT 400 kV SET EL COLECTORA LC→SET LC REE</td>
<td>59</td>
</tr>
<tr>
<td>2.9.2. Apoyos</td>
<td>60</td>
</tr>
<tr>
<td>2.9.3. Cimentaciones</td>
<td>61</td>
</tr>
<tr>
<td>2.9.4. Tomas de tierra</td>
<td>62</td>
</tr>
<tr>
<td>2.10. OBRA CIVIL LASAT 400 kV SET EL COLECTORA LC→SET LC REE</td>
<td>65</td>
</tr>
<tr>
<td>2.10.1. Zanja de cable</td>
<td>67</td>
</tr>
<tr>
<td>2.10.2. Cámara de empalme</td>
<td>68</td>
</tr>
<tr>
<td>2.10.3 Arqueta de telecomunicaciones</td>
<td>69</td>
</tr>
</tbody>
</table>
3. MARCO LEGISLATIVO... 71
 3.1. PATRIMONIO HISTÓRICO-CULTURAL DE LA COMUNIDAD DE MADRID 71

4. INVENTARIO ARQUEOLÓGICO Y AFECCIONES POTENCIALES .. 75
 4.1. ESTUDIO DOCUMENTAL DE PATRIMONIO DEL PROYECTO ... 75
 4.1.1. Elementos del patrimonio cultural inventariados ... 75
 4.2. BIENES DE INTERÉS CULTURAL .. 75
 4.3. POSIBLES EFECTOS SOBRE EL PATRIMONIO CULTURAL ... 76

ANEXO 1. DOCUMENTACIÓN TÉCNICA.. 77
ANEXO 2. CARTOGRAFÍA .. 78
1. FICHA TÉCNICA

PROYECTO:

Estudio documental de afección al Patrimonio Cultural del proyecto de la Planta Fotovoltaica denominada GR Colimbo, Subestación Colimbo 132/30 kV, Subestación Eléctrica Colectora La Cereal 400/132 kV y su infraestructura de evacuación (Madrid).

CALIFICACIÓN DE LA ACTIVIDAD: Preventiva

MUNICIPIO: Torremocha de Jarama, Torrelaguna, El Vellón, El Molar, San Agustín de Guadalix, Colmenar Viejo y Tres Cantos.

PROVINCIAS: Madrid

PROMOTOR: GR Colimbo Renovables SL
CIF B-88319678

EMPRESA ARQUEOLÓGICA:

ACTEO Arqueología y Patrimonio, S.L.
C/ Jara, 7
28200 San Lorenzo de El Escorial (Madrid)
Tel. – Fax. 91 899 70 50
Por parte de ACTEO ARQUEOLOGÍA Y PATRIMONIO, S.L.

Maite Pérez Gil
Arqueóloga Colegiada Nº 42609

Madrid, marzo 2021
2. INTRODUCCIÓN

La empresa GR Colimbo Renovables SL ha encargado a ACTEO ARQUEOLOGÍA Y PATRIMONIO S. L un estudio previo para el proyecto de la Planta Fotovoltaica denominada GR Colimbo, Subestación Colimbo 132/30 kV, Subestación Eléctrica Colectora La Cereal 400/132 kV y su infraestructura de evacuación (Madrid).

2.1. Área de actuación

La planta fotovoltaica GR Colimbo se ubica en el término municipal de Torremocha de Jarama. En la siguiente tabla se indica las hectáreas que ocupa el vallado de la planta:

<table>
<thead>
<tr>
<th>TÉRMINO MUNICIPAL</th>
<th>PROVINCIA</th>
<th>SUPERFICIE (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torremocha de Jarama</td>
<td>Madrid</td>
<td>30,78</td>
</tr>
</tbody>
</table>

La Subestación Colimbo 132/30 kV estará situada en el término municipal de Torremocha del Jarama, Comunidad Autónoma de Madrid. La subestación se ubicará en las siguientes coordenadas ETRS89 H30:

<table>
<thead>
<tr>
<th>VÉRTICE</th>
<th>COORD. X</th>
<th>COORD. Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>456.931</td>
<td>4.518.117</td>
</tr>
<tr>
<td>B</td>
<td>456.951</td>
<td>4.518.149</td>
</tr>
<tr>
<td>C</td>
<td>457.017</td>
<td>4.518.109</td>
</tr>
<tr>
<td>D</td>
<td>457.008</td>
<td>4.518.095</td>
</tr>
<tr>
<td>E</td>
<td>457.007</td>
<td>4.518.095</td>
</tr>
<tr>
<td>F</td>
<td>457.001</td>
<td>4.518.084</td>
</tr>
<tr>
<td>G</td>
<td>456.992</td>
<td>4.518.089</td>
</tr>
<tr>
<td>H</td>
<td>456.988</td>
<td>4.518.083</td>
</tr>
</tbody>
</table>
La Subestación Eléctrica Colectora La Cereal 400/132 kV estará situada en el término municipal de Colmenar Viejo, Comunidad Autónoma de Madrid. La subestación se ubicará en las siguientes coordenadas ETRS89 H30:

Tabla 3: Coordenadas de los vértices de la Subestación Eléctrica Colectora La Cereal 400/132 kV

<table>
<thead>
<tr>
<th>VÉRTICE</th>
<th>COORD. X</th>
<th>COORD. Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>436.089</td>
<td>4.496.634</td>
</tr>
<tr>
<td>B</td>
<td>436.145</td>
<td>4.496.634</td>
</tr>
<tr>
<td>C</td>
<td>436.145</td>
<td>4.496.543</td>
</tr>
<tr>
<td>D</td>
<td>436.089</td>
<td>4.496.543</td>
</tr>
</tbody>
</table>

La LE 132 kV SET Colimbo-SET Colectora La Cereal tiene una distancia total de 36,68 km, afectado a los siguientes términos municipales: Torremocha de Jarama, Torrelaguna, El Vellón, El Molar, San Agustín de Guadalix y Colmenar Viejo.

La LE 400 kV SET Colectora La Cereal-SET La Cereal REE tiene una distancia total de 3,98 km, afectando a los siguientes términos municipales: Colmenar Viejo y Tres Cantos.
2.2. Descripción de la planta fotovoltaica

La planta fotovoltaica propuesta convierte la energía de la radiación solar en energía eléctrica a través de una serie de módulos solares fotovoltaicos instalados en un sistema de estructuras. La energía eléctrica de corriente continua (CC) producida en el generador fotovoltaico se convierte en corriente alterna (CA) a través de los inversores, y luego el transformador adecua el nivel de voltaje para inyectar la energía en la red de distribución.

Los componentes principales que forman el núcleo tecnológico de la planta son:
- Generador fotovoltaico.
- Seguidor de eje horizontal monofila.
- Cajas de string.
- Inversores.
- Centro de transformación (CT).
- Sistema conexiones eléctricas.
- Protecciones eléctricas.
- Infraestructura evacuación.

Además de los componentes principales, la planta contará con una serie de componentes estándar (sistema de monitorización, sistema de seguridad, sistema anti-incendios, etc.) que serán definidos en una fase posterior del proyecto.

La instalación posee elementos de protección tales como el interruptor automático de la interconexión o interruptor general manual que permite aislar eléctricamente la instalación fotovoltaica del resto de la red eléctrica. De cualquier modo, las características principales de los equipos, cableado y protecciones se especificarán a lo largo del presente documento.

Se asegurará un grado de aislamiento eléctrico como mínimo de tipo básico Clase II en lo que afecta a equipos (módulos e inversores) y al resto de materiales (conductores, armarios de conexión...).
La instalación incorpora todos los elementos necesarios para garantizar en todo momento la protección física de la persona, la calidad de suministro y no provocar averías en la red.

La potencia de diseño de la instalación será la marcada por la suma de las potencias de salida de los inversores que componen la planta y estará limitada por las restricciones macadas por REE en el punto de conexión.

Puesto que se trata de una instalación conectada a red, y el objetivo final de la planta es vender la energía eléctrica generada, se dispondrá de los equipos de medida de energía necesarios con el fin de medir, tanto mediante visualización directa como a través de la conexión vía módem que se habilite, la energía producida.

2.2.1. Configuración eléctrica

La configuración eléctrica de la instalación fotovoltaica será la siguiente:

- Quince (15) inversores Ingeteam (1637 kVA@30°C) o similar, repartidos en:
 - Cinco (5) centros de transformación con 2 inversores modelo INGECONE SUN 1640TL B630 con 90 strings conectados a cada inversor y un transformador de 3,280 MVA.
 - Un (1) centro de transformación con 2 inversores modelo INGECONE SUN 1640TL B630 con 94 strings conectados a cada inversor y un transformador de 3,280 MVA.
 - Un (1) centro de transformación con 1 inversor modelo INGECONE SUN 1640TL B630 con 94 strings conectados al inversor y un transformador de 1,640 MVA.
 - Dos (2) centros de transformación con 1 inversor modelo INGECONE SUN 1640TL B630 con 90 strings conectados al inversor y un transformador de 1,640 MVA.

En total se han implantado 38.136 módulos de 655 Wp para un total de 24,98 MWp, es decir, una ratio DC/AC del 1,017 sobre la potencia nominal en inversores a 30°C. La potencia del conjunto de los inversores de la planta estará limitada a la potencia
máxima admisible en el punto de conexión, 20 MW. La configuración eléctrica de baja tensión de la planta fotovoltaica será la siguiente:

- Strings de 28 módulos de 655 Wp conectados en serie.
- 12 inversores INGECON SUN 1640TL B630 (1637 kVA@30°C) con 1.080 strings conectadas en paralelo.
 - A cada inversor se conectarán 90 strings.
- 3 inversores INGECON SUN 1640TL B630 (1637 kVA@30°C) con 282 strings conectadas en paralelo.
 - Al inversor se conectarán 94 strings.

2.2.2. Generador fotovoltaico

El generador fotovoltaico estará compuesto por un total de 38.136 módulos fotovoltaicos interconectados entre sí en grupos denominados cadenas o “strings” de 28 módulos en serie.

Para este proyecto básico se han seleccionado módulos fotovoltaicos basados en la tecnología de silicio monocristalino, ampliamente probada en numerosas instalaciones a lo largo del mundo.

Los módulos seleccionados para este proyecto básico tendrán unas dimensiones de 2384 x 1303 x 35 mm, capaces de entregar una potencia de 655 Wp en condiciones estándar.

Tabla 4: Características generales de la planta fotovoltaica

<table>
<thead>
<tr>
<th>Características eléctricas</th>
<th>Módulo</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia</td>
<td>655</td>
<td>Wp</td>
</tr>
<tr>
<td>Tolerancia de salida Pmax</td>
<td>±10</td>
<td>Wp</td>
</tr>
<tr>
<td>Corriente máxima potencia (Impp)</td>
<td>18,52*</td>
<td>A</td>
</tr>
<tr>
<td>Tensión de máxima potencia (Vmpp)</td>
<td>37,50</td>
<td>V</td>
</tr>
<tr>
<td>Corriente de cortocircuito (Icc)</td>
<td>19,54*</td>
<td>A</td>
</tr>
<tr>
<td>Tensión de circuito abierto (Voc)</td>
<td>45,20</td>
<td>V</td>
</tr>
</tbody>
</table>
2.2.3. Inversor fotovoltaico

El inversor fotovoltaico será el equipo encargado de la conversión de la corriente continua en baja tensión generada por los módulos fotovoltaicos en corriente alterna en baja tensión a la misma frecuencia de la red general. A la salida del inversor, la energía se derivará al transformador que será el encargado de elevar a la tensión establecida en el sistema interno de media tensión de la planta. Los inversores proyectados para la planta son del fabricante Ingeteam, modelos Ingecon Sun 1640 TL B630 Outdoor o similar. Las principales características son las indicadas a continuación:

Tabla 5: Características generales del inversor fotovoltaico

<table>
<thead>
<tr>
<th>Características eléctricas</th>
<th>Inversor</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rango de tensión en MPP</td>
<td>911-1300</td>
<td>Vdc</td>
</tr>
<tr>
<td>Tensión máxima</td>
<td>1500</td>
<td>Vdc</td>
</tr>
<tr>
<td>Corriente máxima</td>
<td>1850</td>
<td>A</td>
</tr>
<tr>
<td>Nº entradas en DC</td>
<td>Hasta 15</td>
<td>Ud</td>
</tr>
<tr>
<td>Salida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>1473</td>
<td>kVA (@50°C)</td>
</tr>
<tr>
<td>Potencia nominal</td>
<td>1637</td>
<td>kVA (@30°C)</td>
</tr>
<tr>
<td>Tensión nominal</td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Frecuencia nominal</td>
<td>50</td>
<td>Hz</td>
</tr>
<tr>
<td>Rendimiento</td>
<td></td>
<td>η</td>
</tr>
<tr>
<td>Máximo</td>
<td>98,9</td>
<td></td>
</tr>
</tbody>
</table>

*Incluida ganancia del 6% por bifacialidad.
2.2.4. Estructura soporte de módulos (seguidor solar)

Los módulos FV se instalarán sobre estructuras denominadas seguidores, que se mueven sobre un eje horizontal orientado de Norte a Sur y realizan un seguimiento automático de la posición del Sol en sentido Este-Oeste a lo largo del día, maximizando así la producción de los módulos en cada momento.

La estructura donde se sitúan los módulos está fijada al terreno y constituida por diferentes perfiles y soportes, con un sistema de accionamiento para el seguimiento solar y un autómata que permita optimizar el seguimiento del sol todos los días del año. Además, disponen de un sistema de control frente a ráfagas de viento superiores a 60 km/h que coloca los paneles fotovoltaicos en posición horizontal para minimizar los esfuerzos debidos al viento excesivo sobre la estructura.

Los principales elementos de los que se compone la estructura son los siguientes:
- Cimentaciones: perfiles hincados con perforación o sin perforación previa.
- Estructura de sustentación: formada por diferentes tipos de perfiles de acero galvanizado y/o aluminio.
- Elementos de sujeción y tornillería.
- Elementos de refuerzo.
- Equipo de accionamiento para el seguimiento solar el cual contará con un cuadro de Baja Tensión.
- Autómata astronómico de seguimiento con sistema de retroseguimiento integrado.
- Sistema de comunicación interna mediante PLC.

Con el fin de optimizar la superficie disponible, se ha adoptado como solución la implantación de una estructura tipo seguidor monofila. Se utilizarán dos tipos de seguidores que mantendrán las siguientes características:
- La composición mínima (mesa) será de 56 módulos FV (2Vx28).
- La distancia mínima entre estructuras debe ser de 3,092 m para ensamblado.
- La distancia máxima de la estructura al terreno será menor de 2,1 m.
- La distancia mínima de la estructura al terreno será mayor de 0,5 m.
Los seguidores podrán ser alimentados mediante línea auxiliar en corriente alterna o mediante autoalimentación en corriente continua.

En total se instalarán 681 estructuras de 2 strings. Las principales características de la estructura solar son las indicadas a continuación o similares, en función de la tecnología y la disponibilidad:

Tabla 6: Características generales de los soportes fotovoltaicos

<table>
<thead>
<tr>
<th>Características</th>
<th>Estructuras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº módulos por estructura</td>
<td>56</td>
</tr>
<tr>
<td>Ángulo de rotación</td>
<td>± 55°</td>
</tr>
<tr>
<td>Longitud de la fila</td>
<td>37,863 m</td>
</tr>
<tr>
<td>Paso entre filas (pitch)</td>
<td>8 m</td>
</tr>
</tbody>
</table>

Las piezas de fijación de módulos serán siempre de acero inoxidable. El elemento de fijación garantizará las dilataciones térmicas necesarias, sin transmitir cargas que puedan afectar a la integridad de los módulos. Como elementos de unión entre paneles se emplearán unas pletinas/grapas de fijación metálicas.

La fijación al terreno se realizará siguiendo las recomendaciones establecidas en el estudio geotécnico. Para un terreno medio, la estructura irá fijada mediante el hincado de perfiles directamente al terreno. La cimentación de la estructura ha de resistir los esfuerzos derivados de:

- Sobrecargas del viento en cualquier dirección.
- Peso propio de la estructura y módulos soportados.
- Sobrecargas de nieve sobre la superficie de los módulos (en el caso que aplique).
2.2.5. Centro de trasformación

Los centros de transformación son edificios, contenedores prefabricados o plataformas que albergan los equipos encargados de concentrar, transformar y elevar la tensión de la energía generada en los sub-campos fotovoltaicos.

Un centro de transformación típico deberá incluir, al menos:
- Transformador/es de potencia BT/MT.
- Armarios de MT.
- Cuadros eléctricos principales.
- Transformador de SSAA.

El centro de transformación será provisto por el fabricante de los inversores. Todos los centros de trasformación estarán asociados a las celdas de MT necesarias para su protección y distribución de energía en un sistema de 30 kV.

A continuación, se detallan los tipos de estaciones de potencia utilizados en esta instalación:
- Cinco (5) centros de transformación con 2 inversores y un transformador de 3,280 MVA (@30°C) y 90 strings por inversor.
- Dos (2) centros de transformación con 1 inversor y un transformador de 1,640 MVA (@30°C) y 90 strings por inversor.
- Un (1) centro de transformación con 2 inversores y un transformador de 3,280 MVA (@30°C) y 94 strings por inversor.
- Un (1) centro de transformación con 1 inversor y un transformador de 1,640 MVA (@30°C) y 94 strings por inversor.

2.2.6. Sistema de conexiones eléctricas

Según la naturaleza de la corriente, la instalación fotovoltaica está dividida eléctricamente en dos tramos: tramo de corriente continua (hasta el inversor) y tramo de corriente alterna (tras realizar el conveniente acondicionamiento de potencia en el inversor).
Sistema de corriente continua (CC)

El sistema de CC incluye el siguiente equipamiento:

- Cableado.
- Inversor.

El diseño y dimensionado del sistema de CC para la planta FV cumplirá todo lo establecido en la normativa vigente.

Sistema de corriente alterna

El sistema de CA incluirá el siguiente equipamiento principal:

- Centro transformador.
- Aparamento de BT.
- Transformador.
- Cables de media tensión (MT).
- Celdas de MT.

El sistema de CA de la planta cumplirá con lo establecido en la normativa nacional de Instalaciones Eléctricas, la cual establece las especificaciones técnicas que deben cumplir con el fin de garantizar la seguridad tanto en el uso de la energía eléctrica, como de las personas; maximizando la eficiencia del complejo.

En cada estación de inversores o anexa a las mismas, se localizará una estación transformadora de MT, que adaptará la tensión de salida del inversor al nivel de tensión de evacuación de la red de MT de la planta.

El sistema de AC de la planta cumplirá con lo establecido en códigos vigentes, normativa y leyes.
2.2.7. Puesta a tierra

La instalación de puesta tierra cumplirá con lo dispuesto en el artículo 15 del R.D. 1699/2011 sobre las condiciones de puesta a tierra en instalaciones fotovoltaicas conectadas a la red de baja tensión.

Todas las masas de la instalación fotovoltaica estarán conectadas a una red de tierras independiente de la del neutro de la empresa distribuidora, de acuerdo con el RBT, así como de las masas del resto del suministro.

La instalación deberá disponer de una separación galvánica entre la subestación y la instalación fotovoltaica, es decir, la red de tierra de la subestación y la red de tierra de la instalación fotovoltaica serán independientes y no estarán conectadas entre sí.

La red de tierras se realizará a través de picas de cobre. La configuración de las mismas será redonda y de alta resistencia, asegurando una máxima rigidez para facilitar su introducción en el terreno. Se evitará que la pica se doble a la hora de su colocación. El valor de la resistencia de puesta a tierra se determinará en función de la que determine la legislación de referencia para este tipo de electrodos en función de la resistividad del terreno.

Se realizará una instalación de puesta a tierra constituida por un cable de cobre desnudo enterrado de 35 mm2 de sección y picas de 2 m de longitud y 14 mm de diámetro mínimo en las zonas donde sean necesarias, tales como los centros de transformación.

Para la conexión de los dispositivos al circuito de puesta a tierra, será necesario disponer de bornas o elementos de conexión que garanticen una unión perfecta, teniendo en cuenta los esfuerzos dinámicos y térmicos que se producen en caso de cortocircuito.

La instalación de puesta a tierra del parque fotovoltaico se deberá realizar teniendo en cuenta la ITC-RAT 13: Instalaciones de puesta a tierra, y la ITC-BT 18: Instalaciones de puesta a tierra.
Todos los elementos metálicos de la instalación estarán unidos a la malla de tierras inferior, dando cumplimiento a las exigencias descritas en la ITC-RAT 13 del “Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión”.

2.3. Obra civil de la planta fotovoltaica

2.3.1. Instalaciones provisionales

Se denominarán instalaciones provisionales a aquellas que sean necesarias disponer para poder llevar acabo, en las debidas condiciones de seguridad y salud, los trabajos para la construcción de la instalación fotovoltaica, y que una vez que hayan sido realizados, serán retiradas en un período de tiempo definido, generalmente corto, entendiéndose por tal a un período no superior a ocho meses.

Incluye los trabajos de preparación y adecuación de las instalaciones provisionales necesarias para la construcción de la planta, que serán removidas una vez finalizada:

- Oficinas de obra: Se habilitarán contenedores metálicos prefabricados o similar de diferentes dimensiones de acuerdo con las necesidades de los contratistas.
- Comedores: Se habilitarán en contenedores metálicos prefabricados o similar de diferentes dimensiones en función del número de trabajadores y las exigencias de la normativa nacional.
- Servicios higiénicos temporales: Incluyen aseos para el personal de obra habilitados en contenedores metálicos prefabricados o similar.
- Zonas de acopio y almacenamiento: Se dimensionarán varias zonas de almacenamiento y acopio de materiales al aire libre. Para los materiales que lo necesiten se diseñarán zonas de almacenamientos con contenedores metálicos prefabricados. Además, quedará prevista una zona de almacenamiento de residuos y otra para el aparcamiento de vehículos y maquinaria de obra.
- Suministro de agua y energía: Incluye los trabajos necesarios para dotar de una red de abastecimiento de agua y energía eléctrica temporal a la zona instalaciones temporales.
Habilitación de instalaciones provisionales y frente de trabajo

Esta etapa consiste en la preparación y construcción de las obras y servicios descritos para las zonas de instalación provisionales presentadas los apartados siguientes.

Para la construcción de la planta fotovoltaica será necesaria la adecuación previa de las infraestructuras tanto de movimiento de tierras y obra civil, necesarias para su montaje y mantenimiento, como de instalaciones eléctricas necesarias para la evacuación de la energía generada por los mismos, así como las infraestructuras de apoyo a los trabajos a realizar y otras necesarias para la salud e higiene de los trabajadores.

Los frentes de trabajo serán móviles, y se irán materializando de acuerdo al desarrollo de las obras. Básicamente los frentes de trabajo corresponden a los puntos donde se llevarán a cabo las obras de la planta fotovoltaica, y en la práctica, podrán existir varios frentes operando en forma simultánea.

En los frentes de trabajo se contará con las instalaciones sanitarias requeridas, para lo cual se considera la habilitación de baños químicos, servicio a cargo de terceros que cuenten con las autorizaciones sanitarias correspondientes. En general, cualquiera sea el tipo de instalación requerida por las empresas contratistas, ya sea en la Instalación provisionales o frentes de trabajo, el Titular exigirá que dichas instalaciones cumplan con las exigencias en las leyes nacionales de aplicación. Además, el Titular se compromete a gestionar el envío de la documentación (copia) que acredite que los residuos de los baños químicos fueron depositados en lugares autorizados para su disposición final.

Compra de bienes y contratación de servicios

Esta actividad contemplará la compra de bienes y servicios necesarios para construir la instalación; tales como módulos, conductores, cables, equipos eléctricos, etc.

Respecto a la contratación de servicios, tales como el suministro y mantenimiento de baños químicos, la seguridad (guardia), el transporte de personal, las
telecomunicaciones y el retiro y disposición de residuos industriales y domésticos serán contratados a empresas especializadas y que cuenten con las autorizaciones respectivas.

Una vez realizado los trabajos de construcción correspondientes a la primera etapa de la planta y su subestación correspondiente, se procederá a dejar el terreno que se destinó para el montaje de las instalaciones provisionales, tal cual se encontraba previo a su utilización. Esto quiere decir que se eliminarán todo tipo de restos de fundaciones provisionales, posteados eléctricos, restos de construcción y escombros, los cuales serán conducidos a sus respectivos destinos finales autorizados por el servicio de salud ambiental.

Acceso a las instalaciones provisionales

En cuanto al acceso del personal, debe situarse de forma separada al de vehículos. Debe situarse en zona próxima a la puerta de entrada al solar y locales destinados a higiene y bienestar.

Es recomendable que las zonas de paso se señalicen y se mantengan limpias y sin obstáculos, pero si las circunstancias no lo permiten, como sería el caso de producirse barros, hay que disponer pasarelas con un ancho mínimo de 60 cm y a ser posible por zonas, que no tengan que ser transitadas por vehículos.

Valla instalaciones provisionales

El cerramiento de las instalaciones provisionales, será una de las primeras actividades a realizar para evitar el paso de personas ajenas a la misma y daños a terceros.

Para independizar la Obra y las Instalaciones provisionales de la normal operación de la planta, el Contratista deberá considerar la construcción de un cerco metálico protegido con malla raschel 80% con sus respectivos accesos peatonales y vehiculares.

La altura mínima de los cerramientos será de 2 metros, aunque habrá que considerar también las actividades que se vayan a desarrollar en la obra, puesto que
pueden existir situaciones, que obliguen a colocar vallados de alturas mayores, marquesinas, etc.

El Real Decreto 1627/97 establece a este respecto, como obligación del coordinador en materia de seguridad y salud durante la ejecución de la obra, la de adoptar las medidas necesarias para que sólo las personas autorizadas puedan acceder a ella. La dirección facultativa, asumirá esta función cuando no fuera necesaria la designación de coordinador.

Además, se define que los accesos y el perímetro de obra deberán señalizarse y destacarse de manera que sean claramente visibles e identificables.

Oficinas de obras

Se utilizarán contenedores metálicos o panel sándwich para dar servicio a la constructora, contratas, la administración competente y la inspección técnica de obra, incluyendo al menos dos puestos de trabajo por oficina y aire acondicionado.

Las instalaciones eléctricas provisionales que darán servicio a estas casetas contarán con sus respectivos fusibles, canalizaciones, cableados y conexiones. Cada contenedor deberá ser aterrizado mediante barra cooper o barra de cobre. Además, se realizará la provisión de muebles en cantidad necesaria para un desempeño cómodo.

2.3.2. Preparación del terreno

Consiste en extraer y retirar de las zonas designadas todos los árboles, tocones, plantas, maleza, broza, maderas caídas, escombros, basura o cualquier otro material indeseable según el Proyecto de ejecución material o a juicio de la dirección de obra. Estos trabajos serán los mínimos posibles y los suficientes para la correcta construcción de la instalación.

La ejecución de esta operación incluye las operaciones siguientes:
• Remoción de los materiales objeto de desbroce.
• Retirado y extendido de los mismos en su emplazamiento definitivo.

De esta forma se realizará la extracción y retirada en las zonas designadas, de todas las malezas y cualquier otro material indeseable a juicio de la dirección de obra.

Se estará, en todo caso, a lo dispuesto en la legislación vigente en materia medioambiental, de seguridad y salud, y de almacenamiento y transporte de productos de construcción.

Las operaciones de remoción se efectuarán con las precauciones necesarias para lograr unas condiciones de seguridad y evitar daños en las construcciones próximas existentes. Todos los tocones o raíces mayores de diez centímetros (10 cm) de diámetro serán eliminados hasta una profundidad no inferior a setenta y cinco centímetros (75 cm) por debajo de la rasante.

Todas las oquedades causadas por la extracción de tocones y raíces se rellenarán con material procedente de los desmontes de la obra o de los préstamos, según está previsto en el estudio de movimientos de tierras necesarios en la obra.

Todos los pozos y agujeros que queden dentro de la explanación se rellenarán conforme a las instrucciones de la dirección de obra.

Todos los productos o subproductos forestales no susceptibles de aprovechamiento, serán eliminados de acuerdo con lo que ordene la dirección de obra sobre el particular.

2.3.3. Viales de acceso e internos

Esta fase contempla la adecuación de los caminos de acceso a la planta para permitir la llegada de tráfico rodado hasta interior de la planta. En la medida de lo posible, se utilizarán los accesos existentes a la parcela que deberán ser acondicionados mediante la aportación de tierra o zahorra artificial y su posterior compactación.
Los viales interiores se destinarán a la conexión de los centros de transformación entre sí y el acceso a todas las estructuras solares FV y edificios que conforman la planta.

La disposición del vial de acceso está condicionada por los caminos existentes, mientras que la disposición de los viales interiores en la planta solar fotovoltaica se ha realizado considerando la disposición de los inversores fotovoltaicos y las estructuras solares asociados, así como la topografía del terreno.

Los viales interiores de la planta y de acceso a la planta y a la subestación serán de 4 y 6 metros de ancho, respectivamente. La sección de los viales estará compuesta por una base de 40 cm de zahorra artificial.

Corte

En aquellos sectores en que la subrasante del camino va en corte, se excavará el material necesario para dar espacio al perfil tipo correspondiente. En suelos finos no se acepta corte por debajo de la cota proyectada, a fin de evitar el relleno y deficiente compactación.

En caso de encontrar material inadecuado bajo el horizonte de fundación, se extrae en su totalidad, reponiéndolo con el material especificado por la ingeniería y compactándolo a una densidad no inferior al 98% de la densidad máxima compactada seca (D.M.C.S.) del Proctor Modificado, o al 80% de la densidad relativa, según corresponda. Por material inadecuado ha de entenderse rellenos no controlados o suelos naturales con un Poder de Soporte de California (CBR), inferior en 20 % al CBR de Proyecto de ejecución material.

No es recomendable el corte por debajo de la cota proyectada, para evitar el relleno y deficiente compactación de éste, ya que está demostrado que la sobre excavación y deficiente compactación generan un plano de falla perfecto.
Relleno de viales

Se forman con el mejor material proveniente de la excavación o empréstito si se requiere. El CBR mínimo exigible del material de la sub base es de 20.

Todos los materiales que integran el relleno no pueden contener materias orgánicas, pasto, hojas, raíces u otro material objetable. El material de relleno es aceptado siempre que su CBR sea mayor o igual el mínimo exigible y posea una composición granulométrica uniforme. El espesor del material de relleno colocado en capas corresponde al tipo de suelo y al equipo de compactación a emplear.

Estabilizado

El suelo estabilizado es transportado y se deposita en volúmenes uniformes a lo largo del camino para poder obtener el espesor de diseño. El material es acordonado por medio de motoniveladora, y se mezcla hasta obtener completa uniformidad en el cordón. Finalmente es esparcido en una capa uniforme.

Compactación

El suelo estabilizado se compacta en condiciones de humedad óptima empleando un rodillo liso vibratorio hasta lograr el CBR de diseño, según corresponda. Generalmente es necesario aplicar riego para lograr la humedad óptima del material. El rodillado se hace partiendo por los bordes y siguiendo hacia el centro de la calzada, traslapando las franjas un mínimo de 30 centímetros.

2.3.4. Movimientos de tierras

Los movimientos de tierras para la adecuación del terreno tienen el objetivo de crear una superficie firme y homogénea, con compactación y resistencia mecánica adecuada que permita la ejecución de fundaciones y canalizaciones.
Las obras necesarias para la instalación, operación y mantenimiento de los equipos que constituyen la planta solar fotovoltaica, consisten en:

- Plataforma de área de instalaciones provisionales.
- Adecuación de áreas de estructuras solares con pendientes superiores al 14%.
- Adecuación menor de movimiento de tierras en áreas de estructuras solares con irregularidades puntuales en el terreno.

Descripción de los trabajos de movimiento de tierra

Estos trabajos incluyen todas las operaciones necesarias para realizar la construcción de todas las infraestructuras de la planta fotovoltaica, tanto de viales, plataformas para estructura solares y subestación como cimentación de la estructura. Se incluye la excavación de las zonas afectadas por las obras, bien sea en los desmontes, en el área de apoyo de los terraplenes donde existan materiales que sea necesario eliminar o en los préstamos que sean precisos para la elección de tierras y con arreglo posterior de su superficie, una vez terminada su explotación.

En primer lugar, se procederá a realizar las operaciones de tala, desbroce de terreno, demolición de la estructura de hormigón existente y todas las demoliciones en general. En el caso de este proyecto, no será necesario realizar ninguna demolición de ninguna estructura existente en el emplazamiento. Posteriormente se iniciarán las obras de excavación y nivelación de los viales, ajustándose a las alineaciones, pendientes, dimensiones y demás información contenida en los planos y sujetas a las modificaciones que según la naturaleza del terreno ordene dirección de obra.

Se deberá planificar con antelación los lugares que se usarán como acopio temporal de los materiales procedentes de las excavaciones con la finalidad de no entorpecer otras faenas ni la circulación segura de los trabajadores por la obra.

Para el trazado de los ejes de los viales se basará en lo indicado en los planos de construcción aprobados, quedando registrado el trazado definitivo en un protocolo de trazado firmado por el contratista y la dirección de obra.
Además del trazado de los viales de la planta se deberá proceder al trazado de las cimentaciones de la estructura fotovoltaica, de acuerdo a los planos del proyecto básico. Una vez confirmado la correcta demarcación de las cimentaciones de las estaciones de potencia y de la subestación se podrá dar inicio a la excavación para las mismas. Se ejecutarán según los planos correspondientes, respetando las dimensiones de las fundaciones, zapatas y pilares perimetrales.

En general las superficies de las excavaciones terminadas serán refinadas y saneadas de manera que no quede ningún bloque o laja con peligro de desprenderse.

Siempre que sea posible, los materiales que se obtengan de la excavación, se utilizarán en la formación de rellenos y demás usos fijados en el proyecto básico, y se transportarán directamente a las zonas previstas en el mismo.

Los materiales que van a formar parte del relleno, se extenderán en tongadas sucesivas de espesor uniforme y sensiblemente paralelas a la explanación. El espesor de dichas tongadas será lo suficientemente reducido como para conseguir el grado de compactación exigido, utilizando los medios disponibles y no superará en ningún caso los 30 cm antes de compactar. El espesor adecuado se definirá mediante un terraplén de ensayo. Los materiales de cada tongada serán de características uniformes, y si no lo fueran, se conseguirá esta uniformidad mezclándolos convenientemente con la maquinaria adecuada para ello.

El número de pasadas necesario para alcanzar la densidad requerida será determinado mediante un terraplén de ensayo a realizar antes de comenzar la ejecución de la unidad.

Para la compactación de los rellenos con materiales del tipo todo-uno, la compactación se ejecutará en tongadas de 0,30 metros de espesor máximo, compactadas mediante un mínimo de cuatro pasadas de rodillo vibrador de tambor liso de acero cuyo peso estático sea igual o superior a diez toneladas (10 t). La frecuencia de vibración será próxima a los 1200 ciclos por minuto y la velocidad de traslación del rodillo no debe superar los 4 kilómetros por hora. Para comprobar estas recomendaciones se realizará un
terraplén de ensayo en el que se mide el porcentaje de huecos obtenido con la compactación; la compactación garantizará un índice de huecos (e) del veinticinco por ciento. El control de compactación se hará entonces por el número de pasadas definidas en una prueba, comprobándose con posterioridad si el índice es realmente obtenido.

Además, la compactación se deberá garantizar a través de ensayos de densidad medidas en terreno (densímetro nuclear o cono de arena), realizados por un laboratorio autorizado. No se podrán capas de material mayores a 30 cm de espesor.

2.3.5. Drenaje

La planta fotovoltaica contará con un sistema de drenaje para la evacuación de aguas pluviales. El sistema de drenaje preliminar constará de cunetas en la zona perimetral y en los viales de la planta fotovoltaica. Se debe realizar un estudio de la pluviometría de la zona con el objetivo calcular la escorrentía superficial y las precipitaciones máximas sobre la parcela. Las dimensiones de las canalizaciones de evacuación de aguas a construir se dimensionarán en función de los datos pluviales y la normativa nacional relacionada.

2.3.6. Vallado perimetral

La planta fotovoltaica contará con un cierre o vallado perimetral con objeto de evitar el ingreso de personal no autorizado a la planta. Este vallado perimetral actúa como cerramiento fijo. Los tramos laterales a los puntos de acceso rodean todo el perímetro de la planta fotovoltaica delimitando el espacio de máxima ocupación de la parcela.

Acceso vehículos

El acceso de vehículos a la instalación fotovoltaica se realizará a través de un portón con 6 metros de ancho, suficiente para la correcta entrada y salida de camiones de alto tonelaje.
El portón de acceso de vehículos estará formado por 2 hojas batientes de 3 metros cada una, y una altura de 2,00 metros sobre el nivel del suelo, con bastidores en perfiles de acero galvanizado y lacado, lo que le otorga una gran terminación y durabilidad.

Cierre perimetral

El vallado a instalar será un vallado cinegético con una altura máxima de 2 metros. La instalación de los cerramientos cinegéticos de gestión, así como sus elementos de sujeción y anclaje se realizará de tal forma que no impidan el tránsito de la fauna silvestre no cinegética presente en la zona.

Estos cerramientos deberán cumplir los siguientes requisitos:

- Estarán construidos de manera que el número de hilos horizontales sea como máximo el entero que resulte de dividir la altura de la cerca en centímetros por 10, guardando los dos hilos inferiores sobre el nivel del suelo una separación mínima de 15 centímetros. Los hilos verticales de la malla estarán separados entre sí por 15 centímetros como mínimo.
- Carecer de elementos cortantes o punzantes.
- No podrán tener dispositivos de anclaje, unión o fijación tipo “piquetas” o “cable tensor” salvo que lo determine el órgano competente en materia de caza.
- El vallado dispondrá de placas visibles de señalización para evitar colisión de la avifauna.

2.3.7. Ejecución de cimentación

Estos trabajos incluirán la realización de las cimentaciones de las estructuras fotovoltaicas y de las estaciones media tensión (MT) o centros de transformación.

Las cimentaciones de las estructuras se realizarán directamente hincadas al terreno, para su instalación se utilizará maquinaria especializada. Los cálculos estructurales serán objeto de un proyecto independiente en el que se validará la solución de cimentación adoptada. La profundidad de hincado estará conforme a lo indicado en el
estudio geotécnico en función de las condiciones del terreno y los ensayos in situ necesarios.

Para los centros de transformación se ejecutará plataformas para la sustentación y nivelación de los equipos. Esta plataforma será objeto de un diseño y cálculo independiente en el que se recojan las características del terreno y los pesos y dimensiones de los equipos. Además, se dispondrán las entradas y salidas de cableado necesarias para el correcto funcionamiento de los equipos.

Como se ha mencionado anteriormente, esta cimentación propuesta será objeto de un proyecto independiente y podrá sufrir modificaciones de acuerdo al estudio geotécnico realizado.

2.3.8. Canalizaciones eléctricas

Las canalizaciones eléctricas se realizarán con los cables directamente enterrados bajo zanja. Se aprovechará la apertura de las zanjas para colocar en su fondo un cable de cobre desnudo que formará parte de la red de tierras principal. A continuación, se colocarán los circuitos de conducción eléctrica, rellenando los distintos niveles de las zanjas con zahorra artificial, material proveniente de la excavación que después se compactará adecuadamente con medios mecánicos, incluso hormigón si se considera necesario en el diseño. Donde corresponda, se instalarán arquetas de registro.

La red de cables de la planta solar fotovoltaica estará compuesta por tendidos de potencia de baja y media tensión, red de tierras y comunicaciones, se realizará mediante conducciones en zanjas de diferente tamaño en función de los circuitos que discurren por su interior.

Constructivamente todas las zanjas serán iguales a excepción de las zanjas de red de tierras, las cuales serán detalladas en los siguientes apartados de esta memoria.
A continuación, se describen constructivamente los tipos de zanjas previstos en la futura ejecución de la planta fotovoltaica GR Mandarín que motiva la redacción del presente proyecto básico.

Zanjas BT, MT, comunicaciones

Las zanjas de media tensión se realizarán de la siguiente manera:

- Cuando lo haya, se tiende el conductor de tierra en el fondo de la zanja sobre una capa de arena de río de un espesor mínimo de 5 cm. Sobre este se extenderá una capa del mismo material obteniéndose un relleno inferior de 5 cm.

- Sobre esta capa se colocará los circuitos correspondientes de media tensión que se vayan a instalar los cuales se cubrirán con una capa de arena limpia, suelta y áspera, exenta de sustancias orgánicas, arcilla o partículas terrosas, para la cual se tamizará o lavará convenientemente si fuera necesario. Siempre se empleará arena de río y las dimensiones de los granos serán de 0,2 a 1 mm. Sobre los cables se extenderá una capa del mismo material con un espesor mínimo de 10 cm.

- Posteriormente se tienden las líneas correspondientes a comunicaciones y CCTV, siendo cubiertos por 10 cm de la misma arena de río. Se mantendrá una distancia mínima entre estos cables y el cable de media tensión de 20 cm. El cable de comunicaciones irá armado y contará con una protección mecánica sobre todo el recorrido de la zanja. La protección mecánica que se colocará sobre los cables deberá soportar un impacto puntual de una energía de 20 J y cubrirá la proyección en planta de los cables.

- Finalmente, se rellena la zanja con la misma tierra procedente de las excavaciones para compactar, con un espesor de 15 cm, donde se instalará la cinta de señalización sobre todo el recorrido de la zanja, la cual indicará la presencia de cables eléctricos, manteniendo una distancia mínima a los cables de 25 cm.

- Después se termina de completar la zanja con la misma tierra compactada. En la compactación del terreno se debe alcanzar una densidad mínima del 98% sobre el proctor modificado.
Las zanjas tendrán un ancho de 400 mm en el caso de albergar un circuito de MT, de 600 mm en el caso de albergar dos y de 1000 mm en el caso de albergar tres líneas de MT.

En el caso de que la zanja de media tensión discurra bajo vial, contará con las siguientes características: el relleno inferior que contiene el cable de red de tierras tendrá un espesor de 72 mm. Sobre dicho relleno se colocarán los circuitos de media tensión contenidos en tubos, los cuales se cubrirán con una capa de hormigón HM20 de 500 mm de espesor. La capa de hormigón también alojará un tubo para los circuitos de comunicaciones.

Finalmente, se rellenará la zanja con una capa de 300 mm de espesor con la misma tierra procedente de las excavaciones para compactar, donde se instalará la cinta de señalización sobre todo el recorrido de la zanja, la cual indicará la presencia de cables eléctricos. Sobre esta última capa irá dispuesto el firme del vial.

Las zanjas de baja tensión se realizarán de la siguiente manera:

- Cuando lo haya, se tiende el conductor de tierra en el fondo de la zanja sobre una capa de arena de río de un espesor mínimo de 5 cm. Sobre este se extenderá una capa del mismo material obteniéndose un relleno inferior de 5 cm.
- Sobre esta capa se tienden los circuitos correspondientes a baja tensión, los cuales se cubrirán con otra capa de arena de idénticas características. Esta capa tendrá el espesor necesario según los cables que se vayan a instalar. La arena que se utilice para la protección de los cables será limpia, suelta y áspera, exenta de sustancias orgánicas, arcilla o partículas terrosas, para lo cual se tamizará o lavará convenientemente si fuera necesario. Siempre se empleará arena de río y las dimensiones de los granos serán de 0,2 a 1 mm. Sobre los cables se extenderá una capa del mismo material con un espesor mínimo de 10 cm.
- Encima de esta capa y a una distancia mínima de 20 cm se instala el circuito de fibra óptica CCTV y a continuación se coloca la protección mecánica. Esta protección mecánica podrá ser unas losetas de hormigón, placas protectoras de plástico, ladrillos o rasillas colocadas transversalmente.
Se continúa rellenando con arena de río hasta al menos 20 cm, donde se colocarán las cintas de señalización.

Se finaliza de rellenar la zanja con tierra compactada procedente de las excavaciones.

El ancho de las zanjas será de 750 mm y albergarán cuatro circuitos como máximo.

Las zanjas que contienen BT y MT se realizarán como se describe a continuación:

- Cuando lo haya, se tiende el conductor de tierra en el fondo de la zanja sobre una capa de arena de río de un espesor mínimo de 5 cm. Sobre este se extenderá una capa del mismo material obteniéndose un relleno inferior de 5 cm.
- Sobre esta capa se tienden los circuitos de media tensión correspondientes que se vayan a instalar los cuales se cubrirán con otra capa de arena de idénticas características. La arena que se utilice para la protección de los cables será limpia, suelta y áspera, exenta de sustancias orgánicas, arcilla o partículas terrosas, para lo cual se tamizará o lavará convenientemente si fuera necesario. Siempre se emplear arena de río y las dimensiones de los granos serán de 0,2 a 1 mm.
- Sobre estos cables de MT y a una distancia mínima de 25 cm se tienden los cables de BT y sobre estos a una distancia mínima de 20 cm el cable de fibra óptica.
- Encima de este cable se continúa rellenando con arena de río 10 cm y se tiende la protección mecánica, la cual podrá ser unas losetas de hormigón, placas protectoras de plástico, ladrillos o rasillas colocadas transversalmente.
- Se continúa rellenando con arena de río hasta al menos 15 cm, donde se colocarán las cintas de señalización.
- Se finaliza de rellenar la zanja con tierra compactada procedente de las excavaciones.

Las zanjas que cruzan el vial o transcurren por zonas de tránsito de vehículos se protegerán con una capa de hormigón de 0,10 m de espesor sobre la capa de arena.
Zanja red de tierras

La zanja destinada a la red de tierras de la instalación fotovoltaica será aquella en la que conductor de tierra sea el único que discurre por la misma.

La zanja se realizará de la siguiente manera:

- Se tiende el conductor de tierra en el fondo de la zanja. Sobre este se extiende una capa de arena de río de espesor mínimo de 5 cm.
- A continuación, se extenderá otra capa de 40 cm, con tierra para compactar, exenta de piedras y cascotes, en general serán tierras nuevas. Esta capa se compactará convenientemente.
- Se instala a continuación la cinta de señalización, sobre todo el recorrido de la zanja, la cual indicará la presencia de cables eléctricos.
- Se rellena la zanja con la tierra procedente de las excavaciones para compactar siempre que cumpla los requisitos mínimos establecidos. En la compactación del terreno se debe alcanzar una densidad mínima del 98% sobre el proctor modificado.

Excavación en zanjas

En esta unidad de obra se incluyen:

- La excavación y extracción de los materiales de la zanja, así como la limpieza del fondo.
- Las entibaciones y agotamientos que puedan ser necesarios.
- Las operaciones de carga, transporte, selección y descarga en las zonas de empleo o almacenamiento provisional.
- La conservación adecuada de los materiales y los cánones, indemnizaciones y cualquier otro tipo de gastos de los lugares de almacenamiento y vertederos.

Las excavaciones deberán ser ejecutadas ajustándose a las dimensiones y perfilado que consten en los planos del proyecto básico.
La ejecución de las zanjas se ajustará a las siguientes normas:

1. Se marcará sobre el terreno su situación y límites que no deberán exceder de los que han servido de base a la formación del proyecto.

2. Las tierras procedentes de las excavaciones se depositarán a una distancia mínima de un metro del borde de las zanjas y a un solo lado de éstas y sin formar continuo, dejando los pasos necesarios para el tránsito general, todo lo cual se hará utilizando pasarelas rígidas sobre las zanjas.

3. Se tomarán precauciones precisas para evitar que las aguas inunden las zanjas abiertas. Cuando aparezca agua en las zanjas que se están excavando, se utilizarán los medios e instalaciones auxiliares necesarias para agotarla.

4. Deberán respetarse cuantos servicios y servidumbres se descubran al abrir las zanjas, disponiendo los apeos necesarios.

5. La preparación del fondo de las zanjas requerirá las operaciones siguientes: Rectificado del perfil longitudinal, recorte de las partes salientes que se acusen tanto en planta como en alzado, relleno con arena de las depresiones y apisonado general para preparar el asiento de la obra posterior debiéndose alcanzar una densidad del noventa y cinco por ciento (95 %) de la máxima del Próctor Modificado.

6. Durante el tiempo que permanezcan abiertas las zanjas se establecerán señales de peligro, especialmente por la noche.

2.3.9. Ejecución de edificios

La planta fotovoltaica dispondrá de una sala de control con almacén permanente dentro del recinto de la subestación, donde además se encontrará una sala de celdas donde realizarán las funciones necesarias para el correcto funcionamiento del propio centro. Las dimensiones finales de los edificios se calcularán en función de las necesidades de mantenimiento de la planta en funcionamiento.

La sala de control contará con al menos las siguientes dependencias:
- Sala de control.
- Sala de celdas MT.
- Oficina.
- Aseos.
• Sala de reuniones.
• Sala de servicios auxiliares.

El almacén integrado en la misma sala de control contará con al menos:
• Vestuarios.
• Aseos.

2.4. Subestación Colimbo 132/30 kV

La nueva subestación de evacuación de las plantas solares fotovoltaicas PFV Bisbita y Colimbo constan de:
• Las líneas de alimentación a la subestación en 30 kV serán subterráneas.
• La línea de 132 kV proveniente de la Subestación El Cubillo 132/30 kV será aérea.
• La línea de 132 kV que conectará la subestación objeto de este proyecto de ejecución con la Subestación Colectora La Cereal será aérea.
• El sistema de 132 kV de la subestación responderá a una configuración de simple barra con una (1) posición de transformador y dos (2) posiciones de línea.
• Se dispondrá de un (1) transformador de potencia 132/30 kV de instalación intemperie.
• El sistema de 30 kV estará compuesto por dos módulos de celdas con objeto de limitar las corrientes de cortocircuito.
• Todas las posiciones de 132 y 30 kV estarán debidamente equipadas con los elementos de maniobra, medida y protección necesarios para su operación segura.
• Para la alimentación de los servicios auxiliares se dispondrá de un (1) transformador que alimentará en baja tensión al cuadro de SSAA, así como un (1) grupo electrógeno que actuará como respaldo para la alimentación de SSAA.
• Se dispondrá un edificio que contarán con una sola planta.
Se dispondrá de WC químicos portátiles para proveer de aseos a la subestación.
Además, la subestación contará con un cerramiento perimetral metálico.

2.4.1. Características generales

Para el sistema de 132 kV se ha optado por un esquema de simple barra tipo intemperie compuesto por las siguientes posiciones:

- Una (1) posición de transformador
- Dos (2) posiciones de línea: o Posición de línea L-1: salida de línea a subestación Colectora La Cereal 132/400 kV
 - Posición de línea L-2: llegada de línea proveniente de subestación El Cubillo 132/30 kV
- Embarrado principal.

Un (1) transformador de potencia trifásico con una relación de transformación 132/30 kV y de 100/120 MVA de potencia ONAN/ONAF.

Para el sistema de 30 kV se ha optado por dos módulos de celdas de simple barra, tipo interior, en celdas blindadas de aislamiento en SF6 y una alimentación de servicios auxiliares.

- Módulo 1:
 - Dos (2) posiciones de línea.
 - Una (1) posición de acometida de transformador.
 - Una (1) posición de servicios auxiliares.
 - Una (1) posición de batería de condensadores (opcional).
- Módulo 2:
 - Ocho (8) posiciones de línea.
 - Una (1) posición de línea y medida.
 - Una (1) posición de acometida de transformador.
Cada una de las posiciones de 132 y 30 kV estará debidamente equipada con los elementos de maniobra, medida y protección necesarios para su operación segura.

Se dispondrá un edificio de subestación de una sola planta, construido en base a elementos prefabricados de hormigón, que contará con las siguientes salas:

- Sala de control.
- Sala de celdas.
- Sala de Control Bisbita.
- Sala de Control Colimbo.
- Sala de comunicación.
- Almacén.

En la sala de control de subestación se ubicarán los cuadros y equipos de control, armarios de protecciones, cuadros de distribución de servicios auxiliares, equipos rectificador-batería y equipos de medida.

2.4.2. Sistema de 132 kV

El sistema de 132 kV de la subestación responde a la configuración de simple barra, con una posición de transformador y dos posiciones de línea.

Aparellaje

El aparellaje con que se equipa la posición de transformador de campo de intemperie es el siguiente:

- Tres (3) pararrayos unipolares.
- Un (1) interruptor automático tripolar de corte en SF6.
- Tres (3) transformadores de intensidad.
- Un (1) seccionador tripolar de conexión a barras.
El aparellaje con que se equipa la posición de línea L-1 de campo de intemperie es el siguiente:

- Un (1) transformador de tensión capacitivo.
- Tres (3) pararrayos unipolares.
- Un (1) seccionador tripolar con cuchillas de puesta a tierra.
- Un (1) interruptor automático tripolar de corte en SF6.
- Tres (3) transformadores de intensidad.
- Un (1) seccionador tripolar de conexión a barras.

El aparellaje con que se equipa la posición de línea L-2 de campo de intemperie es el siguiente:

- Un (1) transformador de tensión capacitivo.
- Tres (3) pararrayos unipolares.
- Un (1) seccionador tripolar con cuchillas de puesta a tierra.
- Un (1) interruptor automático tripolar de corte en SF6.
- Un (3) transformadores de intensidad.
- Un (1) seccionador tripolar de conexión a barras.

El aparellaje con que se equipa la posición de barras de campo de intemperie es el siguiente:

- Tres (3) transformadores de tensión inductivos.

2.4.3. Transformador de potencia

Se instalará un transformador de potencia trifásico con una relación de transformación 132/30 kV y de 100/120 MVA de potencia ONAN/ONAF, contará con regulación en carga, se instalará en intemperie, y contará con aislamiento y enfriamiento en aceite.
2.4.4. Sistema de 30 kV

El sistema de 30 kV de la subestación estará compuesto por las siguientes celdas.

- **Módulo 1:**
 - Dos (2) posiciones de línea.
 - Una (1) posición de acometida de transformador.
 - Una (1) posición de servicios auxiliares.
 - Una (1) posición de batería de condensadores (opcional).

- **Módulo 2:**
 - Ocho (8) posiciones de línea.
 - Una (1) posición de línea y medida.
 - Una (1) posición de acometida de transformador.

2.4.5. Instalaciones auxiliares

Dentro de las instalaciones auxiliares se suministrará y montará:

- Sistema de alumbrado y fuerza.
- Sistema anti-intrusismo.
- Sistema de detección de incendio.
- Sistema de aire acondicionado con bomba de calor en las salas de control, comunicaciones y promotores.
- Grupo electrógeno como respaldo de la alimentación de los servicios auxiliares de la subestación.
2.5. Subestación Eléctrica Colectora La Cereal 400/132 kV

La nueva subestación de Colectora La Cereal constar de las instalaciones que a continuación se describen:

- Los niveles de tensión de los que dispondrá la subestación serán 132kV y 400kV, realizando la elevación de la tensión desde el nivel de evacuación de las subestaciones de las plantas fotovoltaicas al nivel de evacuación de la energía en el sistema eléctrico nacional (400kV).
- Las líneas eléctricas de 132kV serán aéreas al igual que la salida de línea en el sistema de 400kV.
- El sistema de 132 kV de la subestación responderá a una configuración línea-transformador de instalación intemperie con llegada en aéreo desde la subestación Colimbo 132/30kV que permitirá la evacuación de las plantas fotovoltaicas Bisbita, Colimbo, Porrón, Martineta y Calamón.
- Se dispondrá un (1) autotransformador de potencia 400/132/33 kV de instalación intemperie.
- Para el sistema de 400 kV se dispondrá una configuración línea-transformador, conectando con la línea eléctrica que evacuará la energía de las instalaciones anteriores en la subestación La Cereal 400kV, propiedad de Red Eléctrica de España.
- Todas las posiciones de 132 y 400 kV estarán debidamente equipadas con los elementos de maniobra, medida y protección necesarios para su operación segura.
- Para la alimentación de los servicios auxiliares de la subestación se emplearán tres (3) transformadores de tensión para alimentación de servicios auxiliares situados el parque de 132kV. Además, se contará con un (1) grupo electrógeno que actuará como respaldo para la alimentación de SSAA. Se prevé a su vez la opción de alimentación de servicios auxiliares mediante el devanado terciario del autotransformador de potencia.
- Se dispondrá un edificio que contará con una sola planta.
- Se dispondrá de WC químicos portátiles para proveer de aseos a la subestación.
- Además, la subestación contará con un cerramiento perimetral metálico.
2.5.1. Características generales

Para el sistema de 132 kV se ha optado por un esquema de línea-transformador de instalación intertemperie con llegada en aéreo desde la subestación Colimbo 132/30kV que permitirá la evacuación de las plantas fotovoltaicas Bisbita, Colimbo, Porrón, Martineta y Calamón.

Para el sistema de 400 kV se ha optado por un esquema línea-transformador conectando con la línea eléctrica que evacuará la energía de las instalaciones anteriores en la subestación La Cereal 400 kV, propiedad de Red Eléctrica de España.

Un (1) autotransformador de potencia trifásico con una relación de transformación 400/132/33 kV y de 200/240 MVA de potencia ONAN/ONAF.

Cada una de las posiciones de 132 y 400 kV estará debidamente equipada con los elementos de maniobra, medida y protección necesarios para su operación segura.

Se dispondrá un edificio de subestación de una sola planta, construido en base a elementos prefabricados de hormigón, que contará con las siguientes salas:

- Sala de control.
- Sala polivalente.
- Almacén.

En la sala de control de subestación se ubicarán los cuadros y equipos de control, armarios de protecciones, cuadros de distribución de servicios auxiliares, equipos rectificador-batería y equipos de medida.
2.5.2. Sistema 400 kV

En el sistema de 400 kV de la subestación se ha optado por un esquema línea-transformador, tipo intemperie. El aparellaje con que se equipa la posición es la siguiente:

Aparellaje

- Tres (3) pararrayos tipo autoválvula unipolares junto al autotransformador de potencia.
- Un (1) seccionador tripolar.
- Tres (3) transformadores de tensión inductivos para protección y medida.
- Tres (3) transformadores de intensidad para protección y medida.
- Tres (3) interruptores automáticos, unipolares de aislamiento en SF6.
- Un (1) seccionador tripolar equipado con cuchillas de puesta a tierra.
- Tres (3) pararrayos tipo autoválvula unipolares ubicados en la salida de línea.

2.5.3. Sistema 132 kV

El sistema de 132 kV de la subestación responde a la configuración línea-transformador, tipo intemperie. El aparellaje con que se equipa la posición es la siguiente:

Aparellaje

- Tres (3) pararrayos unipolares ubicados en la salida de línea.
- Un (1) seccionador tripolar con cuchillas de puesta a tierra.
- Tres (3) transformadores de tensión para alimentación de servicios auxiliares.
- Un (1) interruptor automático tripolar de corte en SF6.
- Tres (3) transformadores de intensidad.
- Tres (3) transformador de tensión inductivos.
- Tres (3) pararrayos unipolares junto al autotransformador de potencia.
Transformadores de servicios auxiliares

Para alimentación a los servicios auxiliares de corriente alterna, se montarán tres (3) transformadores de tensión instalados en el sistema de 132 kV para este motivo. Estos equipos se instalarán en el patio intemperie y alimentarán en baja tensión al cuadro de servicios auxiliares situado en la sala de control.

Se prevé a su vez la opción de alimentación de servicios auxiliares mediante el devanado terciario del autotransformador de potencia, la alimentación será en 33/0,42 kV de 250 kVA y grupo de conexión Dyn1.

2.5.4. Autotransformador de potencia

Se instalará un autotransformador de potencia trifásico con una relación de transformación 400/132/33 kV y de 200/240 MVA de potencia ONAN/ONAF, contará con regulación en carga, se instalará en intemperie, y contará con aislamiento y enfriamiento en aceite.

2.5.5. Instalaciones auxiliares

Dentro de las instalaciones auxiliares se suministrará y montará:

- Sistema de alumbrado y fuerza.
- Sistema anti-intrusismo.
- Sistema de detección de incendio.
- Sistema de aire acondicionado con bomba de calor en las salas de control.
- Grupo electrógeno como respaldo de la alimentación de los servicios auxiliares de la subestación.
2.6. Obra Civil de las Subestaciones

La obra civil para la construcción de las Subestaciones consistirá en:

2.6.1. Explanación y acondicionamiento del terreno

Se proyecta la ejecución de la explanación existente a la cota de proyecto, llevándose a cabo el desbroce y retirada de la tierra vegetal de dicha zona, que se acopiará en obra para su extendido final en las zonas libres exteriores a la explanada, procediéndose posteriormente a la realización de los trabajos de excavación y relleno compactado en las correspondientes zonas hasta la referida cota de explanación.

La subestación se implantará en el lugar con reducida pendiente para minimizar el movimiento de tierras y por lo tanto minimizar en mayor medida el impacto ambiental sobre el terreno y paisaje.

La cota de terminado de grava de la explanada quedará 10 cm por encima de la cota de explanación indicada.

2.6.2. Cerramiento perimetral

El cerramiento que delimitará el terreno destinado a alojar la subestación estará formado por una malla metálica, fijada todo sobre postes metálicos de 48 mm de diámetro, colocados cada 2,50 m. La sujeción de los postes al suelo se realizará mediante dados de hormigón, rematándose el espacio entre dados con un bordillo prefabricado. El cerramiento así constituido tendrá una altura de 2,30 m sobre el terreno, cumpliendo la mínima reglamentaria establecida de 2,20 m.

Se instalará en la Subestación un acceso formados por dos puertas metálicas, una peatonal de una hoja y 1 m de anchura y otra para el acceso de vehículos de dos hojas y 6 m de anchura.
2.6.3. Accesos y viales interiores

Se ha proyectado el acceso a la Subestación desde una vía de comunicación de dominio público.

Se construirán los viales interiores necesarios para permitir el acceso de los equipos de transporte y mantenimiento requeridos para el montaje y conservación de los elementos de la Subestación.

2.6.4. Edificio

Se instalará un edificio formado por elementos modulares prefabricados de hormigón armado con aislamiento térmico, realizándose “in situ” la cimentación y solera para el asiento y fijación de dichos elementos prefabricados y de los equipos interiores del edificio, así como la organización de las canalizaciones necesarias para el tendido de los cables de potencia y control. Además, se revestirá el propio edificio con una capa de mortero y se rematará con una cubierta a dos aguas de teja árabe tradicional.

El edificio constará de una sola planta, que se distribuirá en las siguientes salas:

- Sala de control.
- Sala polivalente.
- Almacén.

En las salas de control irán ubicados los equipos correspondientes al control, protección, comunicación, servicios auxiliares en BT, etc., necesarios para el correcto funcionamiento de la Subestación y la planta fotovoltaica, respectivamente.

Los almacenes tendrán como acceso una puerta de doble hoja para introducir los equipos a almacenar. Exteriormente el edificio irá rematado con una acera perimetral.

Los paneles de fachada se revestirán con capa de mortero (enfoscado) con lo que se busca respetar las tipologías y colores de las edificaciones de la zona. La cubierta se ejecutará a dos aguas con teja árabe tradicional.
2.6.5 Bancada del transformador y depósito de aceite

Para la instalación del autotransformador de potencia prevista se construirá una (1) bancada, formada por una cimentación de apoyo, y una cubeta para recogida del aceite, que en caso de un hipotético derrame se canalizará hacia un depósito en el que quedará confinado. La cimentación se recubrirá con pintura impermeabilizante para evitar cualquier fuga en caso de vertido de aceite.

Se instalarán un (1) depósito de aceite. Se determinará mediante el estudio y análisis de las necesidades de los transformadores de potencia a instalar en la subestación. Este estudio será parte de la ingeniería de detalle de la misma y considerará las características de los fluidos dieléctricos de los transformadores, así como sus volúmenes.

El depósito de aceite será mayorado en un 30% del volumen total del aceite del transformador para contemplar la posible entrada de agua y cuyas tomas de evacuación permiten la salida de agua pero nunca la del aceite.

El material del depósito de aceite se determinará en la fase de ingeniería de detalle pudiendo ser de hormigón armado o poliéster reforzado con fibra de vidrio.

2.6.6. Cimentaciones.

Se realizarán las cimentaciones necesarias para la sustentación del aparellaje exterior de 132 y 220 kV.
2.6.7 Canalizaciones eléctricas.

Se construirán todas las canalizaciones eléctricas necesarias para el tendido de los correspondientes cables de potencia y control.

Estas canalizaciones estarán formadas por zanjas, arquetas y tubos, enlazando los distintos elementos de la instalación para su correcto control y funcionamiento.

Las zanjas se construirán con bloques de hormigón prefabricado, colocados sobre un relleno filtrante en el que se dispondrá un conjunto de tubos porosos que constituirán parte de la red de drenaje, a través de la cual se evacuará cualquier filtración manteniéndose las canalizaciones libres de agua.

2.6.8. Drenaje de aguas pluviales

El drenaje de las aguas pluviales se realizará mediante una red de recogida formada por tuberías drenantes que canalizarán las mismas a través de un colector hasta el exterior de la Subestación, vertiendo en las cunetas próximas.

2.6.9. Terminado de la subestación

Acabada la ejecución del edificio, cimentaciones y canalizaciones, se procederá a la extensión de una capa de grava de 10 cm de espesor para dotar de uniformidad la superficie de la subestación. Se favorecerá este pavimento oscuro para reducir la contaminación lumínica.

2.7. LAT 132 kV SET Colimbo – SET Colectora La Cereal

La línea aérea conectará la SET Colimbo 132-30 kV con la SET Colectora La Cereal 400-132kV, tendrá una longitud total de 36.721 m de los cuales 27.199 m serán en doble circuito y los otros 9.522 m en simple circuito.
Dentro del primer tramo, en doble circuito, existe un tramo subterráneo de 573,20 m de longitud.

El circuito que es objeto de este proyecto comienza en la SET Colimbo 132-30kV y finaliza en la SET Colectora La Cereal 400-132kV la energía de las plantas fotovoltaicas GR PORRON, GR MARTINETA, GR CALAMON, GR COLIMBO y GR BISBITA. El circuito será dúplex en toda su longitud.

El otro circuito Comienza en la SET El Cubillo 132-30kV / 66-132kV, pero tan sólo llega hasta la SET Colectora Tres Cantos 132-220kV. Este circuito es objeto de otro proyecto.

La línea discursará por los términos municipales de Torremocha del Jarama, Torrelaguna, El Vellón, El Molar, San Agustín de Guadalix y Colmenar Viejo, todos ellos situados dentro de la Comunidad de Madrid.

2.7.1. Características generales

Las principales características de la línea son las siguientes:

Tabla 7: Características generales de la Línea 132 kV SET Colimbo – SET Colectora La Cereal

<table>
<thead>
<tr>
<th>Características generales</th>
<th>132</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión (kV)</td>
<td>145</td>
</tr>
<tr>
<td>Tensión más elevada de la red (kV)</td>
<td>1ª</td>
</tr>
<tr>
<td>Categoría de la línea</td>
<td>50</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
<td>224,77 MVA</td>
</tr>
<tr>
<td>Potencia a transportar (MVA)</td>
<td>Mixta</td>
</tr>
<tr>
<td>Tipología de la línea</td>
<td>SET Colimbo 132-30kV</td>
</tr>
<tr>
<td>Origen</td>
<td>SET Colectora La Cereal 400-132kV</td>
</tr>
<tr>
<td>Final</td>
<td>LA-510 [483-AL1/33-ST1A]</td>
</tr>
</tbody>
</table>

Tramo aéreo
<table>
<thead>
<tr>
<th>Nº de circuitos</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de conductores por fase</td>
<td>2</td>
</tr>
<tr>
<td>Longitud total:</td>
<td>36,148,45 m</td>
</tr>
</tbody>
</table>

Tramo Subterráneo

<table>
<thead>
<tr>
<th>Cable</th>
<th>RHZ1-2OL (AS) 76/132 kV 1x1600mm² K Cu+H95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de montaje</td>
<td>Doble circuito</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
<td>2</td>
</tr>
<tr>
<td>Configuración</td>
<td>Triángulo</td>
</tr>
<tr>
<td>Tipo de instalación</td>
<td>Perforación dirigida/Zanja bajo tubo hormigonado</td>
</tr>
<tr>
<td>Conductores por tubo</td>
<td>1</td>
</tr>
<tr>
<td>Diámetro del tubo</td>
<td>250</td>
</tr>
<tr>
<td>Material del tubo</td>
<td>Polietileno de alta densidad (PEAD)</td>
</tr>
<tr>
<td>Resistividad del terreno</td>
<td>1,5 K·m/W</td>
</tr>
<tr>
<td>Resistividad del hormigón</td>
<td>1 K·m/W</td>
</tr>
<tr>
<td>Temperatura del terreno</td>
<td>25°C</td>
</tr>
<tr>
<td>Tipo de conexión de las pantallas</td>
<td>Single point</td>
</tr>
<tr>
<td>Categoría de la red</td>
<td>A</td>
</tr>
<tr>
<td>Longitud total</td>
<td>573,20 m</td>
</tr>
</tbody>
</table>

2.7.2. Apoyos

Los conductores de la línea se fijarán mediante aisladores. Estas estructuras que en lo que sigue se denominarán simplemente "Apoyos" podrán ser metálicas, de hormigón, madera u otros materiales apropiados, bien de material homogéneo o combinación de varios de los citados anteriormente.

Según su función se clasifican en:
- **Apoyos de alineación**: Su función es solamente soportar los conductores y cables de tierra; son empleados en las alineaciones rectas.
- **Apoyos de anclaje**: Su finalidad es proporcionar puntos firmes en la línea, que limiten e impidan la destrucción total de la misma cuando por cualquier causa se rompa un conductor o apoyo.
- **Apoyos de ángulo**: Empleados para sustentar los conductores y cables de tierra en los vértices o ángulos que forma la línea en su trazado. Además de las fuerzas...
propias de flexión, en esta clase de apoyos aparece la composición de las tensiones de cada dirección.

- Apoyos de fin de línea: Soportan las tensiones producidas por la línea; son su punto de anclaje de mayor resistencia.
- Apoyos especiales: Su función es diferente a las enumeradas anteriormente; pueden ser, por ejemplo, cruce sobre ferrocarril, vías fluviales, líneas de telecomunicación o una bifurcación, ...

Los apoyos a utilizar en la construcción de la línea aérea serán del tipo Metálicos de Celosía.

Los apoyos contarán con instalaciones de puesta a tierra. El dimensionado de estas seguirá las recomendaciones del apartado 7 de la ITC-LAT 07 del Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión, de forma que en cualquier circunstancia se garanticen valores adecuados de la tensión de contacto y de paso en el apoyo.

Podrán efectuarse por cualquiera de los dos sistemas siguientes:
- Electrodo de difusión: Se dispondrán en dos patas de las torres situadas en una misma diagonal picas de acero cobreado de 2 m de longitud y 16 mm de diámetro, unidas mediante grapas de fijación y cable de cobre desnudo al montante del apoyo, con el objeto de conseguir una resistencia de paso inferior a 20 ohmios.
- Anillo difusor: Cuando se trate de un apoyo frecuentado se realizará una puesta a tierra en anillo alrededor del apoyo, de forma que cada punto del mismo quede distanciado 1 metro como mínimo de las aristas del macizo de cimentación.

2.7.3. Cimentaciones

Las cimentaciones de los apoyos metálicos serán monobloque o de macizos independientes, o bien mediante hormigón en masa, bien mediante el vertido directo en la excavación realizada al efecto, quedando la parte superior rematada mediante una
bancada, o bien para el caso de anclaje en roca mediante pernos embebidos y sujetos a la misma por mortero de cemento, complementándose en su parte superior por medio de un macizo de hormigón en masa unido a la bancada correspondiente, o bien para cimentación mixta, en el que a partir de una cierta profundidad (1-2 m), se encuentra roca consistente, de tal forma que se sustituye una parte de la excavación en roca por la armadura (pernos embebidos en la roca).

Sus dimensiones serán las facilitadas por el fabricante según el tipo de terreno, definido por el coeficiente de compresibilidad.

2.7.4. Tomas de tierra

Se puede emplear como conductor de conexión a tierra cualquier material metálico que reúna las características exigidas a un conductor según el apartado 7.2.2 de la ITC07 del R.L.A.T.

De esta manera, deberán tener una sección tal que puedan soportar sin un calentamiento peligroso la máxima corriente de descarga a tierra prevista, durante un tiempo doble al de accionamiento de las protecciones. En ningún caso se emplearán conductores de conexión a tierra con sección inferior a los equivalentes en 25 mm2 de cobre según el apartado 7.3.2.2 de la ITC-07 del R.L.A.T.

Las tomas de tierra deberán ser de un material, diseño, colocación en el terreno y número apropiados para la naturaleza y condiciones del propio terreno, de modo que puedan garantizar una resistencia de difusión mínima en cada caso y de larga permanencia.

Además de estas consideraciones, un sistema de puesta a tierra debe cumplir los esfuerzos mecánicos, corrosión, resistencia térmica, la seguridad para las personas y la protección a propiedades y equipos exigida en el apartado 7 de la ITC07 del R.L.A.T.

La toma de tierra de un apoyo es el conjunto de su puesta a tierra y de su mejora de puestas a tierra, (TT) = (PT) + (MT).
El principio básico de la puesta a tierra, es conseguir que la resistencia de difusión de la puesta a tierra sea inferior o igual a 20 Ω en los apoyos ubicados en zonas frecuentadas; en las zonas de pública concurrencia, además de cumplirse lo anterior, es obligatorio el empleo de electrodos de difusión en anillo cerrado enterrado alrededor del empotramiento del apoyo. El mismo tratamiento que para las zonas de pública concurrencia deberá tenerse para los apoyos que soporten interruptores, seccionadores u otros aparatos de maniobra.

En el caso de zonas no frecuentadas, se considerará una resistencia de difusión de 60 Ω.

Cuando con la realización de estas puestas a tierra (PT) se alcancen valores superiores de la resistencia de puesta a tierra indicadas anteriormente, se procederá a la mejora de la puesta a tierra (MT), hasta conseguir valores iguales o inferiores a 20 Ω en zonas de pública concurrencia (PC), frecuentada (F) o de apoyos de maniobra (AM), o valores iguales o inferiores a 60 Ω, en zona no frecuentada (NF).

Para la realización de las tomas de tierra hay que tener en cuenta si los apoyos son con cimentación de macizos independientes o con cimentación monobloque.

Al efecto, la puesta a tierra se efectuará mediante un sistema mixto de picas y anillos perimetrales de cable de cobre desnudo, con diferentes diseños según la zona de ubicación del apoyo (frecuentada o no) y las características del terreno, tipo de suelo y resistividad.

Así, en todos los casos, dos montantes opuestos de cada apoyo quedarán unidos a tierra por medio de electrodos constituidos por picas cilíndricas bimetálicas de acero-cobre, de 14,6 mm de diámetro y 1,50 metros de longitud, hincadas en el terreno circundante y conectadas a los montantes por medio de cable de Cu desnudo de 50 mm2 de sección. En las zonas frecuentadas, de pública concurrencia y para apoyos con elementos de maniobra y/o protección, los dos montantes y las picas quedarán adicionalmente puestos a tierra mediante un anillo formado por cable de cobre desnudo de 50 mm2 de sección enterrado a una profundidad mínima de 0,7 m.
Para cumplimentar lo mencionado, se ha adoptado para líneas aéreas de alta tensión los criterios siguientes, dependiendo de que el apoyo se ubique en zona de pública concurrencia (PC), frecuentada (F), no frecuentada (NF) o de apoyos de maniobra (AM):

<table>
<thead>
<tr>
<th>Tipo Cimentación Apoyos</th>
<th>Zona Macizos independiente</th>
<th>Monobloque</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>2 Picas + 2 Anillos</td>
<td>2 Picas + Anillo</td>
</tr>
<tr>
<td>F</td>
<td>2 Picas + 2 Anillos</td>
<td>2 Picas + Anillo</td>
</tr>
<tr>
<td>NF</td>
<td>2 Picas + 1 Anillo</td>
<td>2 Picas</td>
</tr>
<tr>
<td>AM</td>
<td>2 Picas + Anillo</td>
<td>1 Picas + Anillo</td>
</tr>
</tbody>
</table>

Tomas de tierra para cimentación en tierra

Zona no frecuentada (N)

Puesta a tierra, PT:
La puesta a tierra se efectuará de la siguiente manera:
- Se instalarán picas en el lateral de dos macizos diagonalmente opuestos, conectados a los anclajes mediante cable de cobre protegido por tubo de plástico.
- Los cables de cobre irán conectados a los anclajes mediante grapas de conexión sencilla.

Mejora de la puesta a tierra, MT:
Si la medida de resistencia de la PT resulta superior a 60 Ω, se realizará la siguiente mejora:
- La instalación de dos o más picas con sus correspondientes antenas.

Zonas de pública concurrencia (PC), frecuentadas (F) y apoyos de maniobra (AM)

Puesta a tierra, PT:
La puesta a tierra se realizará de la siguiente forma:
- Se instalará en una zanja en forma de anillo alrededor de la cimentación el cable de cobre que se conectará a los anclajes. La salida y entrada al anillo se hace a través de un tubo de plástico embebido en el hormigón.
- Se hincarán dos picas directamente en el lateral de los macizos diagonalmente opuestos, una por macizo y se conectarán al anillo.
- La conexión del anillo a los anclajes será mediante grapas de conexión paralela.
- En los macizos no ocupados por la entrada-salida del cable de cobre del primer anillo, se dejarán colocados tubos de plástico embebidos en el hormigón, por si hubiera que realizar mejoras de la puesta a tierra

Mejora de la puesta a tierra, MT:

Efectuada la medida de resistencia de la PT, si ésta resulta superior a 20 Ω, se realizará la mejora de tierra:
- Bien instalando cuatro picas sobre el primer anillo, o bien instalando un segundo anillo de cable de cobre concéntrico al anterior, en una zanja ligeramente más profunda que la del primer anillo, conectándolo a los macizos opuestos a los del primer anillo, o bien efectuando la combinación de ambas,

Efectuada una segunda medida de la resistencia de la TT, si no ha alcanzado la resistencia prescrita, se efectuará una ampliación de la mejora, que consistirá en:

Instalar seis picas conectándolas al segundo anillo mediante grapas de conexión a pica, hasta conseguir que la resistencia de difusión del conjunto de la TT sea inferior o igual a 20 Ω.
2.8. Obra Civil LAT 132 kV SET Colimbo — SET Colectora La Cereal

2.8.1. Zanja de cable

Las canalizaciones de líneas subterráneas se proyectarán teniendo en cuenta las siguientes consideraciones:

- La canalización discurrirá por terrenos de dominio público y privado, evitando siempre los ángulos pronunciados.
- El radio de curvatura después de colocado el cable será de mínimo 16 veces el diámetro. Los radios de curvatura en operaciones de tendido serán como mínimo el doble de las indicadas anteriormente en su posición definitiva.
- Los cruces de calzadas serán perpendiculares al eje de la calzada o vial.
- Los cruces de arroyos o cauces de agua serán perpendiculares al eje del mismo.

Los cables se alojarán en zanjas que, además de permitir las operaciones de apertura y tendido, cumplirá con las condiciones de paralelismo, cuando los haya.

El lecho de la zanja debe ser liso y estar libre de aristas vivas, cantos, piedras, etc. En el mismo se colocará una capa de arena de mina o de río lavado, limpia y suelta, exenta de sustancias orgánicas, arcilla o partículas terrosas, y el tamaño del grano estará comprendido entre 0,2 y 3 mm, siendo la capa de un espesor mínimo de 50 mm, sobre la que se depositará el cable o cables a instalar. Encima de los cables irá otra capa de arena de idénticas características con un espesor mínimo de 100 mm sobre los cables, y sobre ésta se colocará una protección a todo lo largo del trazado del cable. Esta protección estará constituida por el número de placas cubrecables necesario para cubrir toda la longitud y anchura de la zanja. Las dimensiones del cubrecables serán 250 mm de ancho por 1000 mm de longitud. Esta placa tendrá una superficie lisa libre de irregularidades y defectos el corte de los extremos de las placas será perpendicular a su eje longitudinal, sin aristas o rebabas cortantes y su perfil será uniforme.

Las placas llevarán las marcas en color negro indeleble. Las letras tendrán una altura de 15 mm como mínimo. Llevarán las siguientes marcas:
Las dos capas de arena cubrirán la anchura total de la zanja. A continuación, se tenderá una capa de tierra procedente de la excavación y con tierras de préstamo de arena, todo-uno o zahorras, de 0,3 m de espesor, apisonada por medios manuales. Se cuidará que esta capa de tierra esté exenta de piedras o cascotes. Sobre esta capa de tierra, y a una distancia mínima del suelo de 0,40 m y 0,40 m de la parte superior del cable se colocará una cinta de señalización como advertencia de la presencia de cables eléctricos.

A continuación, se terminará de rellenar la zanja con tierra procedente de la excavación, y en su defecto, con tierras de préstamo de, arena, todo-uno o zahorras, debiendo utilizar para su apisonado y compactación medios mecánicos.

Cuando los circuitos discurren bajo tubo hormigonado se realizará un dado de hormigón de dimensiones en el que se embeberán los tubos para el tendido de los cables. Sobre el hormigón, se terminará de rellenar la zanja con tierra procedente de la excavación, y en su defecto, con tierras de préstamo de, arena, todo-uno o zahorras, debiendo utilizar para su apisonado y compactación medios mecánicos.

La representación de lo expuesto anteriormente se muestra en el plano Sección tipo de zanjas.

2.8.2. Arqueta de telecomunicaciones

Para poder realizar los empalmes de los cables de fibra óptica necesarios para las comunicaciones entre las subestaciones y como ayuda para el tendido de los mismos se requiere la instalación de arquetas de telecomunicaciones. Estas arquetas también se
instalarán al final de los tramos, en las cercanías de las estructuras soporte de los terminales exteriores de las subestaciones o apoyos PAS.

Las arquetas serán de poliéster reforzado con fibra de vidrio (PRFV) con nervaduras exteriores para soportar la presión exterior. Se emplearán como “encofrado perdido” rellenando sus laterales tanto paredes como solera con hormigón HM-20 de 20 cm de espesor mínimo.

También podrán ser construidas in situ.

Las arquetas dispondrán de tapa de fundición.

Se evitará en lo posible, los cambios de dirección de las canalizaciones entubadas respetando los cambios de curvatura de los cables indicados por el fabricante. En los lugares donde se produzcan, para facilitar la manipulación de los cables podrán disponerse arquetas con tapas registrables o no. Con objeto de no sobrepasar las tensiones de tiro indicadas en las normas aplicables a cada tiro de cable, en los tramos rectos se instalarán arquetas intermedias, registrables, ciegas o simplemente calas de tiro en aquellos casos que lo requieran. A la entrada de las arquetas, las canalizaciones entubadas deberán quedar debidamente selladas en sus extremos.

2.8.3. Perforación dirigida

La perforación horizontal dirigida es una técnica que permite la instalación de tuberías subterráneas mediante la realización de un túnel, sin abrir zanjas y con un control absoluto de la trayectoria de perforación.

Este control permite librar obstáculos naturales o artificiales sin afectar al terreno, con lo cual se garantiza la mínima repercusión ambiental al terreno.

La trayectoria de perforación se realiza a partir de arcos de circunferencia y tramos rectos en los cuales los radios mínimos están condicionados por la flexión máxima de la varilla de perforación y por la flexibilidad del tubo.
La perforación dirigida se puede ver como una secuencia de cuatro fases.

Fase 1: Disposición

La perforación puede comenzar desde una pequeña cata, quedando siempre la máquina en la superficie, o bien desde el nivel de tierra.

En esta primera fase se determinarán los puntos de entrada y de salida de la perforación, ejecutando las catas si procede, y se seleccionará la trayectoria más adecuada a seguir.

Fase 2: Perforación piloto

Se van introduciendo varillas, las cuales son roscadas automáticamente unas a otras a medida que va avanzando la perforación. En el proceso se van combinando adecuadamente el empuje con el giro de las varillas con el fin de obtener un resultado óptimo.

Para facilitar la perforación se utiliza un compuesto llamado bentonita. Esto es una arcilla de grano muy fino que contiene bases y hierro. La bentonita es inyectada a presión por el interior de las varillas hasta el cabezal de perforación siendo su misión principal refrigerar y lubricar dicho cabezal y suministrar estabilidad a la perforación.

En esta perforación piloto, la cabeza está dotada de una sonda, de manera que mediante un receptor se puede conocer la posición exacta del cabezal.

La perforación piloto se deberá realizar a la profundidad apropiada para evitar derrumbamientos o situaciones donde los fluidos utilizados pudieran salir a la superficie. La trayectoria se puede variar si fuese necesario debido a la aparición de obstáculos en la trayectoria marcada.
Fase 3: Escariado

Una vez hecha la perforación piloto se desmonta el cabezal de perforación. En su lugar se montan conos escariadores para aumentar el diámetro del túnel. Se hacen tantas pasadas como sea necesario aumentando sucesivamente las dimensiones de los conos escariadores, y así el diámetro del túnel.

Este proceso se realiza en sentido inverso; es decir, tirando hacia la máquina.

Fase 4: Instalación de la tubería

Finalmente se une la tubería, previamente soldada por termo fusión en toda su longitud, a un cono escariador-ensanchador mediante una pieza de giro libre de modo que va quedando instalada en el túnel practicado.

Los tubos empleados serán de PEHD PE100 PN10 en color negro con bandas azules según norma UNE-EN 12201.

En el interior de cada tubo se instalará una cuerda de nylon de Ø10 mm.

En el apartado planos se encuentra la sección tipo de la perforación.
2.9. LASAT 400 kV SET El Colectora LC — SET LC REE

La línea aérea-subterránea conectará la Subestación Colectora La Cereal 400/132 kV con la Subestación La Cereal 400 kV, propiedad de REE. La línea poseerá una longitud total de 3.970,12 m. La línea comenzará y finalizará en los respectivos sistemas de celdas o intemperie de las infraestructuras a las que se conecta.

La línea consta de tres tramos, el primero aéreo de 2.549,40 m, el segundo, subterráneo de 1.102,82 m y el tercero, también aéreo, de 317,90 m.

La línea discurrirá por los términos municipales de Colmenar Viejo y Tres Cantos, Provincia de Madrid, Comunidad de Madrid.

7.9.1. Características generales

Las principales características de la línea son las siguientes:

Tabla 8: Características generales de la línea LASAT 400 kV SET El Colectora LC — SET LC REE

<table>
<thead>
<tr>
<th>Características generales</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión (kV)</td>
<td>400</td>
</tr>
<tr>
<td>Tensión más elevada de la red (kV)</td>
<td>420</td>
</tr>
<tr>
<td>Categoría de la línea</td>
<td>Especial</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
<td>50</td>
</tr>
<tr>
<td>Potencia a transportar (MW)</td>
<td>202,29</td>
</tr>
<tr>
<td>Potencia a transportar (MVA)</td>
<td>224,77</td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>0,9</td>
</tr>
<tr>
<td>Tipología de la línea</td>
<td>Mixta (Aérea-Subterránea)</td>
</tr>
<tr>
<td>Origen</td>
<td>Subestación Colectora La Cereal 400/132 kV</td>
</tr>
<tr>
<td>Final</td>
<td>Subestación La Cereal 400 kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo aéreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
</tr>
<tr>
<td>Nº de circuitos</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Longitud total (Tramo 1)</td>
</tr>
<tr>
<td>Longitud total (Tramo 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo Subterráneo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
</tr>
<tr>
<td>Tipo de montaje</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
</tr>
<tr>
<td>Configuración</td>
</tr>
<tr>
<td>Tipo de instalación</td>
</tr>
<tr>
<td>Conductores por tubo</td>
</tr>
<tr>
<td>Diámetro del tubo</td>
</tr>
<tr>
<td>Material del tubo</td>
</tr>
<tr>
<td>Resistividad del terreno</td>
</tr>
<tr>
<td>Resistividad del hormigón</td>
</tr>
<tr>
<td>Temperatura del terreno</td>
</tr>
<tr>
<td>Tipo de conexión de las pantallas</td>
</tr>
<tr>
<td>Categoría de la red</td>
</tr>
</tbody>
</table>

2.9.2. Apoyos

Los conductores de la línea se fijarán mediante aisladores. Estas estructuras que en lo que sigue se denominarán simplemente "Apoyos" podrán ser metálicas, de hormigón, madera u otros materiales apropiados, bien de material homogéneo o combinación de varios de los citados anteriormente.

Según su función se clasifican en:

- Apoyos de alineación: Su función es solamente soportar los conductores y cables de tierra; son empleados en las alineaciones rectas.
- Apoyos de anclaje: Su finalidad es proporcionar puntos firmes en la línea, que limiten e impidan la destrucción total de la misma cuando por cualquier causa se rompa un conductor o apoyo.
- Apoyos de ángulo: Empleados para sustentar los conductores y cables de tierra en los vértices o ángulos que forma la línea en su trazado. Además de las fuerzas...
propias de flexión, en esta clase de apoyos aparece la composición de las tensiones de cada dirección.

- Apoyos de fin de línea: Soportan las tensiones producidas por la línea; son su punto de anclaje de mayor resistencia.
- Apoyos especiales: Su función es diferente a las enumeradas anteriormente; pueden ser, por ejemplo, cruce sobre ferrocarril, vías fluviales, líneas de telecomunicación o una bifurcación, ...

Los apoyos a utilizar en la construcción de la línea aérea serán del tipo Metálicos de Celosía.

Los apoyos contarán con instalaciones de puesta a tierra. El dimensionado de estas seguirá las recomendaciones del apartado 7 de la ITC-LAT 07 del Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión, de forma que en cualquier circunstancia se garanticen valores adecuados de la tensión de contacto y de paso en el apoyo.

Podrán efectuarse por cualquiera de los dos sistemas siguientes:
- Electrodo de difusión: Se dispondrán en dos patas de las torres situadas en una misma diagonal picas de acero cobreado de 2 m de longitud y 16 mm de diámetro, unidas mediante grapas de fijación y cable de cobre desnudo al montante del apoyo, con el objeto de conseguir una resistencia de paso inferior a 20 ohmios.
- Anillo difusor: Cuando se trate de un apoyo frecuentado se realizará una puesta a tierra en anillo alrededor del apoyo, de forma que cada punto del mismo quede distanciado 1 metro como mínimo de las aristas del macizo de cimentación.

2.9.3. Cimentaciones

Las cimentaciones de los apoyos metálicos serán monobloque o de macizos independientes, o bien mediante hormigón en masa, bien mediante el vertido directo en la excavación realizada al efecto, quedando la parte superior rematada mediante una
bancada, o bien para el caso de anclaje en roca mediante pernos embebidos y sujetos a la misma por mortero de cemento, complementándose en su parte superior por medio de un macizo de hormigón en masa unido a la bancada correspondiente, o bien para cimentación mixta, en el que a partir de una cierta profundidad (1-2 m), se encuentra roca consistente, de tal forma que se sustituye una parte de la excavación en roca por la armadura (pernos embebidos en la roca).

Sus dimensiones serán las facilitadas por el fabricante según el tipo de terreno, definido por el coeficiente de compresibilidad.

2.9.4. Tomas de tierra

Se puede emplear como conductor de conexión a tierra cualquier material metálico que reúna las características exigidas a un conductor según el apartado 7.2.2 de la ITC07 del R.L.A.T.

De esta manera, deberán tener una sección tal que puedan soportar sin un calentamiento peligroso la máxima corriente de descarga a tierra prevista, durante un tiempo doble al de accionamiento de las protecciones. En ningún caso se emplearán conductores de conexión a tierra con sección inferior a los equivalentes en 25 mm2 de cobre según el apartado 7.3.2.2 de la ITC-07 del R.L.A.T.

Las tomas de tierra deberán ser de un material, diseño, colocación en el terreno y número apropiados para la naturaleza y condiciones del propio terreno, de modo que puedan garantizar una resistencia de difusión mínima en cada caso y de larga permanencia.

Además de estas consideraciones, un sistema de puesta a tierra debe cumplir los esfuerzos mecánicos, corrosión, resistencia térmica, la seguridad para las personas y la protección a propiedades y equipos exigida en el apartado 7 de la ITC07 del R.L.A.T.

La toma de tierra de un apoyo es el conjunto de su puesta a tierra y de su mejora de puestas a tierra,

\[(TT) = (PT) + (MT)\]
El principio básico de la puesta a tierra, es conseguir que la resistencia de difusión de la puesta a tierra sea inferior o igual a 20 Ω en los apoyos ubicados en zonas frecuentadas; en las zonas de pública concurrencia, además de cumplirse lo anterior, es obligatorio el empleo de electrodos de difusión en anillo cerrado enterrado alrededor del empotramiento del apoyo. El mismo tratamiento que para las zonas de pública concurrencia deberá tenerse para los apoyos que soporten interruptores, seccionadores u otros aparatos de maniobra.

En el caso de zonas no frecuentadas, se considerará una resistencia de difusión de 60 Ω.

Cuando con la realización de estas puestas a tierra (PT) se alcancen valores superiores de la resistencia de puesta a tierra indicadas anteriormente, se procederá a la mejora de la puesta a tierra (MT), hasta conseguir valores iguales o inferiores a 20 Ω en zonas de pública concurrencia (PC), frecuentada (F) o de apoyos de maniobra (AM), o valores iguales o inferiores a 60 Ω, en zona no frecuentada (NF).

Para la realización de las tomas de tierra hay que tener en cuenta si los apoyos son con cimentación de macizos independientes o con cimentación monobloque.

Al efecto, la puesta a tierra se efectuará mediante un sistema mixto de picas y anillos perimetales de cable de cobre desnudo, con diferentes diseños según la zona de ubicación del apoyo (frecuentada o no) y las características del terreno, tipo de suelo y resistividad.

Así, en todos los casos, dos montantes opuestos de cada apoyo quedarán unidos a tierra por medio de electrodos constituidos por picas cilíndricas bimetálicas de acero-cobre, de 14,6 mm de diámetro y 1,50 metros de longitud, hincadas en el terreno circundante y conectadas a los montantes por medio de cable de Cu desnudo de 50 mm2 de sección. En las zonas frecuentadas, de pública concurrencia y para apoyos con elementos de maniobra y/o protección, los dos montantes y las picas quedarán adicionalmente puestos a tierra mediante un anillo formado por cable de cobre desnudo de 50 mm2 de sección enterrado a una profundidad mínima de 0,7 m.
Para cumplimentar lo mencionado, se ha adoptado para líneas aéreas de alta tensión los criterios siguientes, dependiendo de que el apoyo se ubique en zona de pública concurrencia (PC), frecuentada (F), no frecuentada (NF) o de apoyos de maniobra (AM):

<table>
<thead>
<tr>
<th>Zona</th>
<th>Tipo cimentación apoyos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macizos independientes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>2 Picas + Anillo</td>
</tr>
<tr>
<td>F</td>
<td>2 Picas + Anillo</td>
</tr>
<tr>
<td>NF</td>
<td>2 Picas</td>
</tr>
<tr>
<td>AM</td>
<td>2 Picas + Anillo</td>
</tr>
</tbody>
</table>

Tomas de tierra para cimentación en tierra

Zona no frecuentada (N)

Puesta a tierra, PT:

La puesta a tierra se efectuará de la siguiente manera:

- Se instalarán picas en el lateral de dos macizos diagonalmente opuestos, conectados a los anclajes mediante cable de cobre protegido por tubo de plástico.
- Los cables de cobre irán conectados a los anclajes mediante grapas de conexión sencilla.

Mejora de la puesta a tierra, MT:

Si la medida de resistencia de la PT resulta superior a 60 Ω, se realizará la siguiente mejora:

- La instalación de dos o más picas con sus correspondientes antenas.

Zonas de pública concurrencia (PC), frecuentadas (F) y apoyos de maniobra (AM)

Puesta a tierra, PT:

La puesta a tierra se realizará de la siguiente forma:
Se instalará en una zanja en forma de anillo alrededor de la cimentación el cable de cobre que se conectará a los anclajes. La salida y entrada al anillo se hace a través de un tubo de plástico embebido en el hormigón.

Se hincarán dos picas directamente en el lateral de los macizos diagonalmente opuestos, una por macizo y se conectarán al anillo.

La conexión del anillo a los anclajes será mediante grapas de conexión paralela.

En los macizos no ocupados por la entrada-salida del cable de cobre del primer anillo, se dejarán colocados tubos de plástico embebidos en el hormigón, por si hubiera que realizar mejoras de la puesta a tierra

Mejora de la puesta a tierra, MT:

Efectuada la medida de resistencia de la PT, si ésta resulta superior a 20 Ω, se realizará la mejora de tierra:

- Bien instalando cuatro picas sobre el primer anillo, o bien instalando un segundo anillo de cable de cobre concéntrico al anterior, en una zanja ligeramente más profunda que la del primer anillo, conectándolo a los macizos opuestos a los del primer anillo, o bien efectuando la combinación de ambas,

Efectuada una segunda medida de la resistencia de la TT, si no ha alcanzado la resistencia prescrita, se efectuará una ampliación de la mejora, que consistirá en:

- Instalar seis picas conectándolas al segundo anillo mediante grapas de conexión a pica, hasta conseguir que la resistencia de difusión del conjunto de la TT sea inferior o igual a 20 Ω.

2.10. Obra civil LASAT 400 kV SET El Colectora LC — SET LC REE

Explanación y acondicionamiento del terreno: Se ejecuta la explanación de la zona, llevándose a cabo el desbroce y retirada de la tierra vegetal de dicha zona, esta se acopiará en obra para su extendido final en las zonas libres exteriores a la explanada, procediéndose posteriormente a la realización de los trabajos de excavación y relleno compactado en las correspondientes zonas hasta la cota de explanación. La cota de
terminado de grava de la explanada quedará 10 cm por encima de la cota de explanación indicada.

Cerramiento perimetral: El cerramiento que delimitará el terreno destinado a alojar la instalación estará formado por malla metálica sobre dados de hormigón, la altura de este cerramiento será 2,30 metros. Se instalarán para el acceso a la instalación dos puertas metálicas, una peatonal de una hoja y 1 m de anchura y otra de 4 metros de ancho para el acceso de vehículos.

Accesos y viales interiores: se ha proyectado el acceso desde una vía de comunicación de dominio público. Se construirá el vial interior necesario para permitir el acceso de los equipos de transporte y mantenimiento requeridos para el montaje y conservación del recinto de medida.

Edificio: Se instalará un edificio formado por elementos modulares prefabricados de hormigón armado con aislamiento térmico, realizándose “in situ” la cimentación y solera para el asiento y fijación de dichos elementos prefabricados y de los equipos interiores del edificio, así como la organización de las canalizaciones necesarias para tendido de los cables de control.

Cimentaciones: se realizarán las cimentaciones necesarias para la sustentación del aparellaje de exterior de 400kV.

Canalizaciones eléctricas: Se construirán todas las canalizaciones eléctricas necesarias para el tendido de los cables de potencia y los correspondientes cables de control. Las canalizaciones de los cables de control estarán formadas por zanjas, arquetas y tubos, enlazando los distintos elementos de la instalación para su correcto control y funcionamiento.

Drenaje de aguas pluviales: El drenaje de las aguas pluviales se realizará mediante una red de recogida formada por tuberías drenantes que canalizarán las mismas a través de un colector hasta el exterior de la instalación.
Terminado de la instalación: Acabada la ejecución del edificio, cimentaciones y canalizaciones, se procederá a la extensión de una capa de grava de 10 cm de espesor para dotar de uniformidad la superficie de la instalación. Se favorecerá este pavimento oscuro para reducir la contaminación lumínica.

2.10.1. Zanja de cable

Las canalizaciones de líneas subterráneas se proyectarán teniendo en cuenta las siguientes consideraciones:

- La canalización discurrirá por terrenos de dominio público y privado, evitando siempre los ángulos pronunciados.
- El radio de curvatura después de colocado el cable será de mínimo 16 veces el diámetro. Los radios de curvatura en operaciones de tendido serán como mínimo el doble de las indicadas anteriormente en su posición definitiva.
- Los cruces de calzadas serán perpendiculares al eje de la calzada o vial.
- Los cruces de arroyos o cauces de agua serán perpendiculares al eje del mismo.

Los cables se alojarán en zanjas que, además de permitir las operaciones de apertura y tendido, cumplirá con las condiciones de paralelismo, cuando los haya.

El lecho de la zanja debe ser liso y estar libre de aristas vivas, cantos, piedras, etc. En el mismo se colocará una capa de arena de mina o de río lavado, limpia y suelta, exenta de sustancias orgánicas, arcilla o partículas terrosas, y el tamaño del grano estará comprendido entre 0,2 y 3 mm, siendo la capa de un espesor mínimo de 50 mm, sobre la que se depositará el cable o cables a instalar. Encima de los cables irá otra capa de arena de idénticas características con un espesor mínimo de 100 mm sobre los cables, y sobre ésta se colocará una protección a todo lo largo del trazado del cable. Esta protección estará constituida por el número de placas cubrecables necesario para cubrir toda la longitud y anchura de la zanja. Las dimensiones del cubrecables serán 250 mm de ancho por 1000 mm de longitud. Esta placa tendrá una superficie lisa libre de irregularidades y defectos el corte de los extremos de las placas será perpendicular a su eje longitudinal, sin aristas o rebabas cortantes y su perfil será uniforme.
Las placas llevarán las marcas en color negro indeleble. Las letras tendrán una altura de 15 mm como mínimo. Llevarán las siguientes marcas:

- La señal de advertencia de riesgo eléctrico.
- El rótulo ATENCIÓN: CABLES ELÉCTRICOS.
- La abreviatura de su material constitutivo.
- La inscripción LIBRE DE HALÓGENOS.
- Símbolo de material reciclable.

Las dos capas de arena cubrirán la anchura total de la zanja. A continuación, se tenderá una capa de tierra procedente de la excavación y con tierras de préstamo de arena, todo-uno o zahorras, de 0,3 m de espesor, apisonada por medios manuales. Se cuidará que esta capa de tierra esté exenta de piedras o cascotes. Sobre esta capa de tierra, y a una distancia mínima del suelo de 0,40 m y 0,40 m de la parte superior del cable se colocará una cinta de señalización como advertencia de la presencia de cables eléctricos.

A continuación, se terminará de rellenar la zanja con tierra procedente de la excavación, y en su defecto, con tierras de préstamo de, arena, todo-uno o zahorras, debiendo utilizar para su apisonado y compactación medios mecánicos.

Cuando los circuitos discurren bajo tubo hormigonado se realizará un dado de hormigón de dimensiones en el que se embeberán los tubos para el tendido de los cables. Sobre el hormigón, se terminará de rellenar la zanja con tierra procedente de la excavación, y en su defecto, con tierras de préstamo de, arena, todo-uno o zahorras, debiendo utilizar para su apisonado y compactación medios mecánicos.

La representación de lo expuesto anteriormente se muestra en el plano Sección tipo de zanjas.

2.10.2. Cámara de empalme

La cámara de empalme será prefabricada, de una sola pieza y estanca. Se ajustará a la pendiente del terreno con un máximo del 10%.
La colocación de la cámara se deberá efectuar con una grúa adecuada.

Una vez colocada la cámara en su sitio se procederá a la conexión de los distintos tubos de la canalización con la cámara y a la unión de los anillos exteriores con la puesta a tierra interior.

Una vez cerrada la tapa de la boca de tendido y antes de rellenar el espacio entre la cámara y el terreno con hormigón de limpieza, habrá que rellenar los huecos libres entre el tubo de ayuda al tendido y el pasamuros con lana de roca y posteriormente mortero, para evitar que el hormigón se una a la tapa de la boca de tendido, inutilizándola.

Si las características del terreno hacen inviable el transporte y colocación de este tipo de cámaras, se utilizarán cámaras modulares con las características que se detallan a continuación.

Las cámaras de empalme serán prefabricadas de hormigón armado y deberán ir colocadas sobre una losa de hormigón armado nivelada con las características definidas en el plano correspondiente.

Una vez colocada la cámara en su sitio se procederá a la conexión de los distintos tubos de la canalización con la cámara. Una vez embocados los tubos se procederá a su sellado.

Para finalizar estas tareas se rellenará el espacio entre la cámara y el terreno con un hormigón de limpieza tipo HM-12,5 hasta una cota de 300 mm por debajo de la cota del terreno.

2.10.3 Arqueta de telecomunicaciones

Para poder realizar los empalmes de los cables de fibra óptica necesarios para las comunicaciones entre las subestaciones y como ayuda para el tendido de los mismos se requiere la instalación de arquetas de telecomunicaciones. Estas arquetas también se
instalarán al final de los tramos, en las cercanías de las estructuras soporte de los terminales exteriores de las subestaciones o apoyos PAS.

Las arquetas serán de poliéster reforzado con fibra de vidrio (PRFV) con nervaduras exteriores para soportar la presión exterior. Se emplearán como “encofrado perdido” rellenando sus laterales tanto paredes como solera con hormigón HM-20 de 20 cm de espesor mínimo.

También podrán ser construidas in situ.

Las arquetas dispondrán de tapa de fundición.

Se evitará en lo posible, los cambios de dirección de las canalizaciones entubadas respetando los cambios de curvatura de los cables indicados por el fabricante. En los lugares dónde se produzcan, para facilitar la manipulación de los cables podrán disponerse arquetas con tapas registrables o no. Con objeto de no sobrepasar las tensiones de tiro indicadas en las normas aplicables a cada tiro de cable, en los tramos rectos se instalarán arquetas intermedias, registrables, ciegas o simplemente calas de tiro en aquellos casos que lo requieran. A la entrada de las arquetas, las canalizaciones entubadas deberán quedar debidamente selladas en sus extremos.
3. MARCO LEGISLATIVO

El presente informe está elaborado con la finalidad de realizar un estudio del patrimonio cultural existente en el ámbito del proyecto de la Planta Fotovoltaica denominada GR Colimbo, Subestación Colimbo 132/30 kV, Subestación Eléctrica Colectora La Cereal 400/132 kV y su infraestructura de evacuación (Madrid).

Para realizar el presente informe histórico se han tenido en cuenta las leyes de Patrimonio Cultural e Histórico tanto a nivel nacional como autonómico. En el caso de la ley a nivel nacional, se siguen las especificaciones incluidas en la Ley 16/1985, de 25 de junio, del Patrimonio Histórico Español. Según dicha ley en su Título Preliminar Artículo 1, “integran el Patrimonio Histórico Español los inmuebles y objetos muebles de interés artístico, histórico, paleontológico, arqueológico, etnográfico, científico o técnico. También forman parte del mismo el patrimonio documental y bibliográfico, los yacimientos y zonas arqueológicas, así como los sitios naturales, jardines y parques, que tengan valor artístico, histórico o antropológico. Asimismo, forman parte del Patrimonio Histórico Español los bienes que integren el Patrimonio Cultural Inmaterial, de conformidad con lo que establezca su legislación especial”.

3.1. Patrimonio histórico-cultural de la Comunidad de Madrid

A nivel autonómico, la Ley 3/2013, de 18 de junio, de Patrimonio Histórico de la Comunidad de Madrid, en su Título Preliminar Artículo 2, establece que “integran el patrimonio histórico de la Comunidad de Madrid los bienes materiales e inmateriales ubicados en su territorio a los que se les reconozca un interés histórico, artístico, arquitectónico, arqueológico, paleontológico, paisajístico, etnográfico o industrial”.

Según el Título V Artículo 28 de la misma ley, “un yacimiento arqueológico es el emplazamiento o unidad geomorfológica que contiene evidencias físicas de una actividad humana pasada, para cuyo estudio e interpretación son esenciales las técnicas de investigación arqueológica. Se incluyen los sitios urbanos o rústicos en los que permanecen estructuras, niveles, y depósitos de periodos y actividades anteriores”.

Grenergy

Acteo
Arqueología y Patrimonio
Ese mismo artículo reconoce como yacimiento paleontológico “el lugar o unidad geomorfológica donde existen restos fosilizados que constituyen una unidad coherente y con entidad propia susceptible de ser estudiados con metodología paleontológica”. De este modo, cualquier obra o remoción de terreno que afecte a zonas en que se encuentren yacimientos arqueológicos y/o paleontológicos recogidos en el Catálogo Geográfico de Bienes Inmuebles del Patrimonio Histórico deberán ser autorizadas por la Consejería competente en materia de patrimonio histórico.

En el Título V, Capítulo I, Artículos 29 y 30 de la Ley 3/2013 de 18 de junio de Patrimonio Histórico, se regulan las Investigaciones Arqueológicas y Paleontológicas en la Comunidad de Madrid.

“Artículo 29. Se consideran intervenciones arqueológicas y paleontológicas las excavaciones, las prospecciones, los estudios de arte rupestre, el análisis estratigráfico de estructuras y los trabajos de protección y conservación de yacimientos. Según la razón que las motiva se pueden clasificar en:

a) Intervenciones programadas, encuadradas en un proyecto de investigación científica.

b) Intervenciones preceptivas, necesarias para la evaluación y ejecución de planes y proyectos o para la realización de obras de urbanización, edificación, infraestructuras, rehabilitación, consolidación y restauración en los terrenos en los que existan yacimientos recogidos en el Catálogo Geográfico de Bienes Inmuebles del Patrimonio Histórico.

c) Intervenciones de urgencia, efectuadas excepcionalmente como consecuencia de la aparición de hallazgos.

Artículo 30.

1. Será necesaria la autorización previa de la Consejería competente en materia de patrimonio histórico para la realización de las intervenciones arqueológicas y paleontológicas que se establecen en el artículo 29. (…)

2. Para el otorgamiento de la autorización de intervenciones será precisa la presentación de una solicitud de autorización firmada por el promotor y por la dirección de la intervención arqueológica o paleontológica. Dicha solicitud deberá ir acompañada de un proyecto arqueológico o paleontológico que, al menos, contendrá el plazo de duración, la delimitación de la zona de los trabajos, medidas para la conservación.
de los materiales arqueológicos o paleontológicos y los recursos materiales y humanos que se van a utilizar; asimismo se acreditará la necesidad y el rigor científico de la intervención”.

En cuanto a los Bienes de Interés Cultural y sus categorías, en el Título Preliminar Artículo 2, se especifica que “serán Bienes de Interés Cultural los bienes que, formando parte del patrimonio histórico de la Comunidad de Madrid, tengan un valor excepcional y así se declaren expresamente”. Se recogen distintas categorías en las que deberán ser integrados en su declaración como tal:

a) Monumento: la construcción u obra producto de la actividad humana de relevante interés histórico, arquitectónico, arqueológico o artístico.

b) Conjunto Histórico: la agrupación de bienes inmuebles que configuran una unidad coherente con valor histórico y cultural, aunque individualmente no tengan una especial relevancia.

c) Paisaje Cultural: los lugares que, como resultado de la acción del hombre sobre la naturaleza, ilustran la evolución histórica de los asentamientos humanos y de la ocupación y uso del territorio.

d) Jardín Histórico: el espacio delimitado, producto de la ordenación humana de elementos naturales, estimado de interés histórico, estético o botánico.

e) Sitio o Territorio Histórico: el lugar vinculado a acontecimientos del pasado que tengan una especial relevancia histórica.

f) Bien de Interés Etnográfico o Industrial: construcciones o instalaciones representativas de actividades tradicionales o vinculadas a modos de extracción, producción, comercialización o transporte que merezcan ser preservados por su valor industrial, técnico o científico.

g) Zona de interés Arqueológico y/o Paleontológico: lugar o paraje en donde existan bienes o restos de la intervención humana o restos fosilizados, susceptibles de ser estudiados con metodología arqueológica y/o paleontológica, tanto si se encuentran en la superficie como si se encuentran en el subsuelo, bajo las aguas o en construcciones emergentes.
Además, a nivel estatal, con el Decreto de 22 de abril de 1949, quedaron automáticamente declarados Bien de Interés Cultural los castillos de España, sus ruinas y, por extensión, todos los elementos defensivos. Posteriormente, el Decreto 571/1963 amplió esta protección a los escudos, emblemas, piedras heráldicas, rollos de justicia, cruces de término y piezas similares de interés histórico-artístico de más de 100 años.

Finalmente, la Ley 16/1985, de 25 de junio, del Patrimonio Histórico Español, recogió lo indicado en los decretos anteriores y declaró, además, mediante el Artículo 40, Bienes de Interés Cultural las cuevas, abrigos y lugares con manifestaciones de arte rupestre.

También se reconoce que “serán Bienes de Interés Patrimonial los bienes que, formando parte del patrimonio histórico de la Comunidad de Madrid, sin tener valor excepcional, posean una especial significación histórica o artística y en tal sentido declarados”.

En los casos anteriores, los elementos inmuebles a proteger pueden tener asociado un entorno de protección. Según el Título Preliminar Artículo 4, “se entiende por entorno de un bien inmueble el ámbito que lo rodea que permite su adecuada percepción y comprensión cultural. Dicho entorno será delimitado en la correspondiente declaración de Bien de Interés Cultural o de Interés Patrimonial”.

Para la salvaguarda, consulta y divulgación de los bienes patrimoniales existe el Catálogo Geográfico de Bienes Inmuebles del Patrimonio Histórico de la Comunidad de Madrid. Este catálogo está formado por el conjunto de bienes inmuebles declarados o sobre los que se haya incoado expediente de declaración de Bien de Interés Cultural o de Interés Patrimonial, así como por los yacimientos arqueológicos y paleontológicos cuya existencia esté debidamente documentada por la Dirección General competente en materia de patrimonio histórico. Además, según la propia ley autonómica, dicho catálogo debe estar actualizado en todo momento.
4. INVENTARIO ARQUEOLÓGICO Y AFECCIONES POTENCIALES

4.1. Estudio documental de Patrimonio del proyecto

4.1.1. Elementos del patrimonio cultural inventariados

Con fecha 17 de febrero de 2021 se solicitó a la Dirección General de Patrimonio Histórico el inventario de los yacimientos inventariados en el municipio afectado y con fecha 24 de febrero de 2021 dicha dirección facilitó la información de los elementos culturales cercanos al proyecto.

Tabla 9: Elementos culturales inventariados

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>DENOMINACIÓN</th>
<th>MUNICIPIO</th>
<th>ADSCRIPCIÓN CULTURAL</th>
<th>TIPOLOGÍA</th>
<th>COORDENADAS UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM/153/0037</td>
<td>Construcción Auxiliar del Canal de Y-II</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 458257 Y 4522401</td>
</tr>
<tr>
<td>CM/153/0033</td>
<td>Almenara de Valdeperote, del Canal de la Parra</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 458373 Y 4519643</td>
</tr>
<tr>
<td>CM/153/0090</td>
<td>Puente sobre el Canal de Cabarrús</td>
<td>Torremocha de Jarama</td>
<td>Siglo XVIII</td>
<td>Infraestructura hidráulica</td>
<td>X 457551 Y 4518291</td>
</tr>
<tr>
<td>CM/168/0013</td>
<td>Miralrio</td>
<td>El Vellón</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>X 455900 Y 4515274</td>
</tr>
<tr>
<td>CM/168/0031</td>
<td>Sifón de los Yesos</td>
<td>El Vellón</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 454877 Y 4514017</td>
</tr>
<tr>
<td>CM/000/0126</td>
<td>Sillón del Morenillo</td>
<td>El Vellón y El Molar</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>X 452751 Y 4510481</td>
</tr>
<tr>
<td>-</td>
<td>Las Huertas</td>
<td>El Molar</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>X 451951 Y 4508183</td>
</tr>
<tr>
<td>CM/086/0019</td>
<td>Almenara de Tades</td>
<td>El Molar</td>
<td>Siglo XVI-XVII- XVIII-XIX-XX</td>
<td>Material en superfice</td>
<td>X 452287 Y 4507990</td>
</tr>
</tbody>
</table>

4.2. Bienes de Interés Cultural
En la zona de estudio no se encuentra documentado ningún BIC.

4.3. Posibles efectos sobre el Patrimonio Cultural

En base a la consulta de la carta arqueológica, cuyos resultados se detallan a continuación, se ha identificado la distancia respecto a los diferentes elementos culturales (ver la tabla siguiente).

Tabla 10: Distancia a los elementos culturales inventariados y medidas preventivas

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código</th>
<th>Municipio (Provincia)</th>
<th>Adscripción Cultural</th>
<th>Tipología</th>
<th>Afección</th>
<th>Medidas preventivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción Auxiliar del Canal de Y-II</td>
<td>CM/153/0037</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>A 26 m de la PFC Colimbo</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Almenara de Valdeperote, del Canal de la Parra</td>
<td>CM/153/0033</td>
<td>Torremocha de Jarama</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>A 1m de la PFC Colimbo</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Puente sobre el Canal de Cabarrús</td>
<td>CM/153/0090</td>
<td>Torremocha de Jarama</td>
<td>Siglo XVIII</td>
<td>Infraestructura hidráulica</td>
<td>A 215 de la LE</td>
<td>No son necesarias medidas preventivas específicas</td>
</tr>
<tr>
<td>Miralrio</td>
<td>CM/168/0013</td>
<td>El Vellón</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>A 225 m de la LE</td>
<td>No son necesarias medidas preventivas específicas</td>
</tr>
<tr>
<td>Sifón de los Yesos</td>
<td>CM/168/0031</td>
<td>El Vellón</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>Afectado en 235 m por la LE</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Sillón del Morenillo</td>
<td>CM/000/0126</td>
<td>El Vellón y El Molar</td>
<td>Siglo XIX-XX</td>
<td>Infraestructura hidráulica</td>
<td>A 208 m de la LE</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Las Huertas</td>
<td>-</td>
<td>El Molar</td>
<td>Indeterminado</td>
<td>Indeterminado</td>
<td>A 148 m de la LE</td>
<td>Seguimiento arqueológico</td>
</tr>
<tr>
<td>Almenara de Tades</td>
<td>CM/086/0019</td>
<td>El Molar</td>
<td>Siglo XVI-XVII-XVIII-XIX-XX</td>
<td>Material en superficie</td>
<td>A 30 m de la LE</td>
<td>Seguimiento arqueológico</td>
</tr>
</tbody>
</table>
ANEXO 1. DOCUMENTACIÓN TÉCNICA
ANEXO 2. CARTOGRAFÍA