ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE

BUITRAGO DEL LOZOYA

Tomo I de I

ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

57/2010-L1-E001

Fecha: Septiembre 2012

Con fecha 04/03/2009, el Excmo. Ayuntamiento de Buitrago de Lozoya firmó el Convenio de Gestión Integral de los servicios de distribución de agua potable y alcantarillado entre el Ayto. de Buitrago del Lozoya y Canal de Isabel II Gestión S.A..

Motivado por este convenio, Canal de Isabel II Gestión S.A. ha realizado en 2012 el Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya. Durante los meses que ha durado el estudio, se ha consultado al Ayuntamiento de Buitrago del Lozoya acerca de los problemas conocidos de la red y el crecimiento urbanístico previsto. El estudio incluye la modelización hidráulica de la red de drenaje urbano.

El estudio se ha estructurado en cuatro documentos, a saber:

Parte 1: Estudio de Diagnosis

Documento 1: estudios previos (estudio pluviométrico, análisis de problemas de la red, encuadre físico, medioambiental, económico y social del municipio).

Documento 2: diagnóstico de la red, a partir de las inspecciones de la red, informes CCTV, calibraciones, consultas a los agentes implicados y modelización matemática.

Parte 2: Plan Director

Documento 3: estudio de crecimiento urbanístico; definición de los escenarios 1 y 2, donde se ha actualizado la información de Planeamiento existente con la aportada por los ayuntamientos en el momento de la redacción del estudio.

Documento 4: propuestas de actuación, distinguiendo cuatro prioridades.

El objetivo del estudio es la detección de los problemas que tiene la red de drenaje y la definición de las actuaciones necesarias para solucionarlos, que sirvan de referencia para las inversiones que se vayan a realizar en la red. Las distintas actuaciones se resumen en fichas al final del Plan Director.

Se ha pretendido, por tanto, que el presente Estudio Diagnóstico y Plan Director sea un instrumento clave hacia una gestión óptima del servicio, donde se han tenido en cuenta criterios tanto anti-inundación como medioambientales.

Madrid, 30 de Septiembre de 2012

ÍNDICE GENERAL

TOMO 1

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº 1. ESTUDIOS PREVIOS

DOCUMENTO Nº 2. ESTUDIO DE LA RED ACTUAL

PARTE II: PLAN DIRECTOR

DOCUMENTO Nº 3. CRECIMIENTO URBANÍSTICO

DOCUMENTO Nº 4. ESTUDIO DE LA RED EN SITUACIÓN FUTURA Y PROPUESTA DE ACTUACIONES

ÍNDICE

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº 1. ESTUDIOS PREVIOS

MEMORIA

APÉNDICE 01: GEOMETRÍA DE LA RED (APORTADO EN SOPORTE DIGITAL)

APÉNDICE 02: LEVANTAMIENTO TOPOGRÁFICO (APORTADO EN SOPORTE DIGITAL)

DOCUMENTO Nº 2. ESTUDIO DE LA RED ACTUAL

MEMORIA

PARTE II: PLAN DIRECTOR

DOCUMENTO Nº 3. CRECIMIENTO URBANÍSTICO

MEMORIA

DOCUMENTO Nº 4. ESTUDIO DE LA RED EN SITUACIÓN FUTURA Y PROPUESTA DE ACTUACIONES

MEMORIA

APÉNDICE 01: VALORACIÓN ECONÓMICA

APÉNDICE 02: FICHAS DE ACTUACIONES (NO PROCEDE EN ESTE ESTUDIO)

PLANOS

PLANO 1: SITUACIÓN DE LA ZONA DE ESTUDIO

PLANO 2: SUPERFICIES DE ESCORRENTÍA EN LA SITUACIÓN ACTUAL

PLANO 3: ENCUADRE MEDIOAMBIENTAL

PLANO 4: CAMPAÑA TOPOGRÁFICA

PLANO 5: RED DE DRENAJE Y SANEAMIENTO

PLANO 6: PROBLEMÁTICA DE LA GEOMETRÍA DE LA RED

PLANO 7: INCIDENCIAS DETECTADAS POR CANAL DE ISABEL II

PLANO 8: CUENCAS Y EJES PRINCIPALES

PLANO 9: SUBCUENCAS

PLANO 10: FUNCIONAMIENTO DE LA RED ACTUAL. T=10 AÑOS

PLANO 11: CRECIMIENTO URBANÍSTICO. PLANEAMIENTO VIGENTE. ESCENARIO 1

PLANO 12: NUEVAS SUBCUENCAS DE APORTACIÓN. ESCENARIO 1

PLANO 13: FUNCIONAMIENTO DE LA RED ACTUAL CON LOS NUEVOS DESARROLLOS. T=10 AÑOS. ESCENARIO 1

PLANO 14: FUNCIONAMIENTO DE LA RED FUTURA CON LOS NUEVOS DESARROLLOS. ACTUACIONES. ESCENARIO 1

57/2010-L1-E001

ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº1: ESTUDIOS PREVIOS

Dirección de Saneamiento Subdirección de Alcantarillado Departamento de Tecnología del Alcantarillado División de Tecnificación del Drenaje Urbano

Fecha: Septiembre 2012

ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº1: ESTUDIOS PREVIOS

MEMORIA

ÍNDICE

1.2 MEDIO FÍSICO. 2 1.2.1 OROGRAFÍA E HIDROGRAFÍA. 2 1.2.2 VEGETACIÓN Y USOS DEL SUELO. 3 1.2.3 DEMOGRAFÍA. 4 1.2.4 GEOLOGÍA Y GEOMORFOLOGÍA. 5 1.2.5 ENCUADRE MEDIOAMBIENTAL. 5 1.3 MEDIO SOCIOECONÓMICO. 5 2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO. 6 2.1 COMPROBACIONES DE TOPOGRAFÍA. 6 2.1 INCIDENCIAS. 6 2.1.2 NUEVOS LEVANTAMIENTOS. 6 2.1.3 COMPROBACIONES. 7 2.1.4 EXTRAPOLACIONES. 7 2.2.1 IPUCIONAMIENTO GENERAL DE LA RED. 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED. 8 2.4 CARACTERIZACIÓN DE LA RED. 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA. 15 3.2 PROBLEMÁTICA DE LA RED. 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA. 15 3.2 PROBLEMÁTICA DE LA RED CON MUNICIPIOS VECINOS. 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO. <t< th=""><th>1 EI</th><th>P-1: INFORMACIÓN DEL MUNICIPIO O ÁREA DE ESTUDIO</th><th>1</th></t<>	1 EI	P-1: INFORMACIÓN DEL MUNICIPIO O ÁREA DE ESTUDIO	1
1.2.3 DEMOGRAFÍA 4 1.2.4 GEOLOGÍA Y GEOMORFOLOGÍA 5 1.2.5 ENCUADRE MEDIOAMBIENTAL 5 1.3 MEDIO SOCIOECONÓMICO 5 2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO 6 2.1 COMPROBACIONES DE TOPOGRAFÍA 6 2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2.1 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES	1.1 1.2	MEDIO FÍSICO	2
1.2.4 GEOLOGÍA Y GEOMORFOLOGÍA 5 1.2.5 ENCUADRE MEDIOAMBIENTAL 5 1.3 MEDIO SOCIOECONÓMICO 5 2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO 6 2.1 COMPROBACIONES DE TOPOGRAFÍA 6 2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA. 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1.1 SELECCIÓN DE ESTACIONES EXTREMAS 17 5.1.2 ANÁLISIS DE LAS ESTACION			
1.2.5 ENCUADRE MEDIOAMBIENTAL 5 1.3 MEDIO SOCIOECONÓMICO 5 2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO 6 2 1.2 COMPROBACIONES DE TOPOGRAFÍA 6 2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2.1 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCIUSIONES 29 <t< td=""><td></td><td>1.2.3 DEMOGRAFÍA</td><td> 4</td></t<>		1.2.3 DEMOGRAFÍA	4
1.3 MEDIO SOCIOECONÓMICO 5 2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO 6 2.1 COMPROBACIONES DE TOPOGRAFÍA 6 2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.1 EXTRAPOLACIONES 7 2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.2 ANÁLISIS DE LAS ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCIUSIONES 29 5.2		1.2.4 GEOLOGÍA Y GEOMORFOLOGÍA	5
2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO 6 2.1 COMPROBACIONES DE TOPOGRAFÍA 6 2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1.1 SELECCIÓN DE ESTACIONES EXTREMAS 17 5.1.2 ANÁLISIS DE LAS ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES METEOROLÓGICAS 18 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO <td< td=""><td></td><td></td><td></td></td<>			
2.1 COMPROBACIONES DE TOPOGRAFÍA 6 2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 6.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO	1.3	MEDIO SOCIOECONÓMICO	5
2.1.1 INCIDENCIAS 6 2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1.1 SELECCIÓN DE ESTACIONES EXTREMAS 17 5.1.2 ANÁLISIS DE LAS ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.2 PERIODO DE RETORNO 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 32 6.6 HIETOGRAMA LLUVIA DE DISEÑO 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	2 EI	P-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO	6
2.1.2 NUEVOS LEVANTAMIENTOS 6 2.1.3 COMPROBACIONES 7 2.1.4 EXTRAPOLACIONES 7 2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6.1	2.1		
2.1.3 COMPROBACIONES .7 2.1.4 EXTRAPOLACIONES .7 2.2 TIPOLOGÍA DE LA RED .8 2.3 FUNCIONAMIENTO GENERAL DE LA RED .8 2.4 CARACTERIZACIÓN DE LA RED .13 3 EP-3: PROBLEMÁTICA DE LA RED .15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA .15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED .16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS .17 5 EP-5: ESTUDIO PLUVIOMÉTRICO .17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS .17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS .18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS .20 5.1.3 CONCLUSIONES .29 5.2 PERIODO DE RETORNO .29 5.3 CONSTRUCCIÓN DE CURVAS IDF .30 5.4 DISCRETIZACIÓN TEMPORAL .32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO .32 5.6 HIETOGRAMA LLUVIA DE DISEÑO .33 6 EP6: CAUDALES DE AGUA RESIDUAL .36 <			
2.1.4 EXTRAPOLACIONES			
2.2 TIPOLOGÍA DE LA RED 8 2.3 FUNCIONAMIENTO GENERAL DE LA RED 8 2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 32 6.6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37 <td></td> <td></td> <td></td>			
2.4 CARACTERIZACIÓN DE LA RED 13 3 EP-3: PROBLEMÁTICA DE LA RED 15 3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA 15 3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	2.2	TIPOLOGÍA DE LA RED	8
3 EP-3: PROBLEMÁTICA DE LA RED	2.3		
3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA			
3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED 16 4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS 17 5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	3 EI	P-3: PROBLEMÁTICA DE LA RED	15
5 EP-5: ESTUDIO PLUVIOMÉTRICO 17 5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	3.1 3.2		
5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS 17 5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	4 EI	P 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS	17
5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS 18 5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	5 El	P-5: ESTUDIO PLUVIOMÉTRICO	17
5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS 20 5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37	5.1	CÁLCULO DE LAS PRECIPITACIONES EXTREMAS	17
5.1.3 CONCLUSIONES 29 5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37			
5.2 PERIODO DE RETORNO 29 5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37			
5.3 CONSTRUCCIÓN DE CURVAS IDF 30 5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37			
5.4 DISCRETIZACIÓN TEMPORAL 32 5.5 DURACIÓN DE LA LLUVIA DE DISEÑO 32 5.6 HIETOGRAMA LLUVIA DE DISEÑO 33 6 EP6: CAUDALES DE AGUA RESIDUAL 36 6.1 POBLACIÓN ACTUAL 36 6.2 DOTACIONES Y CONSUMOS DE CÁLCULO 37			
5.6 HIETOGRAMA LLUVIA DE DISEÑO	5.4	DISCRETIZACIÓN TEMPORAL	32
6 EP6: CAUDALES DE AGUA RESIDUAL			
6.1 POBLACIÓN ACTUAL			
6.2 DOTACIONES Y CONSUMOS DE CÁLCULO	6 EI	P6: CAUDALES DE AGUA RESIDUAL	36
	6.1	POBLACIÓN ACTUAL	36
	6.3	CONCLUSIONES	

Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

7 E	P7: ES	TUDIO DE CUENCAS VERTIENTES	41
7.1		MITACIÓN DE CUENCAS PRINCIPALES	
	7.1.1	CRITERIOS DE DEFINICIÓN	41
	7.1.2	TIEMPO DE CONCENTRACIÓN	42
		MITACIÓN DE SUBCUENCAS DE APORTACIÓN	
7.3	ASIGN	NACIÓN DE PARÁMETROS HIDROLÓGICOS	44

7394-1-1-MM-Mem-3 DOC 1: MEMORIA ii

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

1 EP-1: INFORMACIÓN DEL MUNICIPIO O ÁREA DE ESTUDIO

1.1 ÁMBITO GENERAL DEL ESTUDIO: EL MUNICIPIO DE BUITRAGO DEL LOZOYA

El pueblo de Buitrago del Lozoya, situado a 75 Km de Madrid, es uno de los 42 municipios que conforman la Sierra Norte Madrileña. Con una extensión de 26,5 km² se encuentra situado en el Valle del Lozoya. Esta localidad se asienta en uno de los meandros que describe el río a los pies de las Sierras de Guadarrama, Somosierra y del Rincón, entre los embalses de Riosequillo y Puentes Viejas.

Figura 1. Ubicación del T.M. y ámbito municipal de Buitrago del Lozoya

La carretera N-I divide el término en dos mitades. Esta situación de paso obligado en el camino hacia el Puerto de Somosierra ha condicionado toda su historia.

Se define como zona de estudio el área constituida por el núcleo urbano de Buitrago del Lozoya, las cuencas rurales vertientes a la red de drenaje y saneamiento del municipio en la situación actual y las zonas urbanizables que se analizarán en documentos posteriores.

En el *Plano 1 – Situación de la Zona de Estudio* se define la zona de estudio para el presente estudio.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 1 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

1.2 MEDIO FÍSICO

1.2.1 OROGRAFÍA E HIDROGRAFÍA

El término municipal de Buitrago del Lozoya, situado en mitad del Valle del Lozoya, al pie de las estribaciones meridionales de la Sierra de Guadarrama, tiene una altitud bastante homogénea, oscilando entre los 860 y los 1.200 metros. No se encuentran elevaciones destacadas y el territorio está formado sobre todo por zonas de monte alto mezcladas con bosque mediterráneo de roble, haya y encina. En el sector más oriental pueden encontrarse pinares de repoblación. Además del río Lozoya, embalsado casi en todo su recorrido por el término, surcan la zona los Arroyos de La Tejera y Riosequillo, por el sur, y el de La Árcava y Cigüeñuela, por el norte. El casco urbano de Buitrago se asienta sobre un promontorio que forma una curva en herradura sobre el río Lozoya, entre los embalses de Riosequillo y Puentes Viejas.

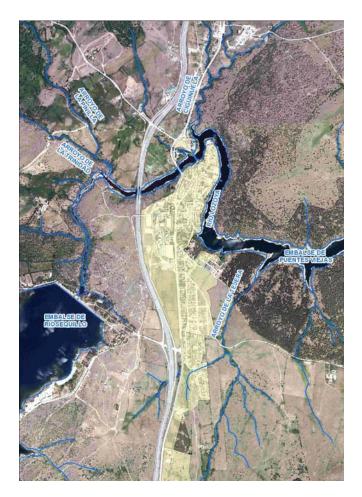


Figura 2. Ríos, arroyos y Embalses en los alrededores de Buitrago del Lozoya.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 2 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

1.2.2 VEGETACIÓN Y USOS DEL SUELO

Los herbazales y pastos están ampliamente representados y toman amplias laderas expuestas al sol desprovistas de substrato arbóreo.

Las zonas boscosas se distribuyen en un paisaje dominado por el monte bajo compuesto por la carrasca y por aquellas especies que confirman una fase degradada del encinar. Los suelos apenas tienen profundidad y se encuentran escasamente desarrollados. La tierra, poco húmeda debido a la sequedad y las altas temperaturas del verano, está cubierta por la vegetación esclerófila del encinar y del matorral. En las zonas más altas, por encima de los 1.000 metros, la tierra retiene mejor la humedad proporcionando una vegetación asociada al rebollo y el haya. En algunas fincas de la comarca de Buitrago, que no se han transformado en pastizales todavía, se pueden apreciar algunos bosques de robles. Este suelo ha sido ocupado también por numerosas repoblaciones de pinos silvestres y resineros que han ocupado el área del rebollo y que, desde comienzos del siglo XX, han ido formando grandes masas de pinares.

En el ámbito específico del estudio del municipio de Buitrago del Lozoya, se pueden identificar en la situación actual cuatro superficies de escorrentía:

- Herbazales y pastos.
- Zona boscosa.
- Tejados.
- Viarios.

El núcleo urbano ocupa un 2,3% del total de área del municipio. En la zona urbana predomina la vivienda unifamiliar con edificaciones agrupadas o aisladas en hileras. Actualmente están apareciendo nuevos tipos de viviendas con jardín en las zonas de borde. El resto de viviendas son todas unifamiliares asiladas del tipo "chalet" convencional. No existen industrias en el municipio.

En el *Plano 2-Superficies de Escorrentía de la Situación Actual* se muestran las diferentes tipologías de superficies de escorrentía de las cuencas vertientes a la red en la situación actual.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 3 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

1.2.3 DEMOGRAFÍA

Según los últimos datos disponibles del Instituto Nacional de Estadística, en el año 2010 el municipio de Buitrago del Lozoya contaba con un total de 2.068 habitantes. Durante los últimos 10 años el municipio ha experimentado un leve crecimiento, con una disminución de población en el último año del 0,5%.

AÑO	POBLACIÓN
2000	1.471
2001	1.565
2002	1.668
2003	1.697
2004	1.755
2005	1.856
2006	1.937
2007	1.936
2008	2.068
2009	2.078
2010	2.068

Tabla 1. Evolución demográfica de Buitrago desde el año 2000 al 2010

La evolución demográfica del término municipal de Buitrago se refleja en el siguiente gráfico:

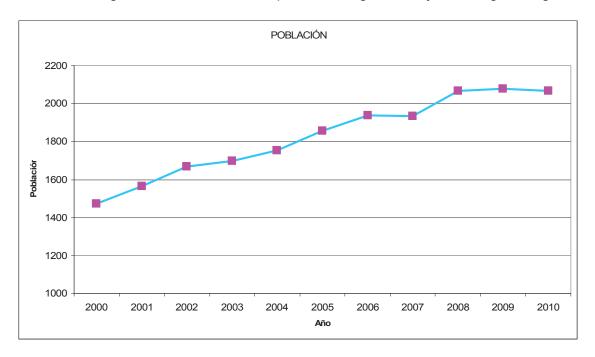


Figura 3. Evolución demográfica de la población. (Fuente: Instituto Nacional de Estadística (INE))

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 4 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

1.2.4 GEOLOGÍA Y GEOMORFOLOGÍA

Entre los Montes Carpetanos y la Cuerda Larga, se encaja el valle interior más importante de la Sierra de Guadarrama: el Valle del Lozoya. Se trata de una fosa tectónica producida por el hundimiento en el Mioceno (hace 23 millones de años) de un bloque levantado del zócalo. Esta zona quedó definitivamente configurada en el Plioceno, con un aspecto similar al actual que permite el desarrollo del cauce de este río.

1.2.5 ENCUADRE MEDIOAMBIENTAL

Buitrago está dotado de una densa red de vías pecuarias que delata la importancia histórica de estos parajes en el sistema de trashumancia que desde la Baja Edad Media rigió en gran medida la economía agraria de la Meseta Central de España. El eje de la misma lo constituyen las cañadas reales de Velayos y San Lázaro, que atraviesan el término de norte a sur.

Dentro del término municipal de Buitrago Del Lozoya no existe ningún Lugar de Interés Comunitario (LIC) ni ninguna ZEPA (Zona de Especial Protección para las Aves).

En el *Plano 3 – Encuadre Medioambiental*, se puede observar la localización de las Vías Pecuarias ubicadas dentro del Municipio.

1.3 MEDIO SOCIOECONÓMICO

Tradicionalmente y sin olvidar sus orígenes pastoriles y agrarios, la localidad se ha dedicado a la ganadería y la agricultura, si bien en tiempos más recientes ha crecido más rápidamente el sector servicios (hostelería particularmente). Sin embargo, la actividad que sin duda ha adquirido mayor importancia en los últimos años es el turismo, existiendo numerosas iniciativas tanto públicas como privadas para fomentar este mercado.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 5 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

2 EP-2 ANÁLISIS Y COMPROBACIÓN DE LA RED DE DRENAJE URBANO

2.1 COMPROBACIONES DE TOPOGRAFÍA

2.1.1 INCIDENCIAS

Como primera fase del estudio se ha analizado la información topográfica facilitada por Canal de Isabel II (topografía inferior y superior de pozos de registro y colectores del Municipio de Buitrago). Se han detectado las siguientes incidencias:

- Falta de información sobre pozos de ejecución posterior a los trabajos de topografía original.
- Falta de datos de cotas de solera de los puntos de desagüe del sistema.
- Falta de definición geométrica de los aliviaderos del sistema.

2.1.2 NUEVOS LEVANTAMIENTOS

Para solucionar las incidencias detectadas se ha realizado una campaña topográfica en la que se ha procedido al levantamiento de los pozos sin definición o con información asociada incompleta, y a las comprobaciones necesarias para la correcta definición de la red de drenaje existente. La definición topográfica completa de cada pozo de registro levantado incluye cota de terreno, profundidad del pozo, diámetro de los colectores entrantes y salientes, cotas y ángulos de conexión y materiales.

En el *Anejo 2-Levantamiento Topográfico* del presente documento (entregado en formato digital) se adjuntan las fichas de la topografía inferior y superior de las nuevas tomas.

Las nuevas tomas se identifican en el *Anejo 1- Geometría de la Red* (entregado en formato digital). En este apéndice se encuentran definidos todos los elementos de la red.

En el *Plano 4 – Campaña Topográfica* se ubican en planta las nuevas tomas.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 6 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

2.1.3 COMPROBACIONES

Durante la campaña topográfica realizada en la zona de estudio, se ha procedido a la compro-

bación de la topografía inferior de algunos pozos para aclarar la geometría de la red en zonas

puntuales, donde la información original no parecía fiable.

Además de estos puntos, se consideran comprobaciones aquellos pozos con incidencias en la

información original de los cuales no se ha podido extraer información nueva in situ por no ser

visibles o estar sellados.

En el Apéndice 2 – Levantamiento Topográfico del presente documento (entregado en formato

digital) se adjuntan las fichas de la topografía inferior y superior de los pozos comprobados. En

el Plano 4 – Campaña Topográfica se ubican en planta los pozos comprobados.

2.1.4 EXTRAPOLACIONES

Una vez finalizada la campaña de campo, se ha procedido a la actualización e integración de la

información topográfica disponible.

Se ha realizado la extrapolación de datos ausentes en los siguientes casos:

Pozos no accesibles

Valores extrapolables de forma lineal o con un grado de error muy reducido en pozos

ubicados en línea, sin cruces ni salto de cotas.

A continuación se detallan los criterios de extrapolación:

Cota de solera: Se ha extrapolado linealmente a partir de la información de los po-

zos vecinos o en función de la pendiente del terreno cuando ha sido necesario.

- Cota del terreno: La extrapolación se ha realizado en función de las cotas de los po-

zos vecinos o teniendo en cuenta los datos topográficos de partida.

- Diámetros: En este caso siempre se ha optado por la opción más perjudicial para el

funcionamiento de la red, es decir, el diámetro menor de los colectores anterior y

posterior.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 7 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Los pozos de registro con datos extrapolados se identifican en el *Apéndice 1- Geometría de la Red* (entregado en formato digital). En este apéndice se encuentran definidos todos los elementos de la red. Las extrapolaciones se etiquetan de color verde.

En el *Plano 4 – Campaña Topográfica* se ubican en planta los pozos con datos extrapolados.

2.2 TIPOLOGÍA DE LA RED

La red de alcantarillado del núcleo urbano de Buitrago se caracteriza por ser una red del tipo unitario. Es decir que las aguas residuales y las pluviales discurren por las mismas conducciones. No se detecta ningún tramo exclusivamente pluvial.

2.3 FUNCIONAMIENTO GENERAL DE LA RED

Dentro del núcleo urbano de Buitrago del Lozoya, la estructura de la red se conforma a través de cuatro ejes principales que recogen las aguas de escorrentía y las aguas residuales generadas en las respectivas cuencas de aportación.

Los ejes principales del sistema junto con sus cuencas de aportación, se muestran en el *Plano* 8 – *Cuencas y Ejes Principales*. También se pueden observar en la siguiente figura.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 8 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

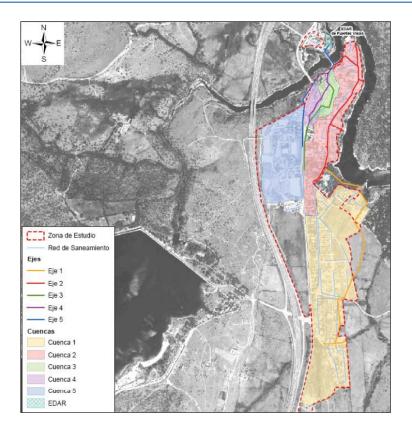
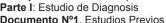



Figura 4. Ejes y cuencas principales

En tiempo seco, las aguas residuales generadas en las cuencas 1, 2, 3 y 4 son recogidas de forma unitaria por los ejes principales 1, 2, 3, 4 y 5 respectivamente y desaguadas a la EDAR de Puentes Viejas.

En tiempo de lluvia, 4 aliviaderos (estructurales y no estructurales) ubicados a lo largo de la red y aguas arriba de la estación depuradora alivian el caudal de aguas pluviales al medio receptor, vertiendo al río Lozoya las aguas de escorrentía de las cuencas de aportación.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 9 de 45

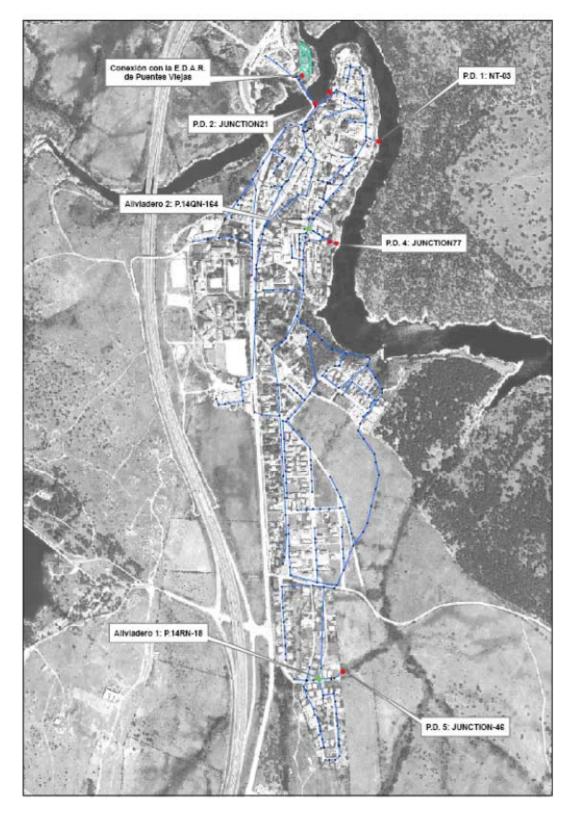
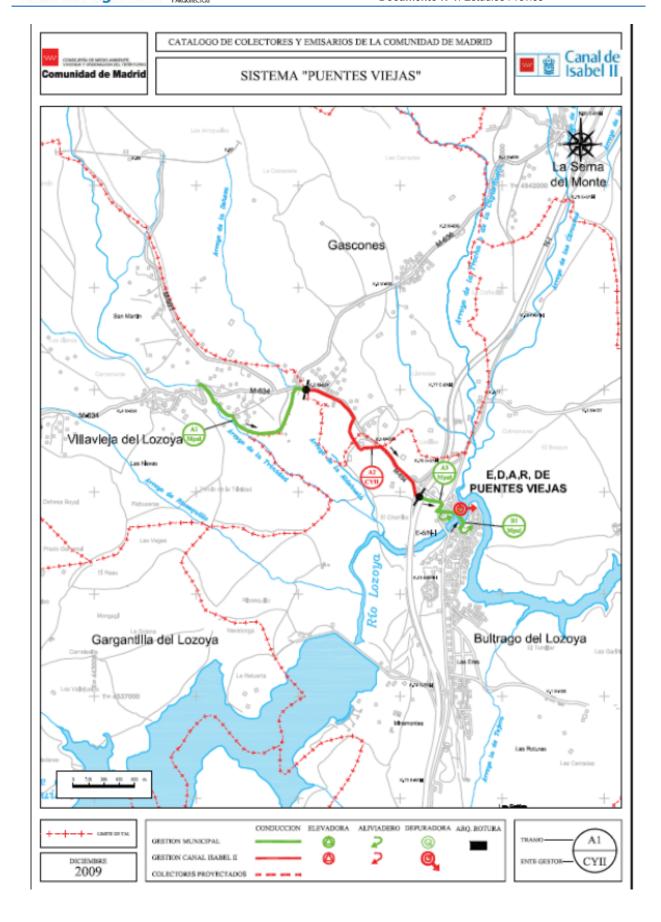


Figura 5. Aliviaderos y desagües de la red de saneamiento del municipio de Buitrago del Lozoya

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

Toda la red del término municipal de Buitrago del Lozoya funciona por gravedad sin elementos de elevación, excepto la presencia de dos bombeos que permiten el desagüe por elevación de las aguas residuales de algunas viviendas particulares.


En el *Plano 5 – Red de Drenaje y Saneamiento*, se muestra la red de alcantarillado de Buitrago del Lozoya, distinguiéndose los desagües y aliviaderos.

A continuación se adjunta, como referencia, la ficha del sistema "Puentes Viejas" del Catalogo de Colectores y Emisarios de la Comunidad de Madrid.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 11 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

2.4 CARACTERIZACIÓN DE LA RED

La red de colectores de Buitrago tiene una longitud global de aproximadamente 11,3 km.

Estos están formados principalmente por tubos de hormigón en masa, a excepción de pequeños tramos secundarios de PVC.

A continuación se muestran en formato gráfico la caracterización de la red en términos de material y diámetros.

MATERIAL	LONGITUD [m]	%
Hormigón Masa	10.428	92%
Ladrillo	295	3%
Polipropileno	133	1%
PVC	490	4%
Total	11.346	100%

Tabla 2. Porcentaje de red en función del material.

DIÁMETROS [mm]	LONGITUD [m]	%
<300	1.429	13%
300	4.803	43%
400	2.818	25%
500	562	5%
600	1.468	13%
>1000	266	2%
Total	11.346	100%

Tabla 3. Porcentaje de red en función de las dimensiones.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 13 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

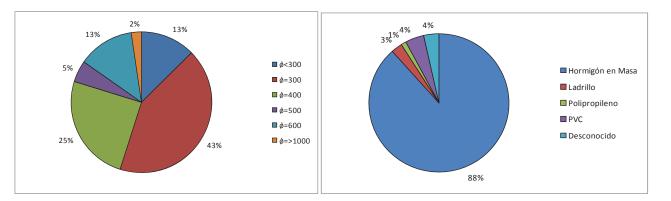


Figura 6. Porcentaje de red en función del material y las dimensiones.

A continuación se muestra una imagen con los diámetros y materiales de todos los colectores del sistema.

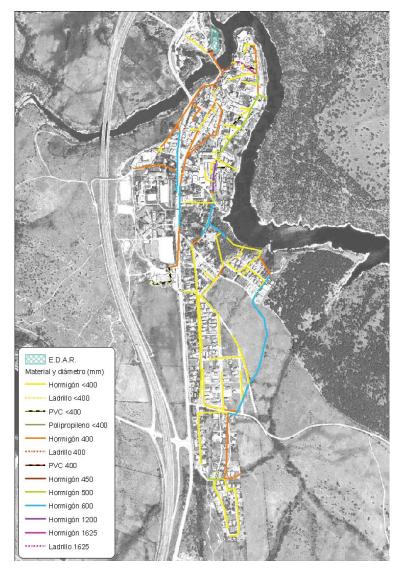


Figura 7. Materiales y diámetros de colectores de la red de saneamiento del municipio de Buitrago del Lozoya.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 14 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

La red dispone de un total de 179 elementos de captación de aguas pluviales, entre los que se encuentran imbornales y rejas.

En el *Plano 5 – Red de Drenaje y Saneamiento*, se representa la red de la Buitrago del Lozoya al completo, tanto los pozos como los colectores. En este plano se diferenciarán los pozos según su función en:

- Pozos de registro
- Desagües.
- Aliviaderos.

En el *Apéndice 1 – Geometría de la Red* están definidos todos los elementos de la red, y mediante etiquetas de color se diferencia entre datos originales (sin etiqueta de ningún color), datos extrapolados (con etiquetas verdes) y datos obtenidos de la campaña de campo (con etiquetas azules).

3 EP-3: PROBLEMÁTICA DE LA RED

3.1 INCIDENCIAS PRINCIPALES DEL SISTEMA

Se han analizado todos los avisos de incidencias e identificaciones de problemáticas de la red facilitados por los servicios de mantenimiento de Canal de Isabel II.

Se pueden destacar algunos puntos susceptibles de sufrir inundaciones o vertidos de aguas residuales.

- En las calles Marqués de Santillana, Río Lozoya, Pilar Primo de Rivera, Cercas de San Juan, San Lázaro, Soledad y Pinilla se ha dado aviso de filtraciones, de manera que habrá que tener en cuenta éstas porque puede haber pozos susceptibles de sufrir inundaciones.
- También se observan vertidos de aguas residuales en las calles Pinilla y Marqués de Santillana.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 15 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Las incidencias detectadas por el servicio de Mantenimiento de Canal de Isabel II quedan reflejadas en el *Plano 7- Incidencias detectadas por CYII*. En este plano se muestran la ubicación de los avisos de inundaciones, y avisos de vertidos de aguas residuales de la red de drenaje de Buitrago del Lozoya.

3.2 PROBLEMAS DERIVADOS DE LA GEOMETRÍA DE LA RED

Después de realizar un análisis preliminar de la red de Buitrago cabe destacar algunos problemas presentados por la misma y que a priori podrían ser causa de un funcionamiento deficiente.

Se detectan:

- Mayoría de los colectores con diámetros inferiores al recomendable en drenaje urbano (D400).
- Estrechamientos que podrían actuar como cuellos de botella para la capacidad de desagüe de la red.
- Uniones entre colectores con diseño geométrico hidráulicamente inadecuado.

Destacan:

- En la calle Piloncillo, las tuberías entre los pozos P.14QN-8 y P.14QN-6 presentan diámetros cada vez más estrechos, pasando de 1.625 mm a 400 mm y acabando en una tubería de 200 mm. Este estrechamiento progresivo de las tuberías puede provocar inundaciones en este recorrido.
- En la calle de los Mártires, el colector que une los pozos P.14QN-19 y P.14QN-25 representa un estrechamiento que podría dar lugar a un funcionamiento irregular de la red en ese punto.
- Los colectores entre los pozos P.14QN-38 y P.14QN-33 situados en la calle de la Cadena presentan diámetros menores (350 mm) que los de aguas abajo y aguas arriba (400 mm) determinando un estrechamiento que podría dar problemas al funcionamiento de la red.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 16 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

- En la avenida de Madrid, se produce un cruce de tres tuberías en el pozo P.14QN-161. Entran dos tuberías de 400 y 600 mm de diámetro y sale una tubería de 400 mm. Este estrechamiento podría dar lugar a una insuficiencia en el desagüe de la red.

En el *Plano 6-Problemática en la Geometría de la Red* se encuentran definidas todas las problemáticas de la geometría de la red de Buitrago del Lozoya.

4 EP 4: RELACIÓN DE LA RED CON MUNICIPIOS VECINOS

Todas las cuencas vertientes a la red de drenaje de Buitrago se encuentran dentro del propio término municipal. La EDAR, situada dentro de los límites municipales, recibe y trata las aguas de Buitrago y del municipio vecino de Villavieja.

El colector de entrada a la depuradora desde el núcleo urbano de Buitrago es independiente. El colector unitario que desagua las urbanizaciones cercanas a la depuradora, se une con el emisario procedente de Villavieja del Lozoya antes de su entrada a la EDAR.

En el apartado 2.3-Funcionamiento General de la Red se puede encontrar la ficha del sistema "Buitrago del Lozoya" del Catálogo de Colectores y Emisarios de la Comunidad de Madrid

5 EP-5: ESTUDIO PLUVIOMÉTRICO

En este apartado se procede a realizar la caracterización del régimen de precipitaciones extremas de la zona de estudio, con el fin de suministrar datos con los que alimentar al modelo hidrológico-hidráulico a emplear en el diagnóstico de las redes de drenaje urbano.

5.1 CÁLCULO DE LAS PRECIPITACIONES EXTREMAS

El estudio pluviométrico extremo se ha desarrollado según la siguiente secuencia de pasos, que serán desarrollados en los apartados posteriores:

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 17 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

- Elección de las estaciones meteorológicas y obtención de datos mensuales de precipitaciones máximas en 24 horas.
- 2. Análisis de las series de datos y selección de las válidas o, en su defecto, completado de las que no lo sean.
- 3. Estimación de los valores extremos para diferentes periodos de retorno, según las distribuciones habituales, a saber:
 - Gumbel
 - Log-Pearson III
 - SQRT-ET max
- 4. Comparación de resultados y obtención de conclusiones.

5.1.1 SELECCIÓN DE ESTACIONES METEOROLÓGICAS

En el entorno de la zona de estudio se localizaron cinco estaciones, una de ellas en el propio núcleo urbano de Buitrago del Lozoya. No obstante, el análisis de los datos disponibles en dicha estación delató la insuficiencia de la serie a los efectos de este estudio, por lo que se buscaron otras estaciones próximas, tal y como se presentada en la Figura 8, y cuyas características se recogen en la Tabla 4.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 18 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

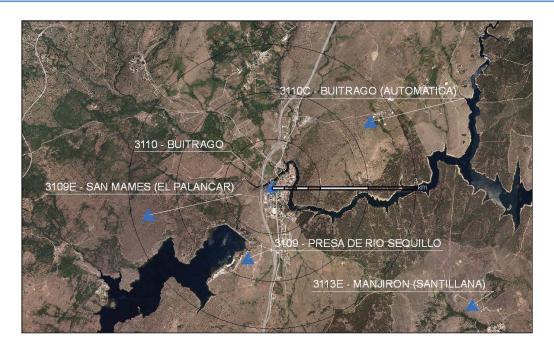


Figura 8. Estaciones meteorológicas localizadas en el entorno del ámbito de estudio.

INDIC.	NOMBRE	ALTITUD	Nº MESES	DESDE	HASTA	AÑOS COMP.	S.C.M.L.
3110	BUITRAGO	974	232	1945	1969	11	1946 1950
3110C	BUITRAGO (AUTOMATICA)	974	141	1997	2010	8	2000 2004
3113E	MANJIRON (SANTILLANA)	1.000	36	1954	1959	0	1958 1959
3109	PRESA DE RIO SEQUILLO	1.020	621	1953	2005	50	1978 2005
3109E	SAN MAMES (EL PALANCAR)	1.120	20	1985	1997	0	1986 1986

Tabla 4. Datos existentes para las estaciones próximas

Donde cada fila representa una serie que abarca el periodo comprendido entre las columnas DESDE y HASTA, con los correspondientes años completos (AÑOS COMP.) y la Serie Completa Más Larga.

Debido a la inconsistencia de los datos se descartaron inmediatamente las estaciones de San Mamés (3109E), Manjirón (3113E) y la automática de Buitrago (3110C). Por otra parte, se consideró innecesario buscar otras estaciones más alejadas, habida cuenta de los datos disponibles en un radio de tan sólo 2 km, en las estaciones de Buitrago (3110) y Presa de Río Sequillo (3109).

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 19 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Para las estaciones seleccionadas se obtuvieron los siguientes datos:

INDIC.	NOMBRE	DESDE	HASTA	ORIGEN	TIPO
3110	BUITRAGO	11/1945	10/1966	Aemet	P mensuales máximas en 24h
3109	PRESA DE RIO SEQUILLO	5/1953	2/2005	Aemet	P mensuales máximas en 24h
3109	PRESA DE RIO SEQUILLO	1/1988	1/2011	CYII	Precipitación diaria

Tabla 5. Datos recopilados para las estaciones seleccionadas

5.1.2 ANÁLISIS DE LAS ESTACIONES SELECCIONADAS

• Estación de Riosequillo

Como se ha expuesto en la Tabla 5, se obtuvieron datos de dos fuentes distintas, por un lado la Agencia Española de Meteorología (Aemet) y, por el otro, de Canal de Isabel II (CYII, titular de la presa). De la primera se consiguieron las tablas de precipitaciones mensuales máximas en 24 horas, mientras que del segundo se tienen los registros de precipitaciones diarias.

Para comprobar la posibilidad de reunir ambas informaciones y componer una única serie de mayor longitud se procedió a extraer los datos de precipitaciones mensuales máximas en 24 horas de la serie de CYII. obteniéndose la Tabla 6.

CYII	RIOSEQUILLO: PRECIPITACIONES MENSUALES MÁXIMAS EN 24 HORAS [décimas de mm]											nm]
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
1953					55	210	152	13	250	240	189	470
1954	54	54	337	94	295	136	49	42	30	35	293	71
1955	162	141	114	230	112	233	184	100	76	328	198	135
1956	210	455	296	200	203	114	40	100	161	274	107	72
1957	43	123	80	270	178	495	6	90	92	464	81	310
1958	225	82	192	97	151	428	9	75	152	82	58	715
1959	126	106	222	81	263	77	144	372	301	200	281	210
1960	145	275	135	105	92	350	0	25	90	410	117	260
1961	70	78	116	192	232	743	82	133	337	600	690	95
1962	134	266	225	386	264	98	0	0	395	360	101	315
1963	542	253	87	150	158	562	222	12	106	110	272	497
1964	14	119	240	135	190	155	152	40	93	62	175	282
1965	554	165	222	84	48	34	17	161	370	472	374	122
1966	132	313	55	126	118	79	8	0	307	425	705	18

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 20 de 45

Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

CYII	RIOS	EQUILL	O: PRECI	PITACIO	NES ME	NSUALE	S MÁXII	MAS EN	24 HOR	AS [déci	mas de n	nm]
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
1967	208	141	202	100	160	96	23	35	102	318	370	60
1968	120	216	274	157	80	97	13	54	49	46	311	161
1969	217	357	200	164	114	100	45	35	212	244	510	104
1970	581	15	124	17	219	72	192	232	52	0	137	155
1971	189	91	100	190	238	107	147	58	220	67	50	127
1972	186	702	472	65	102	103	111	8	557	278	445	270
1973	103	46	112	48	368	215	149	43	0	72	478	848
1974	124	175	355	124	172	292	123	16	0	123	258	110
1975	1338	360	145	642	327	647	0	292	133	13	86	306
1976	69	250	78	410	253	356	102	205	358	160	340	270
1977	298	514	120	173	256	222	351	89	112	247	202	350
1978	212	412	202	207	280	254	0	0	140	32	237	251
1979	570	206	320	373	98	214	307	0	342	518	496	160
1980	113	408	155	455	408	320	51	560	45	236	113	323
1981	5	92	167	233	205	280	190	64	180	33	0	425
1982	507	535	140	320	672	245	284	185	193	85	905	144
1983	0	39	32	125	47	27	18	175	8	45	210	393
1984	166	150	95	166	223	202	0	112	45	115	507	36
1985	127	138	82	158	56	88	43	0	163	35	106	179
1986	111	136	116	150	51	0	55	76	142	182	135	110
1987	150	185	59	110	284	170	286	92	254	90	385	466
1988	195	45	44	170	125	372	60	0	0	232	155	40
1989	36	256	35	185	256	128	45	36	485	70	650	280
1990	110	20	367	135	28	115	226	128	457	147	440	83
1991	52	295	350	257	68	9	20	23	305	170	125	164
1992	32	210	35	40	113	160	86	325	81	166	38	185
1993	42	105	68	72	208	422	58	3	78	415	190	19
1994	147 35	85 167	125 65	15 89	180 92	16	41 5	6	105 137	260	137	55
1995 1996	542	171	95	65		115		338 8	174	65	285 144	246 400
1996	300	52	95	110	172 298	179 56	105 119	140	110	245 99	715	452
1997	246	112	94	72	287	173	73	126	155	25	715	472
1999	100	57	170	192	115	157	232	38	125	230	68	92
2000	105	17	157	465	175	63	38	9	54	74	335	682
2001	292	195	132	28	175	144	135	90	65	389	42	40
2002	117	70	142	114	172	110	38	176	262	144	148	191
2002	200	492	390	242	156	44	0	148	192	298	414	382
2003	28	312	598	236	226	224	98	126	4	704	320	402
2005	0	158	126	58	80	64	0	20	180	466	228	116
2006	178	160	318	68	368	162	324	74	122	554	330	252
2007	30	132	102	246	294	242	32	66	166	460	338	398
2008	62	138	132	356	468	470	144	30	298	328	66	282
2009	102	190	58	62	156	62	0	0	58	222	174	294
2010	176	208	206	116	188	334	62	18	80	228	158	274
2011	30		_55		. 55	001	<u> </u>	, 0	30		.50	

Tabla 6. Precipitaciones mensuales máximas en 24 h (fuente: CYII)

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 21 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

De esta forma se tiene la misma variable que en los datos de la Aemet, por lo que se procede a comparar el tramo común (1988-2005) por el procedimiento de dobles masas acumuladas, con el siguiente resultado:

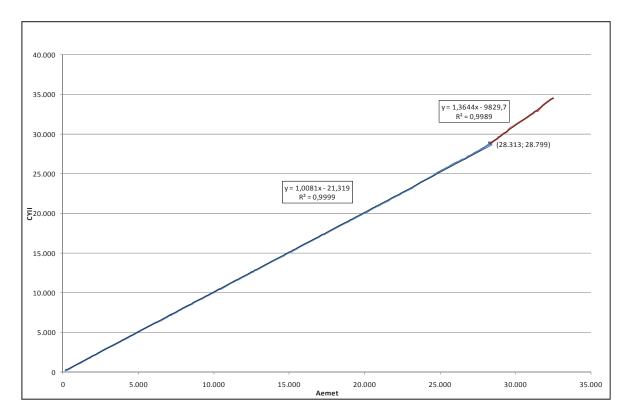
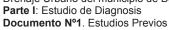


Figura 9. Gráfica de las dobles masas acumuladas para los datos de Aemet y CYII (Estación de Riosequillo).

Como se aprecia en la Figura 9, hay un cambio en la pendiente hacia el punto identificado en la gráfica, lo que indica una variación en el comportamiento de los datos. La relación entre pendientes proporciona un coeficiente de corrección de 0,7389 que no fue aplicado. Esto se debe a que la serie más larga, la de Aemet, es además prácticamente idéntica (la pendiente es 1,0081) a la de Canal en la mayor parte del tramo común, trazado en azul en la gráfica. Tan sólo al final (tramo rojo) se aprecia el cambio de tendencia, que corresponde a febrero de 2003. Esto puede deberse a un cambio en la sistemática de medición, como por ejemplo una renovación de los equipos. En cualquier caso, si se aplicara el coeficiente de corrección, se alterarían los datos correspondientes a las mediciones de Canal, más recientes, y por tanto más interesantes, y la modificación se realizaría del lado de la inseguridad.

Así se decidió componer una serie única a partir de los datos de Aemet entre 5/1953 y 12/2002, y los de Canal entre 1/2003 y 1/2011, sin alterar.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 22 de 45



Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

La serie así compuesta se sometió a un proceso de validación, obteniéndose una serie de valores anuales de precipitación máxima en 24 horas de 57 años. A continuación se hallaron los ajustes a las distribuciones maximales habituales, con el resultado mostrado en la Figura 10.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 23 de 45

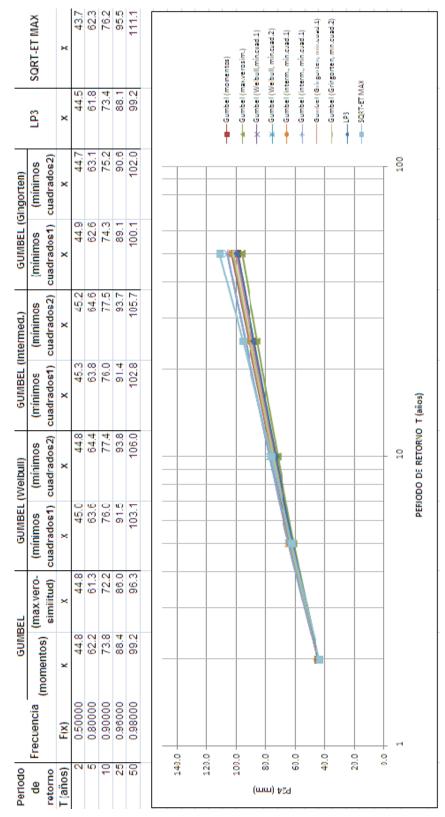


Figura 10. Ajuste extremal para la serie de datos completada (Estación de Riosequillo). En mm.

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

• Estación de Buitrago

La estación meteorológica de Buitrago, actualmente fuera de servicio, presenta una serie corta, de tan sólo 15 años válidos. Así pues se decidió completar esta serie con los datos procedentes de Riosequillo a efectos de obtener una serie característica del núcleo urbano de tamaño aceptable.

NOMBRE	ALTITUD	DESDE	HASTA	ORIGEN
BUITRAGO	974	11/1945	10/1966	Aemet
PRESA DE RIO SEQUILLO (completada)	1.020	5/1953	1/2011	Aemet-CYII

Tabla 7. Datos disponibles para las series consideradas

Existe, tal y como puede verse en la Tabla 7, un periodo común en los datos, que abarca desde 5/1953 hasta 10/1966, que se empleó para correlacionar la variable Precipitación mensual máxima en 24 horas entre ambas estaciones. En la siguiente figura se presentan los datos de forma gráfica:

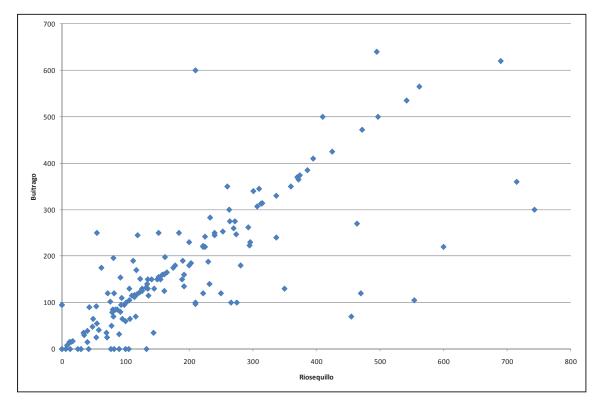


Figura 11. Gráfica de Precipitación mensual máx. en 24 h para datos de Riosequillo y Buitrago, en décimas mm.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 25 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Una vez eliminados los datos atípicos (outliers) se obtuvo la siguiente regresión lineal:

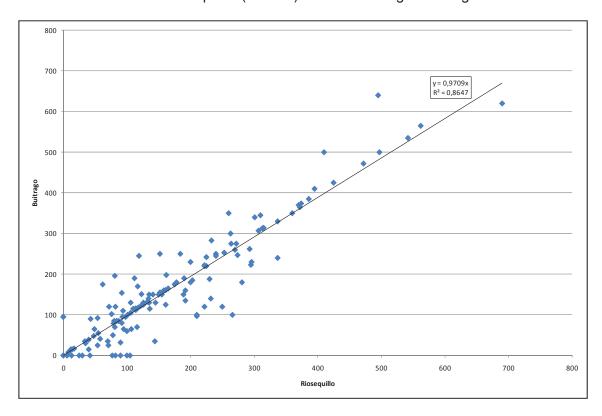


Figura 12. Regresión obtenida para los datos de Riosequillo y Buitrago, en décimas de mm.

Los datos "limpios" fueron comprobados con el procedimiento de dobles masas acumuladas, con el resultado recogido en la Figura 13. Dado que el coeficiente de correlación R² resultó ser del 99,9% se consideró que toda la variación de la serie de Riosequillo explicaba la variación de Buitrago, por lo que no se corrigió la serie.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 26 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

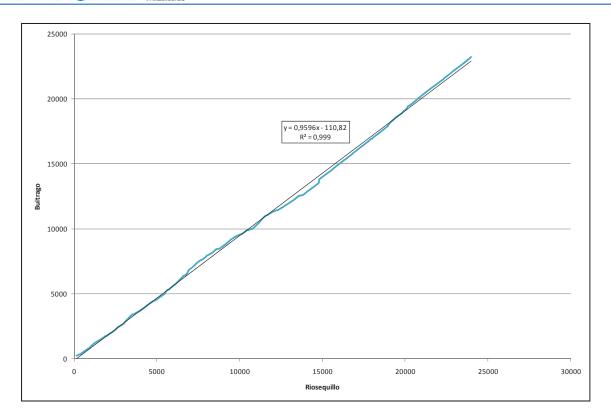


Figura 13. Comprobación por dobles masas acumuladas.

Mediante la regresión hallada anteriormente se procedió al completado de la serie de Buitrago, extendiéndose hasta 1/2011.

Esta serie se sometió a validación, obteniéndose una serie de valores anuales de precipitación máxima en 24 horas de 63 años. A continuación se hallaron los ajustes a las distribuciones maximales habituales, con el resultado mostrado en la Figura 14.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 27 de 45

Canal de Isabel II gestión

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

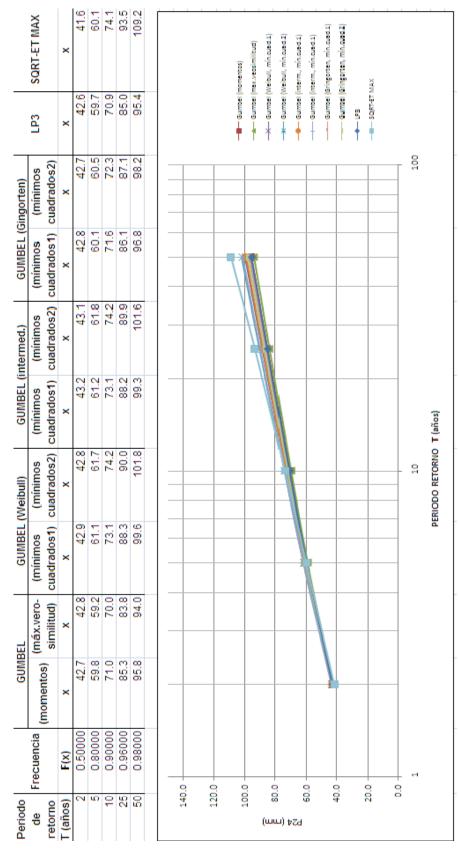


Figura 14. Ajuste extremal para la serie de datos completada (Estación de Buitrago), en mm.

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

5.1.3 CONCLUSIONES

La distribución que proporciona el mejor ajuste en ambos caso es la distribución Gumbel (Weibull) en la cual los valores de las P24 para T10 son máximos respecto al resto de distribuciones. Los resultados obtenidos pueden resumirse en la siguiente tabla de valores máximos:

T (años)	Riosequillo [mm]	Buitrago [mm]	MAXPLU [mm]
2	45,3	43,2	46
5	64,6	61,8	61
10	77,5	74,2	72
15	78,39	81,27	80
25	95,5	93,5	87

Tabla 8. Valores máximos de P24 obtenidos para las series analizadas

A modo de contraste se empleó la aplicación desarrollada por la Dirección General de Carreteras denominada MAXPLU, basada en los resultados del documento "Máximas Iluvias diarias en la España peninsular" (Ministerio de Fomento. Dirección General de Carreteras. 1999) y que es, a su vez, una puesta al día de las publicaciones de la citada Dirección General "Isolíneas de precipitaciones máximas previsibles en un día" (MOPU. 1978) y "Mapa para el cálculo de máximas precipitaciones diarias en la España Peninsular" (Servicio de Geotécnia de la Dirección General de Carreteras. 1997).

En la anterior Tabla 8 puede verse que los resultados obtenidos son muy parecidos, reduciéndose algo en Buitrago (lo que era de esperar, debido a su menor cota). De igual modo resultan inferiores los valores proporcionados por MAXPLU.

De cara al presente estudio se utilizarán los valores más restrictivos de la estación pluviométrica de Riosequillo.

5.2 PERIODO DE RETORNO

No existe una legislación a nivel nacional sobre el periodo de retorno a considerar en el diseño de las redes de alcantarillado. El valor más utilizado en la ciudades españolas es de 10 años. El estudio de diagnosis y prognosis se realiza para un período de retorno de 10 años, aunque se realizarán comprobaciones para T= 5 y 15 años.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 29 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

5.3 CONSTRUCCIÓN DE CURVAS IDF

Identificados los valores de lluvia máximos anuales, el siguiente paso para la definición de un suceso de lluvia sintético es la aplicación de la Curva de Intensidad-Duración-Frecuencia que, por cada duración [min] y tiempo de retorno analizado (T) determina las intensidades máximas de lluvia [mm/h].

Cuando no existe un análisis local de curvas IDF en la región, suele adoptarse la expresión propuesta por Témez:

$$\frac{I_t}{I_d} = \left(\frac{I_1}{I_d}\right)^{\frac{28^{0.1} - t^{0.1}}{28^{0.1} - 1}}$$

It (mm/h): Intensidad media correspondiente al intervalo de duración t deseado.

Id (mm/h): Intensidad media diaria de precipitación, correspondiente al período de retorno considerado, e igual a Pd/24.

Pd (mm): Precipitación total (máxima) diaria correspondiente a dicho período de retorno.

I1/Id: Cociente entre la intensidad horaria y la diaria (factor de torrencialidad), independiente del período de retorno, y que puede obtenerse de la regionalización realizada a nivel nacional.

t (h): Duración del intervalo al que se refiere It.

Para la zona que nos ocupa y en base al mapa de isolíneas del CEDEX, el factor de torrencialidad adopta el valor I1/Id = 10.

Para diferentes duraciones del intervalo de referencia se obtienen las siguientes intensidades, para cada periodo de retorno considerado:

	T=2	T=5	T=10	T=15	T=25
Pd[mm]	45.3	64,6	77,5	78.39	95,5
Δt[min]	I [mm/h]	I [mm/h]	I [mm/h]		I [mm/h]
5	70,5	96,9	116,3	117,6	143,3
10	50,9	70,0	83,9	84,9	103,4

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 30 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

	T=2	T=5	T=10	T=15	T=25
Pd[mm]	45.3	64,6	77,5	78.39	95,5
Δt[min]	I [mm/h]	I [mm/h]	I [mm/h]		I [mm/h]
15	41,6	57,2	68,6	69,4	84,6
20	35,9	49,3	59,2	59,9	72,9
25	31,9	43,9	52,6	53,2	64,8
30	28,9	39,8	47,7	48,2	58,8
60	19,6	26,9	32,3	32,7	39,8
90	15,4	21,2	25,4	25,7	31,3
120	12,9	17,7	21,3	21,5	26,2

Tabla 9. Intensidades obtenidas para cada periodo de retorno.

En la gráfica siguiente se representan las curvas IDF obtenida para T=2, 5, 10, 15 y 25 años.

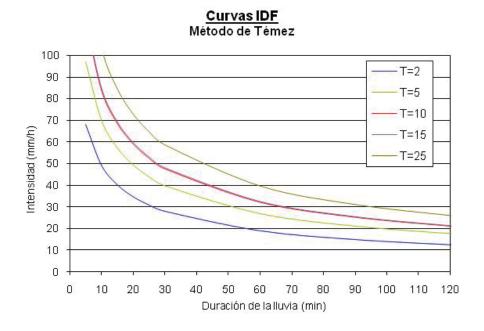


Figura 15. Curvas IDF (Témez) obtenidas para T = 2, 5, 10 Y 25 años.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 31 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

5.4 DISCRETIZACIÓN TEMPORAL

En lo que respecta a la discretización temporal a utilizar en la confección del suceso de lluvia sintético, normalmente los valores varían entre 5 minutos para cuencas urbanas y 20 minutos para cuencas rurales.

En el presente estudio se ha considerado un Intervalo de tiempo ΔT igual a 5 minutos que corresponde, como orden de magnitud, al menor tiempo de concentración de las cuencas en las que se ha discretizado la zona de estudio; hipótesis más desfavorable ya que a menor duración de lluvias mayor intensidad. A continuación se detalla la metodología empleada que justifica la decisión.

5.5 DURACIÓN DE LA LLUVIA DE DISEÑO

La duración característica de las lluvias del sistema de estudio se ha determinado a partir de un análisis de las tormentas intensas de la zona, obtenidas de la estación pluviométrica de la presa de Riosequillo entre los años 2000 y 2010.

Se han localizado los eventos intensos de lluvia cuya intensidad horaria fuera similar o mayor a la obtenida en la curva IDF de Témez para una lluvia de 1h de duración correspondiente a un período de retorno de 2 años.

Según este criterio se han aislado los sucesos de lluvia con intensidad horaria mayor o igual a 19,2 mm/h y se ha obtenido la duración de las mismas.

Para discernir cuando acaba un episodio lluvioso y empieza el siguiente no existe un criterio universal. En este estudio se ha considerado que una tormenta ha concluido cuando durante 2 horas la precipitación acumulada recogida no supera 2 mm1.

Se han analizado un total de 4 episodios lluviosos y sus duraciones obteniéndose la siguiente tabla:

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 32 de 45

¹ Criterio establecido en el Estudio de Regulación de avenidas en las márgenes del río Manzanares, elaborado por INCLAM en marzo de 2000.

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

FECHA	HORA	PRECIPITACIÓN HORARIA [mm]	POBLACIÓN
13-jun-04	12:00	24	1
12-jun-04	12:00	21	4
23-jun-08	23:00	34,4	3
22-sep-08	5:00	19,2	3

Tabla 10. Tormentas intensas y sus duraciones.

De los resultados obtenidos se deduce que la mayor parte de las tormentas intensas dentro de la serie analizada tiene una duración de 3 horas, de ahí que para este estudio se establece una duración de 3 horas para la tormenta sintética de diseño.

5.6 HIETOGRAMA LLUVIA DE DISEÑO

La distribución temporal de la lluvia se ha llevado a cabo según el método de los bloques alternados, cuya hipótesis fundamental es asumir, para cualquier intervalo de tiempo, la intensidad media más desfavorable. El proceso de cálculo de la tormenta por bloques alternos, para un periodo de retorno determinado, se describe a continuación.

En primer lugar se fijan n intervalos de tiempo de duración Δt , de manera que la duración total de la tormenta sea igual a n Δt . Seguidamente, se obtienen, a partir de la curva IDF empleada, las intensidades de precipitación correspondientes a cada una de las duraciones, i($K\Delta t$).

El valor de intensidad correspondiente a cada uno de los n bloques que conforman la tormenta se define de la siguiente forma:

$$b_1 = i(\Delta t), ..., \frac{b_1 + b_2}{2} = i(2\Delta t), ..., \frac{\sum_{j=1}^{k-1} b_j}{k} = i(k\Delta t)$$

Por lo que, despejando, la intensidad correspondiente a un bloque k, resulta:

$$b_k = ki(k\Delta t) - \sum_{j=1}^{k-1} b_j$$

Finalmente, los bloques se reordenan en una secuencia temporal de manera que la intensidad máxima ocurra en el centro de la tormenta y que los demás bloques queden en orden de intensidad decreciente alternativamente a derecha e izquierda del bloque central.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 33 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Con una duración de la tormenta de 3 horas, y un intervalo Δt de 5 minutos, el hietograma resultante de la curva IDF de Témez, para 10 años de periodo de retorno es el que se representa en la siguiente figura. Esta tormenta es por tanto el "input" directo de precipitación en el modelo Infoworks.

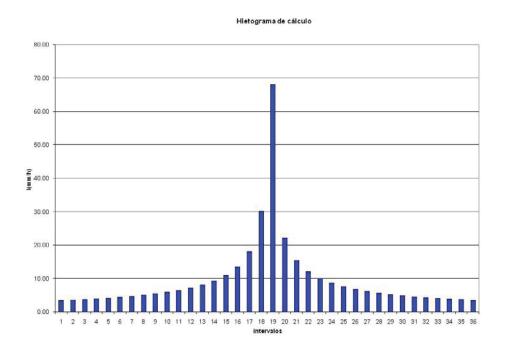


Figura 16. Hietograma introducido en el modelo Infoworks. T= 2 años, Duración: 3h; ΔT=5min.

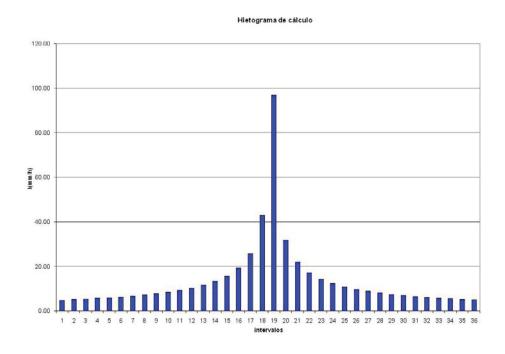


Figura 17. Hietograma introducido en el modelo Infoworks. T= 5 años, Duración: 3h; ΔT=5min.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 34 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

Hietograma de cálculo

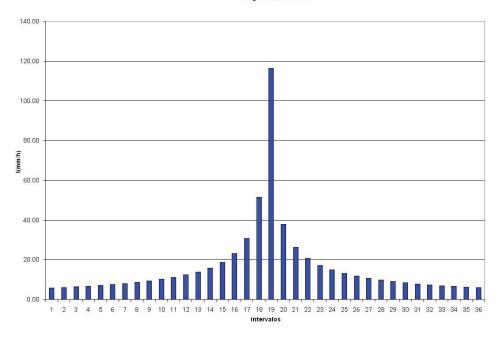


Figura 18. Hietograma introducido en el modelo Infoworks. T= 10 años, Duración: 3h; ΔT=5min.

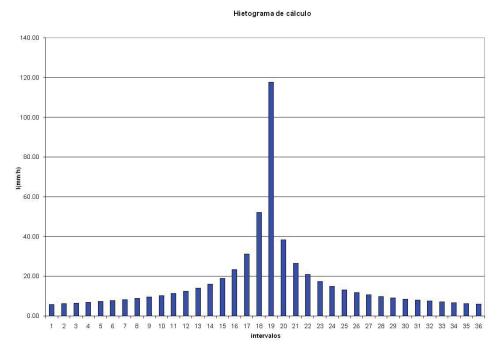


Figura 19. Hietograma introducido en el modelo Infoworks. T= 15 años, Duración: 3h; ΔT=5min.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 35 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

Hietograma de cálculo

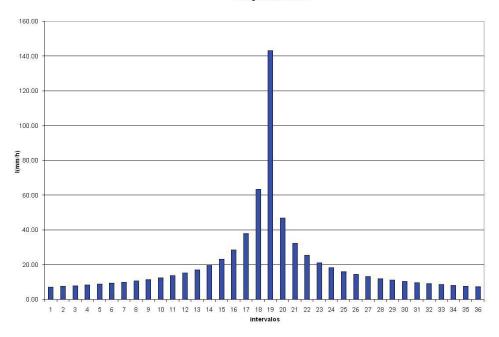


Figura 20. Hietograma introducido en el modelo Infoworks. T= 25 años, Duración: 3h; ΔT=5min.

6 EP6: CAUDALES DE AGUA RESIDUAL

6.1 POBLACIÓN ACTUAL

La población de Buitrago del Lozoya en el año 2010, según información facilitada por el INE, era de un total de 2.068 habitantes.

AÑO	POBLACIÓN
2000	1.471
2001	1.565
2002	1.668
2003	1.697
2004	1.755
2005	1.856
2006	1.937
2007	1.936
2008	2.068
2009	2.078
2010	2.068

Tabla 11. Evolución demográfica de Buitrago desde el año 2000 al 2010

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 36 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

6.2 DOTACIONES Y CONSUMOS DE CÁLCULO

A la hora de calcular la aportación de aguas residuales en el sistema unitario de Buitrago, es necesario definir, para cada subcuenca, los siguientes parámetros:

- Densidad de población
- Consumo medio por habitante por día

Al definir el primer parámetro, el modelo calcula el número de habitantes equivalentes en cada subcuenca en función de su densidad característica y extensión.

La metodología utilizada para definir las densidades es la siguiente:

- Se conoce el número de habitantes por vivienda en el Municipio de Buitrago del Lozoya (Fuente: INE).
- 2. Se estima el área media que ocupa una parcela de uso unifamiliar. Para ello, se mide el área de tres parcelas tipo y se calcula la media.
- 3. El número de habitantes en viviendas unifamiliares se estima asignando al área media de una parcela, el número de habitantes por vivienda. Sabiendo la superficie total de viviendas de esta tipología, se obtiene el número total de habitantes que habitan las viviendas de tipo unifamiliar.
- 4. La densidad característica para las subcuencas del tipo unifamiliar se obtiene como ratio entre el número de habitantes y el área total de las subcuencas del modelo con uso residencial unifamiliar.
- 5. Para calcular la población que reside en viviendas multifamiliares, se le resta al total de la población (Fuente: INE) el número de habitantes estimados en cuencas de uso unifamiliar.
- 6. La densidad característica para las subcuencas del tipo multifamiliar se obtiene como ratio entre el número de habitantes calculado en el punto 5 y el área total de las subcuencas del modelo con uso residencial multifamiliar.

En el caso de Buitrago se han clasificado las subcuencas en función de tres topologías con diferentes densidades de población:

- Zona Rural: En esta tipología se incluyen las subcuencas rurales sin ningún tipo de viviendas. La densidad asignada es igual a cero.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 37 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

- Zona urbana poco densa: En esta tipología se incluyen las zonas con viviendas dispersas fuera del núcleo urbano. El valor asignado es de 25 habitantes/ha.
- Zona urbana densa: Aquí se incluyen las subcuencas dentro del núcleo urbano con una densidad de habitantes mayor. El valor asignado es de 68 habitantes/ha.

Una vez clasificadas las subcuencas según las diferentes tipologías, se ha comprobado que la población propuesta por el modelo es aproximada al número total de habitantes del municipio.

Para definir la dotación media de aguas residuales por habitante/día se utiliza las Normas para Redes de Saneamiento de Canal de Isabel II (v2006). En el capítulo III.5.1.2.1 se proponen una serie de dotaciones en función de la tipología y el tamaño de vivienda:

TIPOLOGÍA VIVIENDA Y TAMAÑO Sv [m²]	DOTACIÓN [m³/viv/día]
Viviendas multifamiliares Sv ≤ 120	0,90
Viviendas multifamiliares 120 <sv 180<="" td="" ≤=""><td>1,05</td></sv>	1,05
Viviendas multifamiliares Sv > 180	1,20
Viviendas Unifamiliares	1,20

Tabla 12. Valores de dotación. Fuente: (NRSCYII 2006).

Para el caso del núcleo urbano de Buitrago del Lozoya la mayoría de viviendas son del tipo unifamiliar, por tanto se adopta un valor de 1,20 m³/viv/día, que corresponde al valor medio de dotación. Considerando 3 habitantes equivalentes por vivienda (valor contrastado con diversas fuentes de información referentes al municipio), se deduce una dotación de 400 l/hab/día. Para el cálculo del caudal de aguas residuales, se considera, según el NRSCYII, un factor de retorno de 0,8. limitando el consumo medio a 320l/hab/día.

Se introduce en el modelo hidráulico para tiempo seco una curva de consumo típica que representa la variación de generación de aguas residuales a lo largo del día. Ver figura 21.

El caudal mínimo de aguas residuales y el máximo se obtienen aplicando los coeficientes de reducción y punta respectivamente según NRSCYII.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 38 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

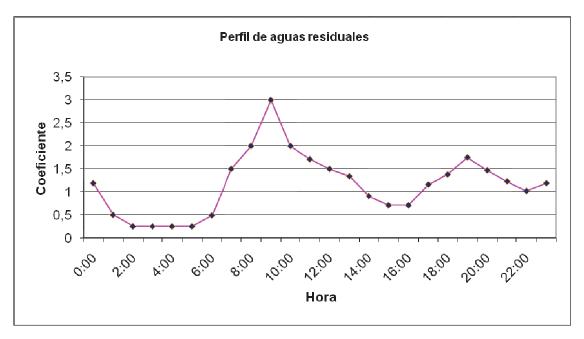


Figura 21. Variación en la producción de aguas residuales a lo largo del día.

6.3 CONCLUSIONES

Se resumen en las tablas siguientes las densidades, dotaciones y los caudales de diseño, donde las aguas domésticas se miden por habitante y las industriales por m².

Densidades

Tipología	Densidad [Hab/Ha]
Zona Urbana poco densa	25
Zona urbana densa	68
Zona industrial o terciaria	0

Tabla 13. Densidad de Población de Buitrago del Lozoya

• Dotaciones de aguas residuales domésticas e industriales

Dotaciones	Domésticas [I/hab/día]	Industriales [I/m²/día]
Vivienda Unifamiliar	400	
Industrial o terciaria		8,64

Tabla 14. Dotaciones de aguas residuales domésticas e industriales de Buitrago del Lozoya

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 39 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Caudales de agua residuales domésticas e industriales [l/hab/día] y [l/m²/dia]

Caudales	Qm	Qmin	Qp
	[l/hab/día]	[I/hab/día]	[I/hab/día]
Vivienda Unifamiliar	320	80	960
	Qm	Qmin	Qp
	[I/m²/día]	[l/m²/día]	[l/m²/día]
Industrial o terciaria	6,912	1,73	20,73

Tabla 15. Dotaciones y caudales asignados en Buitrago del Lozoya

Caudales de aguas residuales domésticas e industriales [l/s].

Caudales	Qm [I /s]
Zona Urbana Unifamiliar	7,65
Zona Industrial o terciaria	2,23
TOTAL	9,88

Tabla 16. Caudales de diseño en Buitrago

Para el cálculo del caudal medio de aguas residuales industriales/terciario del municipio de Buitrago del Lozoya se considera una superficie edificable igual a 2,8 Ha, obtenida a partir de la digitalización de los techos correspondientes a este uso del suelo.

El caudal teórico medio total de aguas residuales (domésticas e industriales) en el sistema de Buitrago resulta ser de 9,88 l/s.

A partir de las formulaciones del apartado 6.2 se calculan los coeficientes de consumo mínimo y máximo para el municipio. Para el coeficiente mínimo se utiliza el valor de 0,25.

Para el coeficiente punta se obtiene un valor de 2. No disponiendo de datos suficientes para realizar la calibración exhaustiva del modelo en tiempo seco, se ha optado por utilizar el coeficiente punta máximo de 3.

Con estos valores, el caudal mínimo y punta del sistema se estiman en 2,47 l/s y 29,64 l/s.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 40 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

7 EP7: ESTUDIO DE CUENCAS VERTIENTES

Una cuenca representa, por cada eje principal de la red, su superficie de aportación hidrológica.

7.1 DELIMITACIÓN DE CUENCAS PRINCIPALES

7.1.1 CRITERIOS DE DEFINICIÓN

En el presente estudio se han identificado las cuencas principales del sistema mediante dos metodologías dependiendo del tipo de superficie. En el caso de las cuencas rurales se han utilizado herramientas GIS que, a partir de un modelo digital de terreno (MDT), permiten definir el camino del flujo en superficie según la línea de máxima pendiente.

En el núcleo urbano se han identificado las cuencas según las pendientes del terreno, cercanía al eje y ubicación de los elementos de captación.

Las cuencas externas al núcleo urbano se asignan a la red según la información disponible y cuando se ha detectado que no hay barrera física que impida la entrada de la escorrentía superficial a la red.

Además, y con el fin de una mejor definición de las cuencas principales, se ha realizado una visita a campo para certificar visualmente la información con la que se cuenta.

A continuación se muestra una imagen del *Plano 8- Cuencas y Ejes Principales* de las cuencas principales en las que se ha dividido la zona de estudio.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 41 de 45

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

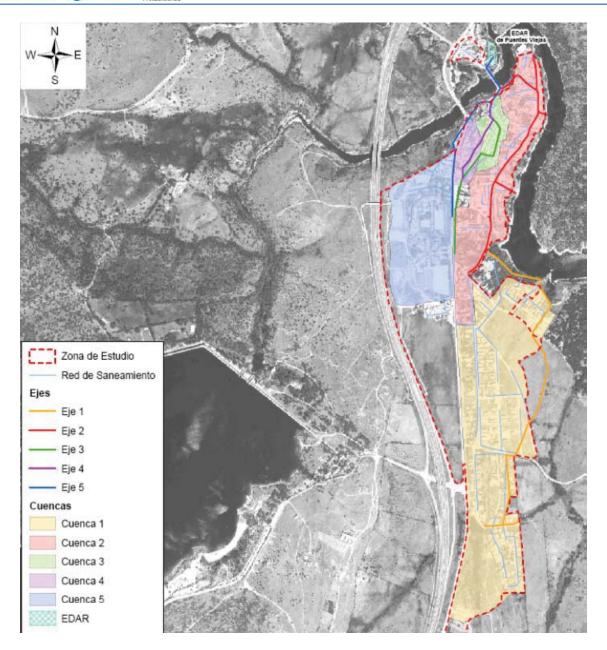


Figura 22. Cuencas y Ejes principales del Municipio de Buitrago.

7.1.2 TIEMPO DE CONCENTRACIÓN

El tiempo de concentración (Tc) es el tiempo que tarda una gota de agua desde el punto más alejado en alcanzar su punto de desagüe.

Para el cálculo del Tc se han utilizado las fórmulas de Témez que se muestran a continuación:

- Cuencas rurales, con un grado de urbanización no superior al 4% del área de la cuenca:

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 42 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

$$T_c = 0.3 * \left(\frac{L}{J^{0.25}}\right)^{0.76}$$

 Cuencas urbanas, con un grado de urbanización superior al 4% del área de la cuenca con alcantarillado completo y/o curso principal canalizado, impermeable y de pequeña rugosidad.

$$T_{c=\frac{1}{1+3\sqrt{\mu(2-\mu)}}*0.3*} \left(\frac{L}{J^{0.25}}\right)^{0.76}$$

donde L es la longitud del curso principal expresada en km, j la pendiente media del mismo curso expresada en tanto por uno y μ el grado de urbanización de la cuenca expresado en tanto por uno, km²/km².

Se calculan los siguientes valores que justifican la elección de diseño.

CUENCAS	L [Km]	% IMPERMEABILIDAD	J [mm]	Tc [min]
Cuenca T1	1,52	8%	0,02	24,99
Cuenca T2	1,05	24%	0,03	12,62
Cuenca T3	0,48	31%	0,03	6,28
Cuenca T4	0,57	17%	0.03	8,41

Tabla 17. Tiempos de concentración obtenidos para cada subcuenca mediante la formulación de Témez

7.2 DELIMITACIÓN DE SUBCUENCAS DE APORTACIÓN

En el núcleo urbano, la asignación de áreas de aportación a cada pozo de la red se realiza según la ubicación de los elementos de captación. Cuando y donde la densidad de los elementos de captación lo permite, la definición y asignación de sub-áreas se realiza utilizando el método de los Polígonos de Thiessen. Éste es uno de los métodos más utilizados de interpolación espacial, basado en la distancia euclidiana. Las áreas de aportación se crean al unir los puntos (pozos) entre sí, trazando las mediatrices de los segmentos de unión. Las intersecciones de estas mediatrices determinan una serie de subcuencas alrededor de los pozos, de manera que el perímetro de los polígonos generados sea equidistante a los puntos vecinos y designando su área de influencia.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 43 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Cada subcuenca del sistema está definida por sus características físicas principales.

Superficie.

- Ancho característico: En el caso de cuencas urbanas se puede aproximar su ancho al

radio de un círculo de área equivalente.

Pendiente característica: En el caso de cuencas urbanas se puede aproximar la pen-

diente de cada subcuenca con la pendiente del colector al que drena.

En el caso de cuencas urbanas se puede aproximar su ancho al radio de un círculo de área

equivalente. En el caso de cuencas urbanas se puede aproximar la pendiente de cada sub-

cuenca con la pendiente del colector al que drena.

En el Plano 9 - Subcuencas que se entregará junto con el Documento 2 - Estudio de la Red

Actual quedan definidas todas las subcuencas, tanto rurales como urbanas, de la zona de es-

tudio de Buitrago del Lozoya.

En el Documento 2 – Estudio de la Red Actual se definen en detalle las subcuencas del siste-

ma de Buitrago del Lozoya y se calcula para cada una de ellas las características geométricas

necesarias para el cálculo hidrológico.

7.3 ASIGNACIÓN DE PARÁMETROS HIDROLÓGICOS

Para el cálculo de la infiltración en cada subcuenca es necesario establecer unos parámetros

hidrológicos para todas las tipologías de superficie presentes en cada una de ella.

En el presente estudio, para cada tipología de superficie, se estima la infiltración utilizando el

método del número de curva desarrollado por el Soil Conservation Service. Este método es

ampliamente utilizado a nivel mundial por la facilidad de estimación de sus parámetros a partir

de datos de vegetación y usos del suelo de la zona de estudio.

La formulación original del S.C.S. está desarrollada a partir del número de curva (CN), que es

un valor entero entre 0 (no hay escorrentía) y 100 (toda la lluvia genera escorrentía).

El valor del número de curva para una cierta superficie depende de:

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 44 de 45

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

- Condiciones iniciales de humedad.
- Uso y tipo hidrológico de suelo.
- Pendiente media de la zona de estudio.
- Estado de conservación de la cubierta vegetal.

Una intensa labor experimental ha permitido al S.C.S. definir el número de curva (CN) a partir de las características anteriormente indicadas para condiciones medias de humedad del complejo suelo-vegetación.

En el *Documento 2 - Estudio de la Red Actual* se definirán los valores de CN para cada tipología de superficie identificadas en la zona de estudio.

La propagación de la escorrentía superficial sobre cada subcuenca se describe a través de las ecuaciones de Saint-Venant, considerando que sólo las fuerzas de gravedad y de fricción son relevantes en la descripción del movimiento, simplificación que se conoce como aproximación de la onda cinemática. Unos de los parámetros de cálculo hidráulico fundamental es por lo tanto la rugosidad de la superficie de cada subcuenca.

En el *Documento 2 - Estudio de la Red Actual*, para cada uno de los usos de suelo identificados en la zona de estudio, se definirá una rugosidad característica, expresada por medio del número de Manning.

El cálculo de la infiltración y propagación se aplica, dentro de cada subcuenca de forma independiente en cada % de tipo de suelo diferente y las diversas aportaciones se suman para determinar el hidrograma de escorrentía resultante para cada subcuenca.

7394-1-1-MM-Mem-3 DOC 1: MEMORIA 45 de 45

ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº1: ESTUDIOS PREVIOS

APÉNDICES

ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº1: ESTUDIOS PREVIOS

APÉNDICE 01. GEOMETRÍA DE LA RED

ÍNDICE

1	POZOS DE REGISTRO	3
2	COLECTORES	.11
3	ALIVADEROS	29

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

1 POZOS DE REGISTRO

En este apartado se muestra una tabla que recoge la información relativa a los pozos pertenecientes a la red de drenaje del Municipio de Buitrago del Lozoya. Para una mejor lectura de la misma, a continuación se indica el significado de cada uno de los parámetros:

- ID: Código alfanumérico que identifica el nodo.

- Nodo: Tipo de nodo:

o Registro: Pozo del alcantarillado.

o Desagüe: Punto de salida de una red.

- Red: Tipo de red:

o Combined: Unitaria.

o Other: Otra

Terreno: Nivel absoluto del terreno.

- Solera: Cota de la solera del pozo de registro.

Los valores en color indican datos de geometría que han sido extrapolados.

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
Auxiliar	Registro	Combined	994.652	993.204
NT-01	Desagüe	Combined	960.428	957.128
NT-02	Registro	Combined	960.411	957.361
NT-03	Desagüe	Combined	960	959.427
NT-05	Registro	Combined	992.845	991.865
P.14PN-79	Registro	Combined	965.2	963.541
P.14PN-80	Registro	Combined	963.896	962.185
P.14PN-81	Registro	Combined	965.362	964.579
P.14PN-82	Registro	Combined	962.95	961.827
P.14PN-83	Registro	Combined	964.409	963.59
P.14PN-84	Registro	Combined	964.525	962.605
P.14PN-85	Registro	Combined	962.99	961.13
P.14QN-10	Registro	Combined	965.143	963.67
P.14QN-100	Registro	Combined	984.298	982.541
P.14QN-101	Registro	Combined	982.945	981.441

7394-1-1-AP-1-Red-3 DOC 1: APÉNDICE 01 3 de 29

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14QN-102	Registro	Combined	981.992	980.809
P.14QN-103	Registro	Combined	981.618	980.454
P.14QN-104	Registro	Combined	982.534	981.46
P.14QN-105	Registro	Combined	982.96	981.987
P.14QN-106	Registro	Combined	996.339	994.337
P.14QN-107	Registro	Combined	985.581	983.912
P.14QN-108	Registro	Combined	979.406	977.406
P.14QN-109	Registro	Combined	976.284	974.284
P.14QN-11	Registro	Combined	965.675	965.083
P.14QN-110	Registro	Combined	969.153	967.553
P.14QN-111	Registro	Combined	969.669	967.608
P.14QN-112	Registro	Combined	982.663	980.54
P.14QN-113	Registro	Combined	982.789	981.747
P.14QN-114	Registro	Combined	984.358	983.358
P.14QN-115	Registro	Combined	989.999	989.053
P.14QN-116	Registro	Combined	974.038	973.413
P.14QN-117	Registro	Combined	980.114	979.242
P.14QN-118	Registro	Combined	982.726	981.829
P.14QN-119	Registro	Combined	970.043	967.505
P.14QN-12	Registro	Combined	962.923	961.478
P.14QN-120	Registro	Combined	970.847	967.191
P.14QN-121	Registro	Combined	970.338	966.963
P.14QN-122	Registro	Combined	970.478	966.969
P.14QN-123	Registro	Combined	972.489	971.426
P.14QN-124	Registro	Combined	972.575	971.757
P.14QN-125	Registro	Combined	972.566	971.801
P.14QN-126	Registro	Combined	972.63	972.061
P.14QN-127	Registro	Combined	970.267	968.751
P.14QN-128	Registro	Combined	974.004	973.195
P.14QN-129	Registro	Combined	974.041	972.959
P.14QN-13	Registro	Combined	962.987	961.442
P.14QN-130	Registro	Combined	965.104	964.286
P.14QN-131	Registro	Combined	966.349	965.588
P.14QN-132	Registro	Combined	964.906	963.96
P.14QN-133	Registro	Combined	968.454	967.509
P.14QN-134	Registro	Combined	968.489	967.468
P.14QN-135	Registro	Combined	977.338	976.535
P.14QN-136	Registro	Combined	977.438	976.007
P.14QN-137	Registro	Combined	977.173	975.174
P.14QN-138	Registro	Combined	979.63	978.516
P.14QN-139	Registro	Combined	977.704	976.186

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14QN-14	Registro	Combined	963.314	961.35
P.14QN-140	Registro	Combined	978.397	976.902
P.14QN-141	Registro	Combined	980.771	979.824
P.14QN-142	Registro	Combined	981.891	980.747
P.14QN-143	Registro	Combined	979.421	978.38
P.14QN-144	Registro	Combined	982.047	980.101
P.14QN-145	Registro	Combined	980.675	978.984
P.14QN-146	Registro	Combined	979.445	978.003
P.14QN-147	Registro	Combined	977.006	975.168
P.14QN-148	Registro	Combined	976.719	974.677
P.14QN-149	Registro	Combined	975.871	974.312
P.14QN-15	Registro	Combined	964.704	963.959
P.14QN-150	Registro	Combined	975.901	974.465
P.14QN-151	Registro	Combined	976.853	975.474
P.14QN-152	Registro	Combined	973.701	971.991
P.14QN-153	Registro	Combined	973.487	971.283
P.14QN-154	Registro	Combined	975.104	972.406
P.14QN-155	Registro	Combined	975.076	973.355
P.14QN-156	Registro	Combined	974.806	973.193
P.14QN-157	Registro	Combined	975.014	972.908
P.14QN-158	Registro	Combined	974.888	972.597
P.14QN-159	Registro	Combined	969.904	968.559
P.14QN-16	Registro	Combined	963.398	961.799
P.14QN-160	Registro	Combined	972.326	969.906
P.14QN-161	Registro	Combined	974.301	971.161
P.14QN-162	Registro	Combined	976.366	973.987
P.14QN-163	Registro	Combined	974.632	973.625
P.14QN-164	Registro	Combined	969.866	966.852
P.14QN-166	Registro	Combined	974.316	972.977
P.14QN-17	Registro	Combined	963.583	960.907
P.14QN-18	Registro	Combined	963.194	961.135
P.14QN-19	Registro	Combined	962.99	961.824
P.14QN-20	Registro	Combined	963.429	962.019
P.14QN-21	Registro	Combined	961.766	960.423
P.14QN-22	Registro	Combined	969.57	968.994
P.14QN-23	Registro	Combined	965.676	964.044
P.14QN-24	Registro	Combined	964.478	962.777
P.14QN-25	Registro	Combined	963.165	961.33
P.14QN-26	Registro	Combined	965.466	964.233
P.14QN-27	Registro	Combined	965.816	964.546
P.14QN-28	Registro	Combined	965.942	964.295

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14QN-29	Registro	Combined	965.621	964.778
P.14QN-30	Registro	Combined	964.944	964.129
P.14QN-31	Registro	Combined	968.954	967.735
P.14QN-32	Registro	Combined	972.329	969.709
P.14QN-33	Registro	Combined	967.311	965.931
P.14QN-34	Registro	Combined	965.164	963.824
P.14QN-35	Registro	Combined	964.097	962.503
P.14QN-36	Registro	Combined	965.933	964.003
P.14QN-37	Registro	Combined	966.171	964.439
P.14QN-38	Registro	Combined	973.182	969.732
P.14QN-39	Registro	Combined	969.533	968.542
P.14QN-40	Registro	Combined	969.398	968.444
P.14QN-41	Registro	Combined	969.087	967.457
P.14QN-42	Registro	Combined	968.965	967.926
P.14QN-43	Registro	Combined	968.366	967.311
P.14QN-44	Registro	Combined	968.402	967.741
P.14QN-45	Registro	Combined	967.426	963.697
P.14QN-46	Registro	Combined	967.392	963.976
P.14QN-47	Registro	Combined	966.583	964.049
P.14QN-48	Registro	Combined	965.94	964.297
P.14QN-49	Registro	Combined	965.886	964.371
P.14QN-5	Registro	Combined	958.774	957.869
P.14QN-50	Registro	Combined	965.997	964.436
P.14QN-51	Registro	Combined	966.478	964.578
P.14QN-52	Registro	Combined	967.865	967.112
P.14QN-53	Registro	Combined	967.749	966.967
P.14QN-54	Registro	Combined	967.417	965.393
P.14QN-35	Registro	Combined	964.097	962.503
P.14QN-36	Registro	Combined	965.933	964.003
P.14QN-37	Registro	Combined	966.171	964.439
P.14QN-38	Registro	Combined	973.182	969.732
P.14QN-39	Registro	Combined	969.533	968.542
P.14QN-40	Registro	Combined	969.398	968.444
P.14QN-41	Registro	Combined	969.087	967.457
P.14QN-42	Registro	Combined	968.965	967.926
P.14QN-43	Registro	Combined	968.366	967.311
P.14QN-44	Registro	Combined	968.402	967.741
P.14QN-45	Registro	Combined	967.426	963.697
P.14QN-46	Registro	Combined	967.392	963.976
P.14QN-47	Registro	Combined	966.583	964.049
P.14QN-48	Registro	Combined	965.94	964.297

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14QN-49	Registro	Combined	965.886	964.371
P.14QN-5	Registro	Combined	958.774	957.869
P.14QN-50	Registro	Combined	965.997	964.436
P.14QN-51	Registro	Combined	966.478	964.578
P.14QN-52	Registro	Combined	967.865	967.112
P.14QN-53	Registro	Combined	967.749	966.967
P.14QN-54	Registro	Combined	967.417	965.393
P.14QN-55	Registro	Combined	967.689	966.819
P.14QN-56	Registro	Combined	967.937	966.235
P.14QN-57	Registro	Combined	968.329	967.195
P.14QN-58	Registro	Combined	968.188	966.379
P.14QN-6	Registro	Combined	959.087	957.647
P.14QN-63	Registro	Combined	971.808	970.949
P.14QN-64	Registro	Combined	970.785	969.03
P.14QN-65	Registro	Combined	971.689	970.399
P.14QN-66	Registro	Combined	970.855	969.291
P.14QN-67	Registro	Combined	971.986	971.097
P.14QN-68	Registro	Combined	967.939	967.288
P.14QN-69	Registro	Combined	969.756	969.103
P.14QN-7	Registro	Combined	959.352	957.581
P.14QN-70	Registro	Combined	969.027	967.701
P.14QN-71	Registro	Combined	972.109	971.114
P.14QN-72	Registro	Combined	970.291	969.319
P.14QN-73	Registro	Combined	973.446	971.592
P.14QN-74	Registro	Combined	973.374	970.622
P.14QN-75	Registro	Combined	973.35	971.941
P.14QN-76	Registro	Combined	974.372	972.69
P.14QN-77	Registro	Combined	973.551	972.816
P.14QN-78	Registro	Combined	973.897	972.701
P.14QN-79	Registro	Combined	990.943	988.93
P.14QN-8	Registro	Combined	965.716	959.961
P.14QN-80	Registro	Combined	988.861	985.854
P.14QN-81	Registro	Combined	970.537	969.514
P.14QN-82	Registro	Combined	970.779	969.108
P.14QN-83	Registro	Combined	970.277	968.677
P.14QN-84	Registro	Combined	970.021	968.6
P.14QN-85	Registro	Combined	969.911	968.513
P.14QN-86	Registro	Combined	969.629	968.356
P.14QN-87	Registro	Combined	970.259	967.943
P.14QN-88	Registro	Combined	969.697	967.684
P.14QN-89	Registro	Combined	969.729	967.738

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14QN-9	Registro	Combined	965.268	964.647
P.14QN-90	Registro	Combined	983.257	982.214
P.14QN-91	Registro	Combined	980.612	979.647
P.14QN-92	Registro	Combined	984.277	983.215
P.14QN-93	Registro	Combined	985.178	984.154
P.14QN-94	Registro	Combined	984.573	983.521
P.14QN-95	Registro	Combined	983.975	983.001
P.14QN-96	Registro	Combined	981.865	980.658
P.14QN-97	Registro	Combined	993.084	991.242
P.14QN-98	Registro	Combined	989.869	987.369
P.14QN-99	Registro	Combined	987.152	984.546
P.14RN-1	Registro	Combined	997.109	996.038
P.14RN-10	Registro	Combined	995.735	993.713
P.14RN-100	Registro	Combined	994.747	992.912
P.14RN-101	Registro	Combined	989.556	986.18
P.14RN-102	Registro	Combined	990.759	987.999
P.14RN-103	Registro	Combined	991.986	990.338
P.14RN-104	Registro	Combined	992.389	991.061
P.14RN-105	Registro	Combined	999.059	996.487
P.14RN-106	Registro	Combined	1002.714	1001.123
P.14RN-107	Registro	Combined	982.143	980.377
P.14RN-108	Registro	Combined	984.502	980.897
P.14RN-109	Registro	Combined	986.276	982.821
P.14RN-11	Registro	Combined	995.664	994.434
P.14RN-110	Registro	Combined	986.782	983.568
P.14RN-111	Registro	Combined	986.707	984.034
P.14RN-112	Registro	Combined	986.427	984.283
P.14RN-113	Registro	Combined	987.099	984.573
P.14RN-114	Registro	Combined	988.063	984.827
P.14RN-115	Registro	Combined	987.408	984.992
P.14RN-116	Registro	Combined	999.851	998.177
P.14RN-12	Registro	Combined	1003.164	1001.79
P.14RN-13	Registro	Combined	1002.895	1001.689
P.14RN-14	Registro	Combined	996.729	995.268
P.14RN-15	Registro	Combined	998.065	996.284
P.14RN-16	Registro	Combined	1000.736	999.244
P.14RN-17	Registro	Combined	995.135	993.333
P.14RN-18	Registro	Combined	994.652	993.204
P.14RN-19	Registro	Combined	993.814	992.565
P.14RN-2	Registro	Combined	998.118	997.018
P.14RN-20	Registro	Combined	993.472	991.339

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14RN-21	Registro	Combined	994.34	992.956
P.14RN-22	Registro	Combined	992.572	991.082
P.14RN-23	Registro	Combined	993.146	991.424
P.14RN-24	Registro	Combined	993.708	992.206
P.14RN-25	Registro	Combined	994.016	992.536
P.14RN-26	Registro	Combined	994.256	992.712
P.14RN-27	Registro	Combined	995.9	994.2
P.14RN-28	Registro	Combined	996.457	994.506
P.14RN-29	Registro	Combined	997.794	996.362
P.14RN-3	Registro	Combined	998.809	997.138
P.14RN-30	Registro	Combined	995.409	993.165
P.14RN-31	Registro	Combined	994.493	992.458
P.14RN-32	Registro	Combined	993.217	991.216
P.14RN-33	Registro	Combined	991.748	990.006
P.14RN-34	Registro	Combined	991.443	989.42
P.14RN-35	Registro	Combined	990.59	988.834
P.14RN-36	Registro	Combined	990.016	988.208
P.14RN-37	Registro	Combined	989.29	987.31
P.14RN-38	Registro	Combined	988.704	986.894
P.14RN-39	Registro	Combined	987.984	985.446
P.14RN-4	Registro	Combined	999.372	997.561
P.14RN-40	Registro	Combined	989.489	986.708
P.14RN-41	Registro	Combined	999.25	996.403
P.14RN-42	Registro	Combined	999.25	997.617
P.14RN-43	Registro	Combined	999.131	997.368
P.14RN-44	Registro	Combined	998.956	996.808
P.14RN-45	Registro	Combined	998.479	996.015
P.14RN-46	Registro	Combined	998.813	996.983
P.14RN-47	Registro	Combined	998.744	997.132
P.14RN-48	Registro	Combined	997.64	995.455
P.14RN-49	Registro	Combined	996.574	994.19
P.14RN-5	Registro	Combined	999.788	997.675
P.14RN-50	Registro	Combined	999.319	996.021
P.14RN-51	Registro	Combined	999.347	997.905
P.14RN-52	Registro	Combined	999.089	997.467
P.14RN-53	Registro	Combined	998.311	996.603
P.14RN-54	Registro	Combined	997.948	995.624
P.14RN-55	Registro	Combined	997.594	996.055
P.14RN-56	Registro	Combined	996.936	995.474
P.14RN-57	Registro	Combined	996.629	994.987
P.14RN-58	Registro	Combined	995.939	994.317

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14RN-59	Registro	Combined	994.707	992.941
P.14RN-6	Registro	Combined	1000.294	997.829
P.14RN-60	Registro	Combined	994.151	992.277
P.14RN-61	Registro	Combined	991.555	989.902
P.14RN-62	Registro	Combined	991.345	989.908
P.14RN-63	Registro	Combined	991.486	989.379
P.14RN-64	Registro	Combined	987.943	985.056
P.14RN-65	Registro	Combined	987.102	984.998
P.14RN-66	Registro	Combined	986.343	984.432
P.14RN-67	Registro	Combined	985.165	983.449
P.14RN-68	Registro	Combined	987.078	984.978
P.14RN-69	Registro	Combined	988.48	986.518
P.14RN-7	Registro	Combined	1000.138	997.987
P.14RN-70	Registro	Combined	989.947	988.411
P.14RN-71	Registro	Combined	992.085	990.045
P.14RN-72	Registro	Combined	992.447	990.454
P.14RN-73	Registro	Combined	992.919	991.128
P.14RN-74	Registro	Combined	993.108	991.225
P.14RN-75	Registro	Combined	992.05	989.928
P.14RN-76	Registro	Combined	991.519	989.349
P.14RN-77	Registro	Combined	990.45	988.91
P.14RN-78	Registro	Combined	989.99	988.695
P.14RN-79	Registro	Combined	988.745	987.623
P.14RN-8	Registro	Combined	997.84	995.968
P.14RN-80	Registro	Combined	993.629	991.966
P.14RN-81	Registro	Combined	993.923	992.17
P.14RN-82	Registro	Combined	994.072	992.39
P.14RN-83	Registro	Combined	994.614	993.041
P.14RN-84	Registro	Combined	995.078	993.475
P.14RN-85	Registro	Combined	980.811	978.409
P.14RN-86	Registro	Combined	976.886	974.656
P.14RN-87	Registro	Combined	976.866	974.687
P.14RN-88	Registro	Combined	974.908	973.773
P.14RN-89	Registro	Combined	973.066	971.984
P.14RN-9	Registro	Combined	995.845	993.852
P.14RN-90	Registro	Combined	972.186	970.143
P.14RN-91	Registro	Combined	970.794	969.794
P.14RN-92	Registro	Combined	970.769	969.784
P.14RN-93	Registro	Combined	974.597	973.612
P.14RN-94	Registro	Combined	983.165	981.66
P.14RN-95	Registro	Combined	983.07	981.846

Parte I: Estudio de Diagnosis

Documento Nº1. Estudios Previos

ID	Nodo	Red	Terreno (m AD)	Solera (m AD)
P.14RN-96	Registro	Combined	998.281	996.108
P.14RN-97	Registro	Combined	999.649	998.037
P.14RN-98	Registro	Combined	1000.293	998.92
P.14RN-99	Registro	Combined	995.056	993.212
P.24AN-1	Registro	Combined	1015.803	1015
P.24AN-10	Registro	Combined	1007.088	1005.974
P.24AN-11	Registro	Combined	1009.977	1008.754
P.24AN-12	Registro	Combined	1011.58	1010.648
P.24AN-13	Registro	Combined	1012.262	1011.327
P.24AN-14	Registro	Combined	1012.85	1011.985
P.24AN-15	Registro	Combined	1013.443	1012.198
P.24AN-16	Registro	Combined	1014.324	1013.099
P.24AN-17	Registro	Combined	1014.31	1013.176
P.24AN-18	Registro	Combined	1008.906	1007.277
P.24AN-2	Registro	Combined	1014.924	1014.179
P.24AN-3	Registro	Combined	1013.306	1012.228
P.24AN-4	Registro	Combined	1011.834	1010.451
P.24AN-5	Registro	Combined	1010.884	1009.551
P.24AN-6	Registro	Combined	1009.873	1008.494
P.24AN-7	Registro	Combined	1008.046	1006.388
P.24AN-8	Registro	Combined	1006.44	1005.095
P.24AN-9	Registro	Combined	1004.784	1003.501
W1	Registro	Combined	994.652	993.217
W2	Registro	Combined	969.866	966.887
P.VERTIDO1	Desagüe	Other	960	958
P.VERTIDO2	Desagüe	Combined	960	958.001
P.VERTIDO5	Desagüe	Combined	990	989.147
P.VERTIDO3	Desagüe	Combined	965	961.9
P.VERTIDO4	Desagüe	Combined	965.88	958

Tabla 1. Pozos de la red de drenaje y Saneamiento del Municipio de Buitrago

2 COLECTORES

En este apartado se muestran dos tablas que recogen la información relativa a los colectores pertenecientes a la red de drenaje del Municipio de Buitrago del Lozoya. Ambas tablas contienen las mismas tuberías pero cada una de ellas indica diferente información.

7394-1-1-AP-1-Red-3 DOC 1: APÉNDICE 01 11 de 29

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

Para una mejor lectura de la misma, a continuación se indica el significado de cada uno de los parámetros:

ID US: Código identificativos del nodo aguas arriba.

ID DS: Código identificativos del nodo aguas abajo.

- Red: Tipo de sistema o red.

o Combined: Unitaria.

o Other: Otra.

- Longitud: Longitud de la tubería.

- Forma: Forma de la tubería:

o CIRC: Circular.

o ARCH: Arco

o RECT: Rectangular

- Anchura: Anchura del conducto.

- Altura: Altura del conducto.

Rugosidad: Rugosidad según Manning.

o n: Manning.

- Fondo US: Nivel absoluto de la solera del tubo, en el extremo Aguas Arriba.

- Fondo DS: Nivel absoluto de la solera del tubo, en el extremo Aguas Abajo.

Material: Material del conducto.

Pendiente: Inclinación de la tubería.

Una etiqueta indica datos extrapolados.

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
Auxiliar	P.14RN-21	Combined	36.6	CIRC	400	400
NT-02	NT-01	Combined	18.7	CIRC	400	400
NT-05	P.14QN-115	Combined	176.6	CIRC	400	400
P.14PN-79	P.14PN-80	Combined	42.9	RECT	300	200
P.14PN-80	JUNCTION27	Combined	70.4	CIRC	300	300
P.14PN-81	P.14PN-83	Combined	25.5	CIRC	200	200
P.14PN-82	P.14PN-85	Combined	29.6	CIRC	400	400

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14PN-83	P.14PN-84	Combined	5.3	CIRC	300	300
P.14PN-84	P.14PN-82	Combined	30.8	CIRC	300	300
P.14PN-85	P.14QN-12	Combined	22.9	CIRC	400	400
P.14QN-10	P.14PN-84	Combined	37.4	CIRC	300	300
P.14QN-100	P.14QN-101	Combined	29.8	CIRC	400	400
P.14QN-101	P.14QN-102	Combined	41.4	CIRC	400	400
P.14QN-102	P.14QN-103	Combined	13.8	CIRC	600	600
P.14QN-103	P.14QN-143	Combined	63.5	CIRC	600	600
P.14QN-104	P.14QN-102	Combined	41.9	CIRC	600	600
P.14QN-105	P.14QN-104	Combined	52.3	CIRC	600	600
P.14QN-106	NT-05	Combined	38.5	CIRC	400	400
P.14QN-107	P.14QN-108	Combined	37.6	CIRC	400	400
P.14QN-108	P.14QN-109	Combined	19.5	CIRC	400	400
P.14QN-109	P.14QN-111	Combined	78.7	CIRC	600	600
P.14QN-11	P.14QN-10	Combined	14.7	CIRC	200	200
P.14QN-110	P.14QN-119	Combined	42.7	CIRC	500	500
P.14QN-111	P.14QN-110	Combined	85.7	CIRC	600	600
P.14QN-112	JUNCTION87	Combined	53.7	RECT	400	350
P.14QN-113	P.14QN-112	Combined	12.9	CIRC	600	600
P.14QN-114	P.14QN-113	Combined	70.8	CIRC	600	600
P.14QN-115	P.14QN-114	Combined	102	CIRC	600	600
P.14QN-116	P.14QN-110	Combined	47.6	CIRC	300	300
P.14QN-117	P.14QN-116	Combined	50.1	CIRC	300	300
P.14QN-118	P.14QN-117	Combined	31.5	CIRC	300	300
P.14QN-119	JUNCTION79	Combined	52.5	CIRC	1200	1200
P.14QN-12	P.14QN-13	Combined	6.7	CIRC	400	400
P.14QN-120	P.14QN-122	Combined	42.6	CIRC	1200	1200
P.14QN-121	P.14QN-164	Combined	16.4	CIRC	1200	1200
P.14QN-122	P.14QN-121	Combined	12.9	CIRC	1200	1200
P.14QN-123	P.14QN-121	Combined	20.6	CIRC	200	200
P.14QN-124	P.14QN-123	Combined	14.6	CIRC	200	200
P.14QN-125	P.14QN-124	Combined	17.1	CIRC	200	200
P.14QN-126	P.14QN-125	Combined	18.4	CIRC	200	200
P.14QN-127	P.14QN-119	Combined	12	CIRC	400	400
P.14QN-128	P.14QN-129	Combined	39.1	CIRC	200	200
P.14QN-129	JUNCTION79	Combined	39.9	CIRC	200	200
P.14QN-13	P.14QN-14	Combined	28.5	CIRC	400	400
P.14QN-130	P.14QN-132	Combined	14.3	CIRC	300	300
P.14QN-131	P.14QN-132	Combined	15.1	CIRC	300	300
P.14QN-132	JUNCTION70	Combined	25.2	CIRC	400	400
P.14QN-133	P.14QN-131	Combined	20.8	CIRC	300	300

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14QN-134	P.14QN-130	Combined	32.8	CIRC	300	300
P.14QN-135	P.14QN-136	Combined	10.8	CIRC	200	200
P.14QN-136	P.14QN-137	Combined	12.9	CIRC	200	200
P.14QN-137	P.14QN-162	Combined	15.4	CIRC	400	400
P.14QN-138	P.14QN-140	Combined	21.4	CIRC	300	300
P.14QN-139	P.14QN-137	Combined	29.1	CIRC	400	400
P.14QN-14	JUNCTION84	Combined	21.3	CIRC	400	400
P.14QN-140	P.14QN-139	Combined	14.6	CIRC	400	400
P.14QN-141	P.14QN-140	Combined	22.3	CIRC	300	300
P.14QN-142	P.14QN-141	Combined	6.9	CIRC	300	300
P.14QN-143	P.14QN-163	Combined	101.7	CIRC	600	600
P.14QN-144	JUNCTION87	Combined	1.6	CIRC	300	300
P.14QN-145	JUNCTION69	Combined	2.1	CIRC	200	200
P.14QN-146	P.14QN-148	Combined	142.1	RECT	400	350
P.14QN-146	P.14QN-76	Combined	163.2	RECT	400	350
P.14QN-147	P.14QN-148	Combined	23.5	RECT	200	250
P.14QN-148	P.14QN-150	Combined	25.1	RECT	350	300
P.14QN-149	P.14QN-152	Combined	56.1	CIRC	300	300
P.14QN-15	P.14QN-14	Combined	14.2	CIRC	300	300
P.14QN-150	P.14QN-149	Combined	7.3	CIRC	300	300
P.14QN-151	P.14QN-147	Combined	11.8	RECT	200	250
P.14QN-152	P.14QN-153	Combined	28.4	RECT	400	500
P.14QN-153	P.14QN-32	Combined	33.4	RECT	400	500
P.14QN-154	JUNCTION19	Combined	48.2	CIRC	400	400
P.14QN-155	P.14QN-156	Combined	24.8	CIRC	400	400
P.14QN-156	P.14QN-157	Combined	20.2	CIRC	400	400
P.14QN-157	P.14QN-158	Combined	5	CIRC	400	400
P.14QN-158	P.14QN-154	Combined	11.5	CIRC	400	400
P.14QN-159	JUNCTION19	Combined	50	CIRC	400	400
P.14QN-16	JUNCTION84	Combined	2.3	CIRC	200	200
P.14QN-160	P.14QN-159	Combined	30.4	CIRC	400	400
P.14QN-161	P.14QN-160	Combined	29.8	CIRC	400	400
P.14QN-162	P.14QN-161	Combined	72.1	CIRC	400	400
P.14QN-163	P.14QN-161	Combined	35.7	CIRC	400	400
P.14QN-164	P.14QN-58	Combined	34.8	CIRC	500	500
P.14QN-166	P.14QN-87	Combined	28.7	CIRC	300	300
P.14QN-17	JUNCTION05	Combined	76	CIRC	1625	1625
P.14QN-18	P.14QN-17	Combined	23.2	CIRC	500	500
P.14QN-19	P.14QN-21	Combined	15.3	CIRC	500	500
P.14QN-19	P.14QN-25	Combined	44.8	CIRC	400	400
P.14QN-20	P.14QN-19	Combined	12.7	CIRC	500	500

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14QN-21	NT-03	Combined	27.4	CIRC	500	500
P.14QN-22	P.14QN-27	Combined	139.2	CIRC	200	200
P.14QN-23	P.14QN-24	Combined	34.9	CIRC	300	300
P.14QN-24	P.14QN-25	Combined	34.3	CIRC	300	300
P.14QN-25	P.14QN-18	Combined	20.9	CIRC	500	500
P.14QN-26	P.14QN-17	Combined	26.7	CIRC	300	300
P.14QN-27	P.14QN-26	Combined	9.7	CIRC	300	300
P.14QN-28	JUNCTION05	Combined	26	CIRC	300	300
P.14QN-29	P.14QN-30	Combined	32.7	CIRC	200	200
P.14QN-30	P.14QN-16	Combined	13.2	CIRC	200	200
P.14QN-31	P.14QN-33	Combined	5	CIRC	300	300
P.14QN-32	P.14QN-33	Combined	57.5	RECT	350	400
P.14QN-33	P.14QN-35	Combined	31.6	RECT	400	350
P.14QN-34	P.14QN-35	Combined	15.7	CIRC	400	400
P.14QN-35	P.14QN-7	Combined	56.5	RECT	400	350
P.14QN-36	P.14QN-34	Combined	33.6	CIRC	400	400
P.14QN-37	P.14QN-36	Combined	19.1	CIRC	400	400
P.14QN-38	P.14QN-32	Combined	19.1	RECT	350	400
P.14QN-39	P.14QN-40	Combined	5.7	CIRC	250	250
P.14QN-40	P.14QN-41	Combined	9.9	CIRC	250	250
P.14QN-41	P.14QN-31	Combined	10	CIRC	250	250
P.14QN-42	JUNCTION45	Combined	10.1	CIRC	200	200
P.14QN-43	JUNCTION16	Combined	42.7	CIRC	200	200
P.14QN-44	JUNCTION16	Combined	43.3	CIRC	100	100
P.14QN-45	P.14QN-20	Combined	63.6	CIRC	500	500
P.14QN-46	P.14QN-45	Combined	39.5	CIRC	500	500
P.14QN-47	P.14QN-46	Combined	15.6	CIRC	500	500
P.14QN-48	P.14QN-47	Combined	12.3	CIRC	500	500
P.14QN-49	P.14QN-48	Combined	28.5	CIRC	500	500
P.14QN-5	NT-01	Combined	20.9	CIRC	450	450
P.14QN-50	P.14QN-49	Combined	5.7	CIRC	500	500
P.14QN-51	P.14QN-50	Combined	36.7	CIRC	500	500
P.14QN-52	P.14QN-53	Combined	4.1	CIRC	300	300
P.14QN-53	P.14QN-54	Combined	10.2	CIRC	300	300
P.14QN-54	P.14QN-51	Combined	34.6	CIRC	500	500
P.14QN-55	JUNCTION67	Combined	6.8	CIRC	200	200
P.14QN-56	JUNCTION67	Combined	27.2	CIRC	500	500
P.14QN-57	P.14QN-58	Combined	3.2	CIRC	300	300
P.14QN-58	P.14QN-56	Combined	16.5	CIRC	500	500
P.14QN-6	JUNCTION21	Combined	7.6	CIRC	300	300
P.14QN-6	NT-02	Combined	98.3	CIRC	400	400

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14QN-63	P.14QN-164	Combined	12.5	CIRC	300	300
P.14QN-64	P.14QN-57	Combined	13.2	CIRC	250	250
P.14QN-65	P.14QN-64	Combined	24.1	CIRC	300	300
P.14QN-66	P.14QN-57	Combined	18.8	CIRC	200	200
P.14QN-67	P.14QN-52	Combined	11.1	CIRC	200	200
P.14QN-68	P.14QN-53	Combined	20.3	CIRC	200	200
P.14QN-69	JUNCTION36	Combined	1.8	CIRC	300	300
P.14QN-7	P.14QN-6	Combined	5.7	CIRC	400	400
P.14QN-70	P.14QN-50	Combined	35.8	CIRC	300	300
P.14QN-71	P.14QN-72	Combined	15.7	CIRC	300	300
P.14QN-72	P.14QN-69	Combined	15.1	CIRC	300	300
P.14QN-73	P.14QN-74	Combined	59	RECT	400	350
P.14QN-74	P.14QN-38	Combined	30	RECT	400	350
P.14QN-75	P.14QN-73	Combined	60.9	RECT	400	350
P.14QN-76	P.14QN-75	Combined	27	RECT	400	350
P.14QN-77	P.14QN-78	Combined	12.9	CIRC	200	200
P.14QN-78	P.14QN-153	Combined	14	CIRC	200	200
P.14QN-79	P.14QN-107	Combined	117.7	CIRC	300	300
P.14QN-8	JUNCTION80	Combined	31	CIRC	1625	1625
P.14QN-80	P.14RN-64	Combined	17.8	CIRC	300	300
P.14QN-81	P.14QN-82	Combined	44.2	CIRC	400	400
P.14QN-82	P.14QN-83	Combined	24.8	CIRC	300	300
P.14QN-83	P.14QN-84	Combined	9	CIRC	300	300
P.14QN-84	P.14QN-85	Combined	73.1	CIRC	300	300
P.14QN-85	P.14QN-86	Combined	43.9	CIRC	300	300
P.14QN-86	JUNCTION47	Combined	45.3	CIRC	300	300
P.14QN-87	P.14QN-88	Combined	27.5	CIRC	600	600
P.14QN-88	P.14QN-89	Combined	25.1	CIRC	600	600
P.14QN-89	P.14QN-111	Combined	23.9	CIRC	600	600
P.14QN-9	P.14QN-10	Combined	10.3	CIRC	150	150
P.14QN-90	P.14QN-82	Combined	122.4	CIRC	200	200
P.14QN-91	P.14RN-93	Combined	70.3	CIRC	200	200
P.14QN-92	P.14QN-90	Combined	65.7	CIRC	200	200
P.14QN-93	P.14QN-92	Combined	21	CIRC	200	200
P.14QN-94	P.14QN-95	Combined	13.8	CIRC	200	200
P.14QN-95	P.14QN-85	Combined	47.6	CIRC	200	200
P.14QN-96	P.14QN-166	Combined	144.8	CIRC	300	300
P.14QN-97	P.14QN-98	Combined	49.3	CIRC	400	400
P.14QN-98	P.14QN-99	Combined	37.1	CIRC	400	400
P.14QN-99	P.14QN-100	Combined	39.7	CIRC	400	400
P.14RN-1	P.14RN-104	Combined	123	CIRC	300	300

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14RN-10	P.14RN-17	Combined	19.6	CIRC	500	500
P.14RN-100	P.14RN-62	Combined	57.4	CIRC	300	300
P.14RN-101	P.14RN-39	Combined	51.4	CIRC	600	600
P.14RN-102	P.14RN-40	Combined	34.1	CIRC	600	600
P.14RN-103	P.14RN-101	Combined	64.1	CIRC	400	400
P.14RN-104	P.14RN-102	Combined	36.1	CIRC	300	300
P.14RN-105	P.14RN-41	Combined	64.5	CIRC	300	300
P.14RN-106	P.14RN-18	Combined	53.9	CIRC	300	300
P.14RN-107	P.14RN-85	Combined	23.8	CIRC	600	600
P.14RN-108	P.14RN-107	Combined	32.7	CIRC	600	600
P.14RN-109	P.14RN-108	Combined	57	CIRC	600	600
P.14RN-11	P.14RN-9	Combined	43.9	CIRC	300	300
P.14RN-110	P.14RN-109	Combined	27.4	CIRC	600	600
P.14RN-111	P.14RN-110	Combined	41.7	CIRC	600	600
P.14RN-112	P.14RN-111	Combined	45.7	CIRC	600	600
P.14RN-113	P.14RN-112	Combined	55.7	CIRC	600	600
P.14RN-114	P.14RN-113	Combined	55.6	CIRC	600	600
P.14RN-115	P.14RN-114	Combined	33.5	CIRC	600	600
P.14RN-116	P.14RN-97	Combined	21.9	CIRC	300	300
P.14RN-12	P.14RN-106	Combined	34.5	CIRC	300	300
P.14RN-13	P.14RN-106	Combined	7.7	CIRC	300	300
P.14RN-14	P.14RN-10	Combined	23.3	CIRC	300	300
P.14RN-15	P.14RN-14	Combined	15.4	CIRC	200	200
P.14RN-16	P.14RN-14	Combined	35.3	CIRC	300	300
P.14RN-17	P.14RN-18	Combined	17.7	CIRC	500	500
P.14RN-18	Auxiliar	Combined	1	CIRC	400	400
P.14RN-19	JUNCTION62	Combined	4.5	CIRC	300	300
P.14RN-2	P.14RN-1	Combined	68.7	CIRC	300	300
P.14RN-20	JUNCTION46	Combined	32	CIRC	400	400
P.14RN-21	P.14RN-102	Combined	261	CIRC	400	400
P.14RN-22	P.14RN-103	Combined	37	CIRC	300	300
P.14RN-23	P.14RN-22	Combined	31.9	CIRC	300	300
P.14RN-24	P.14RN-23	Combined	33.1	CIRC	300	300
P.14RN-25	P.14RN-24	Combined	21	CIRC	300	300
P.14RN-26	P.14RN-25	Combined	13.8	CIRC	300	300
P.14RN-27	P.14RN-26	Combined	34	CIRC	300	300
P.14RN-28	P.14RN-30	Combined	20.9	CIRC	300	300
P.14RN-29	P.14RN-28	Combined	28.9	CIRC	300	300
P.14RN-3	P.14RN-2	Combined	43	CIRC	300	300
P.14RN-30	P.14RN-31	Combined	21.9	CIRC	300	300
P.14RN-31	P.14RN-32	Combined	29.5	CIRC	300	300

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14RN-32	P.14RN-33	Combined	35.2	CIRC	300	300
P.14RN-33	P.14RN-34	Combined	13.2	CIRC	300	300
P.14RN-34	P.14RN-70	Combined	47.3	CIRC	300	300
P.14RN-35	P.14RN-36	Combined	31.8	CIRC	300	300
P.14RN-36	P.14RN-37	Combined	38	CIRC	300	300
P.14RN-37	P.14RN-38	Combined	31.1	CIRC	300	300
P.14RN-38	P.14RN-39	Combined	36.9	CIRC	300	300
P.14RN-39	P.14RN-68	Combined	83.1	CIRC	600	600
P.14RN-4	P.14RN-3	Combined	48.1	CIRC	300	300
P.14RN-40	P.14RN-101	Combined	15.6	CIRC	600	600
P.14RN-41	P.14RN-50	Combined	52.5	CIRC	300	300
P.14RN-42	P.14RN-43	Combined	30.1	CIRC	300	300
P.14RN-43	P.14RN-44	Combined	37.9	CIRC	300	300
P.14RN-44	P.14RN-45	Combined	33.8	CIRC	300	300
P.14RN-45	P.14RN-48	Combined	31.8	CIRC	300	300
P.14RN-46	P.14RN-105	Combined	70.9	CIRC	300	300
P.14RN-47	P.14RN-46	Combined	21.7	CIRC	300	300
P.14RN-48	P.14RN-49	Combined	26.8	CIRC	300	300
P.14RN-49	P.14RN-103	Combined	89.1	CIRC	300	300
P.14RN-5	P.14RN-4	Combined	29.6	CIRC	300	300
P.14RN-50	P.14RN-54	Combined	71.1	CIRC	300	300
P.14RN-51	P.14RN-52	Combined	16.4	CIRC	300	300
P.14RN-52	P.14RN-53	Combined	32.1	CIRC	300	300
P.14RN-53	P.14RN-55	Combined	37.4	CIRC	300	300
P.14RN-54	P.14RN-57	Combined	62.9	CIRC	300	300
P.14RN-55	P.14RN-56	Combined	34.5	CIRC	300	300
P.14RN-56	P.14RN-58	Combined	30.6	CIRC	300	300
P.14RN-57	P.14RN-60	Combined	70.3	CIRC	300	300
P.14RN-58	P.14RN-59	Combined	36.2	CIRC	300	300
P.14RN-59	P.14RN-61	Combined	58.2	CIRC	300	300
P.14RN-6	P.14RN-5	Combined	26.9	CIRC	300	300
P.14RN-60	P.14RN-62	Combined	58.4	CIRC	300	300
P.14RN-61	P.14RN-77	Combined	10.7	CIRC	300	300
P.14RN-62	P.14RN-63	Combined	58.2	CIRC	300	300
P.14RN-63	P.14QN-79	Combined	43.3	CIRC	300	300
P.14RN-64	P.14RN-65	Combined	14.9	CIRC	300	300
P.14RN-65	P.14RN-66	Combined	15.1	CIRC	300	300
P.14RN-66	P.14RN-67	Combined	18.2	CIRC	300	300
P.14RN-67	P.14RN-95	Combined	27.7	CIRC	300	300
P.14RN-68	P.14RN-115	Combined	53.6	CIRC	600	600
P.14RN-69	P.14RN-68	Combined	38.5	CIRC	300	300

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.14RN-7	P.14RN-6	Combined	16.6	CIRC	300	300
P.14RN-70	P.14RN-69	Combined	40.1	CIRC	300	300
P.14RN-71	P.14RN-34	Combined	34.5	CIRC	300	300
P.14RN-72	P.14RN-71	Combined	25.7	CIRC	300	300
P.14RN-73	P.14RN-72	Combined	49	CIRC	300	300
P.14RN-74	P.14RN-75	Combined	41.7	CIRC	300	300
P.14RN-75	P.14RN-76	Combined	40.5	CIRC	300	300
P.14RN-76	P.14RN-77	Combined	33.6	CIRC	300	300
P.14RN-77	P.14RN-78	Combined	10.7	CIRC	300	300
P.14RN-78	P.14RN-79	Combined	30	CIRC	300	300
P.14RN-79	P.14RN-67	Combined	50.1	CIRC	300	300
P.14RN-8	P.14RN-9	Combined	38.7	CIRC	500	500
P.14RN-80	P.14RN-74	Combined	35.1	CIRC	300	300
P.14RN-81	P.14RN-80	Combined	18.6	CIRC	300	300
P.14RN-82	P.14RN-81	Combined	12.8	CIRC	300	300
P.14RN-83	P.14RN-82	Combined	38	CIRC	300	300
P.14RN-84	P.14RN-83	Combined	33.3	CIRC	300	300
P.14RN-85	P.14RN-87	Combined	39.8	CIRC	600	600
P.14RN-86	P.14RN-87	Combined	17.8	CIRC	300	300
P.14RN-87	P.14RN-90	Combined	54.1	CIRC	600	600
P.14RN-88	P.14RN-89	Combined	24.8	CIRC	200	200
P.14RN-89	P.14RN-90	Combined	9.1	CIRC	300	300
P.14RN-9	P.14RN-10	Combined	4.2	CIRC	500	500
P.14RN-90	P.14RN-91	Combined	27.5	CIRC	600	600
P.14RN-91	P.14RN-92	Combined	11.1	CIRC	400	400
P.14RN-92	P.14QN-81	Combined	44.1	CIRC	400	400
P.14RN-93	P.14RN-89	Combined	23.4	CIRC	200	200
P.14RN-94	P.14QN-91	Combined	49.7	CIRC	300	300
P.14RN-95	P.14QN-96	Combined	45.4	CIRC	400	400
P.14RN-96	P.14QN-106	Combined	61.3	CIRC	300	300
P.14RN-97	P.14RN-96	Combined	58.6	CIRC	300	300
P.14RN-98	P.14RN-116	Combined	20.3	CIRC	300	300
P.14RN-99	P.14RN-100	Combined	25.7	CIRC	300	300
P.24AN-1	P.24AN-2	Combined	12.5	CIRC	200	200
P.24AN-10	P.14RN-16	Combined	44.9	CIRC	300	300
P.24AN-11	P.24AN-18	Combined	14.8	CIRC	300	300
P.24AN-12	P.24AN-11	Combined	27.4	CIRC	200	200
P.24AN-13	P.24AN-12	Combined	15.1	CIRC	200	200
P.24AN-14	P.24AN-13	Combined	14.6	CIRC	200	200
P.24AN-15	P.24AN-13	Combined	26.8	CIRC	200	200
P.24AN-16	P.24AN-15	Combined	26.4	CIRC	200	200

ID US	ID DS	Red	Longitud (m)	Forma	Anchura (mm)	Altura (mm)
P.24AN-17	P.24AN-16	Combined	7.9	CIRC	200	200
P.24AN-18	P.24AN-10	Combined	18.8	CIRC	300	300
P.24AN-2	P.24AN-3	Combined	19.1	CIRC	200	200
P.24AN-3	P.24AN-4	Combined	17.3	CIRC	200	200
P.24AN-4	P.24AN-5	Combined	34.8	CIRC	200	200
P.24AN-5	P.24AN-6	Combined	21.7	CIRC	200	200
P.24AN-6	P.24AN-7	Combined	41.3	CIRC	200	200
P.24AN-7	P.24AN-8	Combined	39.3	CIRC	300	300
P.24AN-8	P.24AN-9	Combined	35.1	CIRC	300	300
P.24AN-9	P.14RN-12	Combined	29.8	CIRC	300	300
W1	JUNCTION62	Combined	39.2	CIRC	400	400
W2	JUNCTION77	Combined	100.9	CIRC	300	300
JUNCTION05	P.14QN-8	Combined	3.7	CIRC	1625	1625
JUNCTION10	P.14QN-7	Combined	77.5	ARCH	400	450
JUNCTION10	XXX000011	Combined	15.1	CIRC	200	200
JUNCTION16	P.14QN-45	Combined	2.7	CIRC	200	200
JUNCTION19	P.14QN-37	Combined	84	CIRC	400	400
JUNCTION27	P.14QN-5	Combined	8.8	CIRC	400	400
JUNCTION36	P.14QN-70	Combined	7	CIRC	300	300
JUNCTION36	JUNCTION45	Combined	66.5	CIRC	200	200
JUNCTION45	P.14QN-43	Combined	7.9	CIRC	200	200
JUNCTION47	P.14QN-87	Combined	35.4	CIRC	600	600
JUNCTION62	P.14RN-20	Combined	10	CIRC	400	400
JUNCTION67	P.14QN-54	Combined	24.1	CIRC	500	500
JUNCTION69	P.14QN-146	Combined	26.4	RECT	400	350
JUNCTION79	P.14QN-120	Combined	31	CIRC	1200	1200
JUNCTION80	JUNCTION10	Combined	11.5	ARCH	400	350
JUNCTION84	P.14QN-17	Combined	28.1	CIRC	400	400
JUNCTION87	JUNCTION69	Combined	48.1	RECT	400	350

Tabla 2. Colectores de la red de drenaje y Saneamiento del Municipio de Buitrago.

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
Auxiliar	P.14RN-21	0.02	993.204	992.987	Hormi	0.00593
NT-02	NT-01	0.015	957.361	957.128	Hormi	0.01246
NT-05	P.14QN-115	0.015	991.865	989.053	Hormi	0.01592
P.14PN-79	P.14PN-80	0.02	963.541	962.196	Hormi	0.03135
P.14PN-80	JUNCTION27	0.02	962.185	959.008	Hormi	0.04513
P.14PN-81	P.14PN-83	0.015	964.579	964.118	PVC	0.01808
P.14PN-82	P.14PN-85	0.02	961.827	961.805	Hormi	0.00074

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14PN-83	P.14PN-84	0.02	963.59	963.329	Hormi	0.04925
P.14PN-84	P.14PN-82	0.02	963.327	962.088	Hormi	0.04023
P.14PN-85	P.14QN-12	0.02	961.803	961.48	Hormi	0.0141
P.14QN-10	P.14PN-84	0.02	963.67	963.333	Hormi	0.00901
P.14QN-100	P.14QN-101	0.02	982.541	981.452	Hormi	0.03654
P.14QN-101	P.14QN-102	0.02	981.441	980.879	Hormi	0.01357
P.14QN-102	P.14QN-103	0.02	980.809	980.46	Hormi	0.02529
P.14QN-103	P.14QN-143	0.02	980.454	978.385	Hormi	0.03258
P.14QN-104	P.14QN-102	0.02	981.46	980.825	Hormi	0.01516
P.14QN-105	P.14QN-104	0.02	981.987	981.466	Hormi	0.00996
P.14QN-106	NT-05	0.015	994.337	991.865	Hormi	0.06421
P.14QN-107	P.14QN-108	0.02	983.912	977.406	Hormi	0.17303
P.14QN-108	P.14QN-109	0.015	977.406	974.284	Hormi	0.1601
P.14QN-109	P.14QN-111	0.02	974.284	967.773	Hormi	0.08273
P.14QN-11	P.14QN-10	0.015	965.083	964.731	PVC	0.02395
P.14QN-110	P.14QN-119	0.02	967.553	967.532	Hormi	0.00049
P.14QN-111	P.14QN-110	0.02	967.608	967.585	Hormi	0.00027
P.14QN-112	JUNCTION87	0.02	980.54	979.481	Hormi	0.01972
P.14QN-113	P.14QN-112	0.02	981.747	981.452	Hormi	0.02287
P.14QN-114	P.14QN-113	0.02	983.358	981.752	Hormi	0.02268
P.14QN-115	P.14QN-114	0.02	989.053	983.364	Hormi	0.05577
P.14QN-116	P.14QN-110	0.02	973.413	967.909	Hormi	0.11563
P.14QN-117	P.14QN-116	0.02	979.242	973.465	Hormi	0.11531
P.14QN-118	P.14QN-117	0.02	981.829	979.373	Hormi	0.07797
P.14QN-119	JUNCTION79	0.02	967.505	967.325	Hormi	0.00343
P.14QN-12	P.14QN-13	0.02	961.478	961.477	Hormi	0.00015
P.14QN-120	P.14QN-122	0.02	967.213	966.974	Hormi	0.00561
P.14QN-121	P.14QN-164	0.02	966.963	966.877	Hormi	0.00524
P.14QN-122	P.14QN-121	0.02	966.969	966.978	Hormi	-0.0007
P.14QN-123	P.14QN-121	0.02	971.426	969.223	Hormi	0.10694
P.14QN-124	P.14QN-123	0.02	971.757	971.432	Hormi	0.02226
P.14QN-125	P.14QN-124	0.02	971.801	971.763	Hormi	0.00222
P.14QN-126	P.14QN-125	0.02	972.061	971.807	Hormi	0.0138
P.14QN-127	P.14QN-119	0.02	968.751	968.555	Hormi	0.01633
P.14QN-128	P.14QN-129	0.02	973.195	973.071	Hormi	0.00317
P.14QN-129	JUNCTION79	0.02	972.959	967.325	Hormi	0.1412
P.14QN-13	P.14QN-14	0.02	961.442	961.358	Hormi	0.00295
P.14QN-130	P.14QN-132	0.015	964.286	964.065	PVC	0.01545
P.14QN-131	P.14QN-132	0.015	965.588	964.002	PVC	0.10503
P.14QN-132	JUNCTION70	0.015	963.96	961.9	PVC	0.08175
P.14QN-133	P.14QN-131	0.015	967.509	965.609	PVC	0.09135

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14QN-134	P.14QN-130	0.015	967.468	964.303	PVC	0.09649
P.14QN-135	P.14QN-136	0.015	976.535	976.353	PVC	0.01685
P.14QN-136	P.14QN-137	0.02	976.007	975.204	Hormi	0.06225
P.14QN-137	P.14QN-162	0.02	975.174	974.412	Hormi	0.04948
P.14QN-138	P.14QN-140	0.02	978.516	976.928	Hormi	0.07421
P.14QN-139	P.14QN-137	0.02	976.186	975.181	Hormi	0.03454
P.14QN-14	JUNCTION84	0.02	961.35	961.207	Hormi	0.00671
P.14QN-140	P.14QN-139	0.02	976.902	976.222	Hormi	0.04658
P.14QN-141	P.14QN-140	0.02	979.824	976.928	Hormi	0.12987
P.14QN-142	P.14QN-141	0.02	980.747	979.833	Hormi	0.13246
P.14QN-143	P.14QN-163	0.02	978.38	973.632	Hormi	0.04669
P.14QN-144	JUNCTION87	0.02	980.101	979.481	Hormi	0.3875
P.14QN-145	JUNCTION69	0.015	978.984	978.566	Polip	0.19905
P.14QN-146	P.14QN-148	0.02	978.007	974.761	Hormi	0.02284
P.14QN-146	P.14QN-76	0.02	978.003	972.698	Hormi	0.03251
P.14QN-147	P.14QN-148	0.02	975.168	974.677	Hormi	0.02089
P.14QN-148	P.14QN-150	0.02	974.752	974.471	Hormi	0.0112
P.14QN-149	P.14QN-152	0.02	974.312	972.006	Hormi	0.04111
P.14QN-15	P.14QN-14	0.02	963.96	962.58	Hormi	0.09718
P.14QN-150	P.14QN-149	0.015	974.465	974.314	Polip	0.02068
P.14QN-151	P.14QN-147	0.02	975.474	975.179	Hormi	0.025
P.14QN-152	P.14QN-153	0.02	971.991	971.291	Hormi	0.02465
P.14QN-153	P.14QN-32	0.02	971.283	969.827	Hormi	0.04359
P.14QN-154	JUNCTION19	0.02	972.409	967.566	Hormi	0.10048
P.14QN-155	P.14QN-156	0.02	973.355	973.199	Hormi	0.00629
P.14QN-156	P.14QN-157	0.02	973.193	973.088	Hormi	0.0052
P.14QN-157	P.14QN-158	0.02	972.908	972.672	Hormi	0.0472
P.14QN-158	P.14QN-154	0.02	972.597	972.406	Hormi	0.01661
P.14QN-159	JUNCTION19	0.02	968.559	966.451	Hormi	0.04216
P.14QN-16	JUNCTION84	0.015	961.799	961.207	PVC	0.25739
P.14QN-160	P.14QN-159	0.02	969.906	968.584	Hormi	0.04349
P.14QN-161	P.14QN-160	0.02	971.161	970.593	Hormi	0.01906
P.14QN-162	P.14QN-161	0.02	973.987	971.179	Hormi	0.03895
P.14QN-163	P.14QN-161	0.02	973.625	971.179	Hormi	0.06852
P.14QN-164	P.14QN-58	0.02	966.852	966.394	Hormi	0.01316
P.14QN-166	P.14QN-87	0.02	972.977	969.22	Hormi	0.13091
P.14QN-17	JUNCTION05	0.02	960.907	960	Hormi	0.01193
P.14QN-18	P.14QN-17	0.02	961.163	960.961	Hormi	0.00871
P.14QN-19	P.14QN-21	0.02	962.204	960.423	Hormi	0.11641
P.14QN-19	P.14QN-25	0.02	961.824	961.33	Hormi	0.01103
P.14QN-20	P.14QN-19	0.02	962.019	961.958	Hormi	0.0048

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14QN-21	NT-03	0.02	960.423	959.427	Hormi	0.03635
P.14QN-22	P.14QN-27	0.02	968.994	964.546	Hormi	0.03195
P.14QN-23	P.14QN-24	0.02	964.044	962.788	Hormi	0.03599
P.14QN-24	P.14QN-25	0.02	962.777	961.475	Hormi	0.03796
P.14QN-25	P.14QN-18	0.02	961.33	961.135	Hormi	0.00933
P.14QN-26	P.14QN-17	0.02	964.233	961.787	Hormi	0.09161
P.14QN-27	P.14QN-26	0.02	964.546	964.239	Hormi	0.03165
P.14QN-28	JUNCTION05	0.02	964.295	961.966	Hormi	0.08958
P.14QN-29	P.14QN-30	0.015	964.778	964.152	PVC	0.01914
P.14QN-30	P.14QN-16	0.015	964.129	961.888	PVC	0.16977
P.14QN-31	P.14QN-33	0.015	967.735	966.061	Ladri	0.3348
P.14QN-32	P.14QN-33	0.015	969.793	965.961	Ladri	0.06664
P.14QN-33	P.14QN-35	0.015	965.931	962.561	Ladri	0.10665
P.14QN-34	P.14QN-35	0.02	963.824	963.235	Hormi	0.03752
P.14QN-35	P.14QN-7	0.015	962.503	957.637	Ladri	0.08612
P.14QN-36	P.14QN-34	0.02	964.003	963.864	Hormi	0.00414
P.14QN-37	P.14QN-36	0.02	964.439	964.234	Hormi	0.01073
P.14QN-38	P.14QN-32	0.015	969.732	969.709	Ladri	0.0012
P.14QN-39	P.14QN-40	0.015	968.542	968.462	PVC	0.01404
P.14QN-40	P.14QN-41	0.015	968.444	967.467	PVC	0.09869
P.14QN-41	P.14QN-31	0.015	967.457	967.819	PVC	-0.0362
P.14QN-42	JUNCTION45	0.02	967.948	967.5	Hormi	0.04436
P.14QN-43	JUNCTION16	0.02	967.311	964.334	Hormi	0.06972
P.14QN-44	JUNCTION16	0.02	967.741	964.33	Hormi	0.07878
P.14QN-45	P.14QN-20	0.02	963.697	962.029	Hormi	0.02623
P.14QN-46	P.14QN-45	0.02	963.976	963.828	Hormi	0.00375
P.14QN-47	P.14QN-46	0.02	964.049	963.992	Hormi	0.00365
P.14QN-48	P.14QN-47	0.02	964.297	964.103	Hormi	0.01577
P.14QN-49	P.14QN-48	0.02	964.431	964.338	Hormi	0.00326
P.14QN-5	NT-01	0.015	957.869	957.128	Hormi	0.03545
P.14QN-50	P.14QN-49	0.02	964.436	964.441	Hormi	-0.00088
P.14QN-51	P.14QN-50	0.02	964.578	964.444	Hormi	0.00365
P.14QN-52	P.14QN-53	0.02	967.19	967.19	Polip	0
P.14QN-53	P.14QN-54	0.015	966.967	966.169	PVC	0.07824
P.14QN-54	P.14QN-51	0.02	965.393	964.652	Hormi	0.02142
P.14QN-55	JUNCTION67	0.02	966.819	965.793	Hormi	0.15088
P.14QN-56	JUNCTION67	0.02	966.235	965.793	Hormi	0.01625
P.14QN-57	P.14QN-58	0.02	967.195	966.982	Hormi	0.06656
P.14QN-58	P.14QN-56	0.02	966.379	966.269	Hormi	0.00667
P.14QN-6	JUNCTION21	0.02	958.045	958.001	Hormi	0.00579
P.14QN-6	NT-02	0.015	957.647	957.361	Hormi	0.00291

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14QN-63	P.14QN-164	0.02	970.949	967.894	Hormi	0.2444
P.14QN-64	P.14QN-57	0.015	969.03	967.447	Polip	0.11992
P.14QN-65	P.14QN-64	0.02	970.507	969.266	Hormi	0.05149
P.14QN-66	P.14QN-57	0.015	969.291	967.531	Polip	0.09362
P.14QN-67	P.14QN-52	0.02	971.097	967.3	Hormi	0.34207
P.14QN-68	P.14QN-53	0.02	967.288	967.3	Hormi	-0.00059
P.14QN-69	JUNCTION36	0.02	969.103	969.063	Hormi	0.02222
P.14QN-7	P.14QN-6	0.015	957.581	957.649	Ladri	-0.01193
P.14QN-70	P.14QN-50	0.02	967.701	964.72	Hormi	0.08327
P.14QN-71	P.14QN-72	0.02	971.114	969.326	Hormi	0.11389
P.14QN-72	P.14QN-69	0.02	969.319	969.103	Hormi	0.0143
P.14QN-73	P.14QN-74	0.02	971.592	970.634	Hormi	0.01624
P.14QN-74	P.14QN-38	0.02	970.622	969.802	Hormi	0.02733
P.14QN-75	P.14QN-73	0.02	971.941	971.596	Hormi	0.00567
P.14QN-76	P.14QN-75	0.02	972.69	971.949	Hormi	0.02744
P.14QN-77	P.14QN-78	0.02	972.816	972.705	Hormi	0.0086
P.14QN-78	P.14QN-153	0.02	972.701	971.732	Hormi	0.06921
P.14QN-79	P.14QN-107	0.02	988.93	983.917	Hormi	0.04259
P.14QN-8	JUNCTION80	0.015	959.961	959.668	Ladri	0.00945
P.14QN-80	P.14RN-64	0.02	985.854	985.101	Hormi	0.0423
P.14QN-81	P.14QN-82	0.02	969.514	969.224	Hormi	0.00656
P.14QN-82	P.14QN-83	0.02	969.108	968.677	Hormi	0.01738
P.14QN-83	P.14QN-84	0.02	968.677	968.6	Hormi	0.00856
P.14QN-84	P.14QN-85	0.02	968.6	968.513	Hormi	0.00119
P.14QN-85	P.14QN-86	0.02	968.513	968.356	Hormi	0.00358
P.14QN-86	JUNCTION47	0.02	968.36	968.133	Hormi	0.00501
P.14QN-87	P.14QN-88	0.02	967.943	967.698	Hormi	0.00891
P.14QN-88	P.14QN-89	0.02	967.684	967.762	Hormi	-0.00311
P.14QN-89	P.14QN-111	0.02	967.738	967.65	Hormi	0.00368
P.14QN-9	P.14QN-10	0.015	964.647	963.673	PVC	0.09456
P.14QN-90	P.14QN-82	0.02	982.214	970.284	Hormi	0.09747
P.14QN-91	P.14RN-93	0.02	979.647	973.624	Hormi	0.08568
P.14QN-92	P.14QN-90	0.02	983.215	982.221	Hormi	0.01513
P.14QN-93	P.14QN-92	0.02	984.154	983.224	Hormi	0.04429
P.14QN-94	P.14QN-95	0.02	983.521	983.024	Hormi	0.03601
P.14QN-95	P.14QN-85	0.02	983.001	968.52	Hormi	0.30422
P.14QN-96	P.14QN-166	0.02	980.658	973.016	Hormi	0.05278
P.14QN-97	P.14QN-98	0.02	991.242	988.657	Hormi	0.05243
P.14QN-98	P.14QN-99	0.02	987.369	985.763	Hormi	0.04329
P.14QN-99	P.14QN-100	0.02	984.546	982.6	Hormi	0.04902
P.14RN-1	P.14RN-104	0.02	996.038	991.069	Hormi	0.0404

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14RN-10	P.14RN-17	0.02	993.713	993.352	Hormi	0.01842
P.14RN-100	P.14RN-62	0.02	992.912	990.484	Hormi	0.0423
P.14RN-101	P.14RN-39	0.02	986.18	985.454	Hormi	0.01412
P.14RN-102	P.14RN-40	0.02	987.999	987.01	Hormi	0.029
P.14RN-103	P.14RN-101	0.02	990.338	987.256	Hormi	0.04808
P.14RN-104	P.14RN-102	0.02	991.061	989.289	Hormi	0.04909
P.14RN-105	P.14RN-41	0.02	996.501	996.412	Hormi	0.00138
P.14RN-106	P.14RN-18	0.02	1001.123	993.271	Hormi	0.14568
P.14RN-107	P.14RN-85	0.02	980.377	978.88	Hormi	0.0629
P.14RN-108	P.14RN-107	0.02	980.897	980.433	Hormi	0.01419
P.14RN-109	P.14RN-108	0.02	982.821	982.129	Hormi	0.01214
P.14RN-11	P.14RN-9	0.015	994.434	993.88	Polip	0.01262
P.14RN-110	P.14RN-109	0.02	983.568	983.428	Hormi	0.00511
P.14RN-111	P.14RN-110	0.02	984.034	983.61	Hormi	0.01017
P.14RN-112	P.14RN-111	0.02	984.283	984.082	Hormi	0.0044
P.14RN-113	P.14RN-112	0.02	984.573	984.285	Hormi	0.00517
P.14RN-114	P.14RN-113	0.02	984.857	984.58	Hormi	0.00498
P.14RN-115	P.14RN-114	0.02	984.992	984.837	Hormi	0.00463
P.14RN-116	P.14RN-97	0.015	998.177	998.042	PVC	0.00616
P.14RN-12	P.14RN-106	0.02	1001.79	1001.231	Hormi	0.0162
P.14RN-13	P.14RN-106	0.02	1001.689	1001.136	Hormi	0.07182
P.14RN-14	P.14RN-10	0.02	995.268	994.272	Hormi	0.04275
P.14RN-15	P.14RN-14	0.02	996.284	995.278	Hormi	0.06532
P.14RN-16	P.14RN-14	0.02	999.244	995.273	Hormi	0.11249
P.14RN-17	P.14RN-18	0.02	993.333	993.213	Hormi	0.00678
P.14RN-18	auxiliar	0.02	993.204	993.204	Hormi	0
P.14RN-19	JUNCTION62	0.02	992.565	991.928	Hormi	0.14156
P.14RN-2	P.14RN-1	0.02	997.018	996.041	Hormi	0.01422
P.14RN-20	JUNCTION46	0.02	991.339	989.147	Hormi	0.0685
P.14RN-21	P.14RN-102	0.02	992.956	988.393	Hormi	0.01748
P.14RN-22	P.14RN-103	0.02	991.082	990.347	Hormi	0.01986
P.14RN-23	P.14RN-22	0.02	991.424	991.088	Hormi	0.01053
P.14RN-24	P.14RN-23	0.02	992.206	991.436	Hormi	0.02326
P.14RN-25	P.14RN-24	0.02	992.536	992.238	Hormi	0.01419
P.14RN-26	P.14RN-25	0.02	992.712	992.556	Hormi	0.0113
P.14RN-27	P.14RN-26	0.02	994.2	992.716	Hormi	0.04365
P.14RN-28	P.14RN-30	0.02	994.506	993.385	Hormi	0.05364
P.14RN-29	P.14RN-28	0.02	996.362	994.509	Hormi	0.06412
P.14RN-3	P.14RN-2	0.02	997.154	997.028	Hormi	0.00293
P.14RN-30	P.14RN-31	0.02	993.165	992.458	Hormi	0.03228
P.14RN-31	P.14RN-32	0.02	992.458	991.217	Hormi	0.04207

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14RN-32	P.14RN-33	0.02	991.217	990.022	Hormi	0.03395
P.14RN-33	P.14RN-34	0.02	990.006	989.429	Hormi	0.04371
P.14RN-34	P.14RN-70	0.02	989.42	988.439	Hormi	0.02074
P.14RN-35	P.14RN-36	0.02	988.834	988.208	Hormi	0.01969
P.14RN-36	P.14RN-37	0.02	988.208	987.334	Hormi	0.023
P.14RN-37	P.14RN-38	0.02	987.31	986.894	Hormi	0.01338
P.14RN-38	P.14RN-39	0.02	986.894	985.993	Hormi	0.02442
P.14RN-39	P.14RN-68	0.02	985.446	984.978	Hormi	0.00563
P.14RN-4	P.14RN-3	0.02	997.561	997.138	Hormi	0.00879
P.14RN-40	P.14RN-101	0.02	986.708	986.25	Hormi	0.02936
P.14RN-41	P.14RN-50	0.02	996.403	996.022	Hormi	0.00726
P.14RN-42	P.14RN-43	0.02	997.617	997.371	Hormi	0.00817
P.14RN-43	P.14RN-44	0.02	997.368	996.814	Hormi	0.01462
P.14RN-44	P.14RN-45	0.02	996.808	996.079	Hormi	0.02157
P.14RN-45	P.14RN-48	0.02	996.015	995.496	Hormi	0.01632
P.14RN-46	P.14RN-105	0.02	996.983	996.487	Hormi	0.007
P.14RN-47	P.14RN-46	0.02	997.132	997.001	Hormi	0.00604
P.14RN-48	P.14RN-49	0.02	995.455	994.43	Hormi	0.03825
P.14RN-49	P.14RN-103	0.02	994.19	990.365	Hormi	0.04293
P.14RN-5	P.14RN-4	0.02	997.675	997.63	Hormi	0.00152
P.14RN-50	P.14RN-54	0.02	996.021	995.625	Hormi	0.00557
P.14RN-51	P.14RN-52	0.02	997.905	997.469	Hormi	0.02659
P.14RN-52	P.14RN-53	0.02	997.467	996.611	Hormi	0.02667
P.14RN-53	P.14RN-55	0.02	996.603	996.055	Hormi	0.01465
P.14RN-54	P.14RN-57	0.02	995.624	995.041	Hormi	0.00927
P.14RN-55	P.14RN-56	0.02	996.055	995.491	Hormi	0.01635
P.14RN-56	P.14RN-58	0.02	995.474	994.326	Hormi	0.03752
P.14RN-57	P.14RN-60	0.02	994.987	992.296	Hormi	0.03828
P.14RN-58	P.14RN-59	0.02	994.317	993.012	Hormi	0.03605
P.14RN-59	P.14RN-61	0.02	992.941	989.91	Hormi	0.05208
P.14RN-6	P.14RN-5	0.02	997.831	997.785	Hormi	0.00171
P.14RN-60	P.14RN-62	0.02	992.277	989.934	Hormi	0.04012
P.14RN-61	P.14RN-77	0.02	989.902	988.982	Hormi	0.08598
P.14RN-62	P.14RN-63	0.02	989.908	989.434	Hormi	0.00814
P.14RN-63	P.14QN-79	0.02	989.379	988.933	Hormi	0.0103
P.14RN-64	P.14RN-65	0.02	985.056	985.016	Hormi	0.00268
P.14RN-65	P.14RN-66	0.02	984.998	984.432	Hormi	0.03748
P.14RN-66	P.14RN-67	0.02	984.432	983.554	Hormi	0.04824
P.14RN-67	P.14RN-95	0.02	983.449	981.884	Hormi	0.0565
P.14RN-68	P.14RN-115	0.02	985.038	985.034	Hormi	7.00E-05
P.14RN-69	P.14RN-68	0.02	986.518	985.668	Hormi	0.02208

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.14RN-7	P.14RN-6	0.02	997.987	997.843	Hormi	0.00867
P.14RN-70	P.14RN-69	0.02	988.411	986.545	Hormi	0.04653
P.14RN-71	P.14RN-34	0.02	990.045	989.433	Hormi	0.01774
P.14RN-72	P.14RN-71	0.02	990.454	990.058	Hormi	0.01541
P.14RN-73	P.14RN-72	0.02	991.128	990.454	Hormi	0.01376
P.14RN-74	P.14RN-75	0.02	991.225	989.977	Hormi	0.02993
P.14RN-75	P.14RN-76	0.02	989.928	989.349	Hormi	0.0143
P.14RN-76	P.14RN-77	0.02	989.378	988.91	Hormi	0.01393
P.14RN-77	P.14RN-78	0.02	988.91	988.708	Hormi	0.01888
P.14RN-78	P.14RN-79	0.02	988.695	987.704	Hormi	0.03303
P.14RN-79	P.14RN-67	0.02	987.623	983.823	Hormi	0.07585
P.14RN-8	P.14RN-9	0.02	995.968	993.858	Hormi	0.05452
P.14RN-80	P.14RN-74	0.02	991.966	991.256	Hormi	0.02023
P.14RN-81	P.14RN-80	0.02	992.17	991.969	Hormi	0.01081
P.14RN-82	P.14RN-81	0.02	992.39	992.246	Hormi	0.01125
P.14RN-83	P.14RN-82	0.02	993.041	992.393	Hormi	0.01705
P.14RN-84	P.14RN-83	0.02	993.475	993.058	Hormi	0.01252
P.14RN-85	P.14RN-87	0.02	978.409	975.303	Hormi	0.07804
P.14RN-86	P.14RN-87	0.015	976.19	975.911	Polip	0.01567
P.14RN-87	P.14RN-90	0.02	974.687	970.31	Hormi	0.08091
P.14RN-88	P.14RN-89	0.02	973.773	972.012	Hormi	0.07101
P.14RN-89	P.14RN-90	0.02	971.984	970.585	Hormi	0.15374
P.14RN-9	P.14RN-10	0.02	993.852	993.739	Hormi	0.0269
P.14RN-90	P.14RN-91	0.02	970.143	969.794	Hormi	0.01269
P.14RN-91	P.14RN-92	0.02	969.794	969.802	Hormi	-0.00072
P.14RN-92	P.14QN-81	0.02	969.784	969.519	Hormi	0.00601
P.14RN-93	P.14RN-89	0.02	973.612	971.991	Hormi	0.06927
P.14RN-94	P.14QN-91	0.02	981.66	979.667	Hormi	0.0401
P.14RN-95	P.14QN-96	0.02	981.846	980.692	Hormi	0.02542
P.14RN-96	P.14QN-106	0.015	996.108	994.337	PVC	0.02889
P.14RN-97	P.14RN-96	0.015	998.037	996.155	PVC	0.03212
P.14RN-98	P.14RN-116	0.015	998.92	998.183	PVC	0.03631
P.14RN-99	P.14RN-100	0.015	993.212	992.936	Polip	0.01074
P.24AN-1	P.24AN-2	0.02	1015	1014.183	Hormi	0.06536
P.24AN-10	P.14RN-16	0.02	1005.974	999.251	Hormi	0.14973
P.24AN-11	P.24AN-18	0.02	1008.754	1007.813	Hormi	0.06358
P.24AN-12	P.24AN-11	0.02	1010.648	1008.786	Hormi	0.06796
P.24AN-13	P.24AN-12	0.02	1011.327	1010.664	Hormi	0.04391
P.24AN-14	P.24AN-13	0.02	1011.986	1011.339	Hormi	0.04432
P.24AN-15	P.24AN-13	0.02	1012.198	1011.341	Hormi	0.03198
P.24AN-16	P.24AN-15	0.02	1013.099	1012.206	Hormi	0.03383

ID US	ID DS	Rugosidad	Fondo US	Fondo DS	Material	Pendiente
P.24AN-17	P.24AN-16	0.02	1013.176	1013.118	Hormi	0.00734
P.24AN-18	P.24AN-10	0.02	1007.277	1005.986	Hormi	0.06867
P.24AN-2	P.24AN-3	0.02	1014.179	1012.239	Hormi	0.10157
P.24AN-3	P.24AN-4	0.02	1012.228	1010.469	Hormi	0.10168
P.24AN-4	P.24AN-5	0.02	1010.451	1009.557	Hormi	0.02569
P.24AN-5	P.24AN-6	0.02	1009.551	1008.498	Hormi	0.04853
P.24AN-6	P.24AN-7	0.02	1008.494	1006.397	Hormi	0.05077
P.24AN-7	P.24AN-8	0.02	1006.388	1005.103	Hormi	0.0327
P.24AN-8	P.24AN-9	0.02	1005.095	1003.519	Hormi	0.0449
P.24AN-9	P.14RN-12	0.02	1003.501	1001.798	Hormi	0.05715
W1	JUNCTION62	0.02	993.217	991.932	Hormi	0.03278
W2	JUNCTION77	0.02	966.887	965.88	Hormi	0.00998
JUNCTION05	P.14QN-8	0.02	960	959.961	Hormi	0.01054
JUNCTION10	P.14QN-7	0.015	959.443	957.915	Ladri	0.01972
JUNCTION10	XXX000011	0.015	963.13	958	Hormi	0.33974
JUNCTION16	P.14QN-45	0.02	964.334	964.146	Hormi	0.06963
JUNCTION19	P.14QN-37	0.02	966.451	964.451	Hormi	0.02381
JUNCTION27	P.14QN-5	0.015	958	957.869	Hormi	0.01489
JUNCTION36	P.14QN-70	0.02	969.063	968.127	Hormi	0.13371
JUNCTION36	JUNCTION45	0.015	969.063	967.499	PVC	0.02352
JUNCTION45	P.14QN-43	0.015	967.499	967.311	PVC	0.0238
JUNCTION47	P.14QN-87	0.02	968.13	967.957	Hormi	0.00489
JUNCTION62	P.14RN-20	0.02	991.932	991.606	Hormi	0.0326
JUNCTION67	P.14QN-54	0.02	965.793	965.402	Hormi	0.01622
JUNCTION69	P.14QN-146	0.02	978.566	978.012	Hormi	0.02098
JUNCTION79	P.14QN-120	0.02	967.325	967.222	Hormi	0.00332
JUNCTION80	JUNCTION10	0.015	959.668	959.443	Ladri	0.01957
JUNCTION84	P.14QN-17	0.02	961.207	961.017	Hormi	0.00676
JUNCTION87	JUNCTION69	0.02	979.481	978.566	Hormi	0.01902

Tabla 3. Colectores de la red de drenaje y Saneamiento del Municipio de Buitrago.

ALIVADEROS

La red de Saneamiento del municipio de Buitrago del Lozoya cuenta con dos aliviaderos cuya geometría se detalla en la siguiente tabla:

	ID US	ID DS	Labio (m)	Longitud (m)	Coeficiente de descarga	Coeficiente de descarga secundario
ALIVIADERO 1	auxiliar	W1	0,21	1,5	0,3	0,3
ALIVADERO 2	P.14QN-164	W2	0,34	1,5	0,3	0,3

Tabla 4. Colectores de la red de drenaje y saneamiento del Municipio de Buitrago.

7394-1-1-AP-1-Red-3 DOC 1: APÉNDICE 01 29 de 29

ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº1: ESTUDIOS PREVIOS

APÉNDICE 02. LEVANTAMIENTO TOPOGRÁFICO

ÍNDICE

	I LEVANTAMIENTO TOPOGRÁFICO	1
	2 METODOLOGÍA	1
NTAMIENTO TOPOGRÁFICO	B PLANO DE SITUACIÓN DEL LEVANT	2
	TOPOGRAFÍA SUPERIOR	3
	5 TOPOGRAFÍA INFERIOR	13

Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya

Parte I: Estudio de Diagnosis Documento Nº1. Estudios Previos

1 LEVANTAMIENTO TOPOGRÁFICO

El objeto del presente anejo consiste en exponer los trabajos realizados para llevar a cabo el levantamiento topográfico y en mostrar las correspondientes fichas topográficas de cada uno de los puntos levantados.

Debido a la identificación de falta de datos en el análisis previo de la información topográfica facilitada como información inicial del Estudio, se ha realizado una nueva campaña topográfica en Buitrago del Lozoya en la que se ha procedido a nuevas tomas y a las comprobaciones necesarias para la definición correcta de la red de drenaje existente.

2 METODOLOGÍA

Debido a la imposibilidad de localizar los clavos de las bases de replanteo realizado anteriormente, las coordenadas de las nuevas tomas se han obtenido referenciando los puntos tomados con respecto a puntos cercanos con coordenadas conocidas.

Para el levantamiento se ha utilizado una estación LEICA 1201+ y un nivel digital DNA3.

A continuación se adjunta el plano de situación de cada uno de los levantamientos topográficos, así como las nuevas fichas de topografía superior y inferior.

7394-1-1-AP-2-Top-3 DOC 1: APÉNDICE 02 1 de 20

PLANO DE SITUACIÓN DEL LEVANTAMIENTO TOPOGRÁFICO

DOC 1: APÉNDICE 02 7394-1-1-AP-2-Top-3 2 de 20

TOPOGRAFÍA SUPERIOR

DOC 1: APÉNDICE 02 7394-1-1-AP-2-Top-3 3 de 20

	PROGRAMMENT OF THE PERSON NAMED IN
FECHA:	1

HORA

-	 	
	_	

CODIGO DE ELEMENTO: 01-NT-01

RESPONSABLE:

				TODAS LAS COTAS SERAN EN METROS
TIPO DE ELEMENTO				
MARCAR CON UNA X EL TIPO DE ELEM SI NO FIGURA DESCRIBIRLO	ENTO O	x	COORDENADAS	Ž
POZO	X	44 65 77,077	45 388 03, 354	
IMBORNAL				
ALIVIADERO				
FOTO DE TAPA Y ENTORNO				
		以下がてき締みはまから	West and the second	
CROQUIS				
	ENTO ENIZ	AZADO PARA Z		COMENTARIOS
				COMENTARIOS
NIVELACIÓN DE 1	ALTA	PRECISION. RED NA	P.	
₩	59			9

CODIGO DE ELEMENTO: 01-NT-02

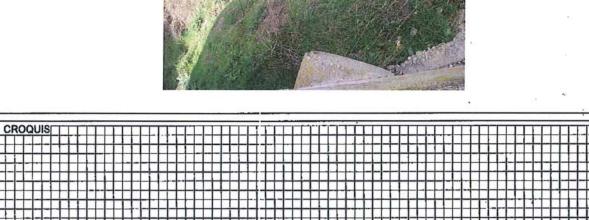
FECHA:

. . . *I* . . . *J* . . . HORAI.....

RESPONSABLE: TODAS LAS COTAS SERAN EN METR

				TOOMS DIS SOUND SERVICE METHOD
TIPO DE ELEMENTO				
MARCAR CON UNA X EL TIPO DE ELEM SI NO FIGURA DESCRIBIRLO	ENTO O	x	COORDENADAS Y	Ž
POZO	X	446566,045	4538788,38	
IMBORNAL				
ALIVIADERO				
FOTO DE TAPA Y ENTORNO		J[
TOTO DE TAPA I ENTONIO				
	8			
The second secon		AZADO PARA Z PRECISIÓN. RED. NAP		COMENTARIOS
NIVELACION DE	ALIN	I MUSION. YELL WAT		ce Fi

A.			
•	22	Ų.	
Ų.			


FECHA: ...1...J..

HORA

CODIGO DE ELEMENTO: 01- NT-03

RESPONSABLE: TODAS LAS COTAS SERAN EN METROS

MARCAR CON UNA X EL TIPO DE ELEMENTO O SI NO FIGURA DESCRIBIRLO			COORDENADAS			
		X	Υ ,	Z		
Pozo	X	446811,621	4538596,740	959, 427		
MBORNAL						
ALIVIADERO				,		
				,		
OTO DE TAPA Y ENTORNO)					
	and the			· ej		

ELEMENTO ENLAZADO PARA Z

NIVELACIÓN DE ALTA PRECISIÓN. RED NAP.

COMENTARIOS

PUNTO DE DESAGUE AL Rio.

	-	ı
,		ı
	WW	ı

FECHA: .../...J...

CODIGO DE ELEMENTO: 01-NT-04

RESPONSABLE:

TODAS LAS COTAS SERAN EN METROS

MARCAR CON UNA X EL TIPO DE ELEMENTO O	x	COORDENADAS	Ž
POZO	446662,656	4538275,997	962,703
IMBORNAL			
ALIVIADERO			, p

FOTO DE TAPA Y ENTORNO

CROQUIS						
	 		- - - - - - - - - - - - - - - - - - - 	 		
	 	┦╎╏╎╏┞╘╘┪	+++++	! 	┩┫┩ ┪┪┪┩	├─┼─╂─┼─┼┞─┞─┼
						
						
		+++++++++++++++++++++++++++++++++++++		 		
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· - - - - - - - - - - - - - - - - - - -		4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	╶╂╏╎╏┋ ┼┼┼┼┼┼┼┼┼	- - - - - - - - - - - - - - - - - - -
				 	- - - - - - -	
		1 		++	1111111111	
	 	1 		 	 	
	! 	╀┼┤┼┞┩╍┿┩┿┼		 	· · · · · · · · · · · · · 	
 	 					
						
	11111111					
						
- - - - - -	 		· · · · · · · · · · · · · · · · · · ·	 		
- - - - - -	┃	- - - - - - - - - - - - - - - - - - - 				┍┩╒╎╒╎╒╎╒ ╏╴┼╶╏
- - - - - -	 	┩┩┩┩	- ┞┦ ┦┨┦┫	┩═┩═╏═╏╒╏ ╶╏╶╏	╂┧╂╂┧┦┿┩╉┿┩	
				4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		

ELEMENTO ENLAZADO PARA Z

NIVELACIÓN DE ALTA PRECISION. RED NAP.

COMENTARIOS

ESTACIÓN DE BOMBEO.

CODIGO DE ELEMENTO: 01-NT-05

	ALC: U
FECHA:	

HORA

RESPONSABLE:		
TODAS LAS COTA	S SERAN EN	METROS

				TODAS LAS COTAS SERAN EN METROS
TIPO DE ELEMENTO				
MARCAR CON UNA X EL TIPO DE ELEMEI SI NO FIGURA DESCRIBIRLO	ито о	x	COORDENADAS	ž
POZO	× .4.	46417,210.	4537834,760	
IMBORNAL				
ALIVIADERO				
FOTO DE TAPA Y ENTORNO				
CROQUIS				
CROQUIS COMENTARIOS				
NIVELACION D	E ALTA	PRECISION. RED N	IAP.	

Ň.		
	2.2	,x
		1

HORA

CODIGO DE ELEMENTO: 01-NT-06

RESPONSABLE:

			DAS LAS COTAS SERAN EN METROS
TIPO DE ELEMENTO			
MARCAR CON UNA X EL TIPO DE ELEMENTO O	· · · · · · · · · · · · · · · · · · ·		
SI NO FIGURA DESCRIBIRLO	v	COORDENADAS	-
	<u>x</u>	Y	Ž
POZO	446379,922	4537824,454	996, 412
IMBORNAL			• • • • • • • • • • • • • • • • • • • •
ALIVIADERO			
		E E	
FOTO DE TAPA Y ENTORNO			
FOTO DE TAPA Y ENTORNO		1 11 11 11 11 11 11	
The state of the s			200
		-7-7-7	
	Y	777	
	4.5		
	4 131		
3-12		100	
	N. T. WOLL		10000
CROQUIS		шшшшт	
			
			
		 	
			
ELEMENTO ENL	AZADO PARA Z	CO	MENTARIOS
	LTA PRECISION. RED N	00	
NIVELACION DE A	LIA PKECISION. KED N	nr.	~

	4	ı

FECHA:	IJ
HORA	1

CODIGO DE ELEMENTO: 01-NT-07

RESPONSABLE:

				TODASEA	S COTAS SERAN EN METROS	
TIPO DE ELEMENTO						
MARCAR CON UNA X EL TIPO DE ELEMEI SI NO FIGURA DESCRIBIRLO	NTO O		COORDE	NADAS		
		x	Y		Ž	
POZO	X	446.700, 462	453.69	03,243	989,147	
IMBORNAL						
ALIVIADERO						
FOTO DE TAPA Y ENTORNO						
ELEMEN	NTO ENL	AZADO PARA Z		COMENT	ARIOS	
				COMENT	ANIO	
NIVELACION DE	ALTA	PRECISION. RED NA	P.	PUNTO DE	DESAGUE.	
				922		

		TOPOGRAFIA	SUPERIOR	FECHA 20/09/2009
Canal of Isabel	de		110110 0 0000	HORA
■ ■ Isabel		CODIGO DE ELEMENTO	14QN-2-P-0076	TODAS LAS COTAS SERAN EN METROS
		RESPONSABLE	liguel Ángel García Pérez	TODAS DAS COTAS SERAN EN METROS
TIPO DE ELEMENTO				
MARCAR CON UNA X EL TIPO O SI NO FIGURA DESCRIBIRLO)	o SISTEMA DE COORDENADAS	S UTM 3	0 DATUM HAYFORD
				DATOWINATIOND
		X	Y	Z ortométrica
POZO	X	446597,036	4538313,190	969,866
IMBORNAL				
ALIVIADERO				
BUZÓN				
FOTO DE TAPA Y ENTORN	0			
TOTO DE TALA L'ENTORIA				
BA-24	1-76			
CROQUIS				

ELEMENTO ENLAZADO PARA LA Z

NIVELACIÓN DE ALTA PRECISIÓN. RED NAP

COMENTARIOS

ANCHO DE ALIVIADERO DE 1'5 m.

((*))	Canal de
	Isabel II

FECHA 20/09/2009

14RN-4-P-0126

HORA 20/09/20

CODIGO DE ELEMENTO

TODAS LAS COTAS SERAN EN METROS

		RESPONSABLE	Miguel Ángel García	Pérez	
TIPO DE ELEMENTO					
MARCAR CON UNA X EL TIPO O SI NO FIGURA DESCRIBIRL	0	MA DE COORDENAI	DAS	UTM 30 DAT	TUM HAYFORD
		X	Υ		Z ortométrica
POZO	X	446630,066	4536874,309		994,652
IMBORNAL					
ALIVIADERO					
BUZÓN					
FOTO DE TAPA Y ENTORI	10				
CAH	-P-126			- 6	
CROQUIS					
			2		

ELEMENTO ENLAZADO PARA LA Z

NIVELACIÓN DE ALTA PRECISIÓN. RED NAP

COMENTARIOS

ANCHO DE ALIVIADERO DE 1'5 M.

TOPOGRAFÍA INFERIOR

DOC 1: APÉNDICE 02 7394-1-1-AP-2-Top-3 13 de 20

	CO RES	TI DIGO DE ELEMENTO: SPONSABLE: SERGI	OPOGRAFIA 01-NT-C O LOPEZ ALON	M	-	FECHA: 4.14.1.11 HORA	
PROFUNDIDA	AD (H)	· ELEME	NTO DE REFERE	NCIA EN TAPA		PATES	
3'30 C-T. POLIETHLENO ACERO NOT							
	S ENTRANTES	···					
CÓDIGO	PROF. (P)	DIMENSIONES. (m)	MATERIAL	ANGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN	
	3/30	0'4	H. M	270		01-NT-02	
						,	
			=			-	
				_			
				$\neg \vdash \neg$			
			-				
COLECTORES	SALIENTES						
CÓDIGO	PROF. (P)	DIMENSIONES (m)	MATERIAL	ÁNGULO	TIPO DE SECCIÓN	EL EMENTO DESTINO	
	3'30	0'4	-		***************************************	ELEMENTO DESTINO	
	330	04	H. M	. 0		EDAR.	
DIMENSIONE	S Y TIPOS DE EL	EMENTOS					
	LERÍA DE ACCES			POZO CON CAL	ERÍA DE ACCESO		
TOLO SIN GA	TENIA DE AGGE			POZO CON GAL	ERIA DE ACCESO		
	1	1			1		
i i a	-	SALIDA	• •		c	GALERÍA	
	0-	SAL	łDA .		0 0 7	GALERÍA	

	.A.]	7	OPOGRAFIA	A INFERIOR	?	Nº HOJA:/
*****		ODIGO DE ELEMENTO:				FECHA: 4.14.1.11
	R	ESPONSABLE: SER6	io lopez Alon	150	TODAS	HORA/
PROFUNDIDA	AD (H)	· ELEM	ENTO DE REFERE	NCIA EN TAPA		PATES
2/0				•		POLIETILENO ACERO NO TIEN
3'0	5		C.T			
COLECTORE	S ENTRANTES					
CÓDIGO	PROF. (P)	DIMENSIONES. (m)	MATERIAL	ÁNGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN
	3'05	0'4	H.M	180		14 QN -2-IR-000
						,
					·	
				<u> </u>		
COLECTORES	S SALIENTES					
CÓDIGO	PROF. (P)	DIMENSIÒNES (m)	MATERIAL	ÁNGULO	TIPO DE SECCIÓN	ELEMENTO DESTINO
	3'05	0'4	H.M.	. 0		01-NT-01
DIMENSIONS	S Y TIPOS DE	ELEMENTOS				
	LERÍA DE ACC			8070 CON CAL	ERÍA DE ACCESO	
POZU SIN GA	ILENIA DE ACC	eso		POZO CON GAL	ENIA DE ACCESO	
	A	8			^	B
: 	7	1				
· .	c	SALIDA			c	
	L					GALERÍA
	0	-0×			ON	
	16	_*/X\\			(h -15	₫/

GALERÍA

	TOPOGRAFIA INFERIOR	N° HOJA;/
(Ó	CODIGO DE ELEMENTO: 01-NT-05 RESPONSABLE: SERGIO LOPEZ ALONSO	FECHA: 4.1.41.11 HORA
PROFUNDIDAD (H)	ELEMENTO DE REFERENCIA EN TAPA	PATES POLIETILENO ACERO NO TIEN

					TUDAS	LAS COTAS SERAN EN METROS
PROFUNDIDA	PROFUNDIDAD (H) ELEMENTO DE REFERENCIA EN TAPA					PATES POLIETILENO ACERO NO TIENE
0'9	8		C-T.			
	S ENTRANTES					
CÓDIGO	PROF. (P)	DIMENSIONES. (m)	MATERIA	L ANGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN
	0'97	04	PVC	160		01-NT-06
	062	0'150	PVC	240		A. V.
			==			<u> </u>
COLECTORES	SALIENTES					
CÓDIGO	PROF. (P)	DIMENSIONES (m)	MATERIA	L ÁNGULO	TIPO DE SECCIÓN	ELEMENTO DESTINO
	0'98	04	PVC	. 0		
DIMENSIONES	SY TIPOS DE E	LEMENTOS				
	LERÍA DE ACCE				rali ar isoreo	
POZO SIN GA	LERIA DE ACCE	so		POZO CON GAI	LERIA DE ACCESO	
	1	- B			A	
	7	H	4		J-	
9 9	c	SALIDA	7907 A		c	
	L		9		نـــا	GALERÍA
	10-	-0-			0 0 0 0	_
					1	
	1	SAL SAL	JOA		() /	
KA SP	\ \ \/					GALERÍA
	9//		7#1		9//	12/2
. 4					1.	

1
(6)
1177
CYII

TOPOGRAFIA INFERIOR

CODIGO DE ELEMENTO: 01-NT-06

Nº HOJA:/....

FECHA: .4.14.1.11 HORA/....

RESPONSABLE: SERGIO LOPEZ ALONSO

			·		TODAS	LAS COTAS SERAN EN METROS
PROFUNDIDA	D (H)	· ELEME	NTO DE REFE	RENCIA EN TAPA		PATES POLIETILENO ACERO NO TIENE
2'00	2		C.T	.1		
COLECTORES	ENTRANTES	· · · · · · · · · · · · · · · · · · ·				
CÓDIGO	PROF. (P)	DIMENSIONES. (m)	MATERIA	L ÁNGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN
	057	0'150	PVC	210		A. V.
	2'00	0'3	PVC	250		,
			-0.007			
				_		
COLECTORES	SALIENTES					
CÓDIGO	PROF. (P)	DIMENSIONES (m)	MATERIA	$\neg r$	TIPO DE SECCIÓN	ELEMENTO DESTINO
	1'91	0'4	PVC	. 0		01-NT-05
DIMENSIONES	Y TIPOS DE EI	LEMENTOS				
	LERÍA DE ACCES			POZO CON GAI	LERÍA DE ACCESO	
	, F		## 		FI	
)	A	8				8
		#				
	°-	SALIDA			°	GALERÍA
	_0-			7	0	
	16	X			(A)	
	(*\)	SALI	IDA		(\\\ _	111
	\ \/,		meeks till			GALERÍA
	9//	¥	21		9//	
	7				7.	

	1 (
2000	1
8	

TOPOGRAFIA INFERIOR

CODIGO DE ELEMENTO: 14 RN-2-P-0135

RESPONSABLE: SERGIO LOPEZ ALONSO

Nº HOJA:/....

FECHA: 4.1.41.11

PROFUNDIDA	PROFUNDIDAD (H) ELEMENTO DE REFERENCIA EN TAPA					PATES POLIETILENO ACERO NO TIENE		
1/70	2		С.Т					ACERO NO HENE
COLECTORE	\$ ENTRAN	ITE\$					1494	
CÓDIGO	PROF.	. (P)	DIMENSIONES. (m)	MATERIA	L	ANGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN
	1/29	5 ,	0'2	H.M.		250		A.V.
	10	3	0'2	H.M.		270		A.V.
	1'3	2	0'2	H.M		290		A.V.
	14	6	0'2	H.M.		110		A-V.
	14	6	0'2	H.M		90		A.V.
	1'4	9	02	H.M.		70		A.V.
					٠,			
COLECTORES SALIENTES								
CÓDIGO	PROF.		DIMENSIONES (m)	MATERIA	1	ANGULO	TIPO DE SECCIÓN	ELEMENTO DESTINO
	170		0'4	H. M.		0		14 RN-2- P- 0134
	- 11							
DIMENSIONE		V)						
POZO SIN GALERÍA DE ACCESO POZO CON GALERÍA C RALIDA					ERÍA DE ACCESO	B		
SALIDA							GALERÍA	
SALIDA							GALERÍA	

_		4
		((•))
100		TAP IS
		CYH
5.	_	

TOPOGRAFIA INFERIOR CODIGO DE ELEMENTO: 14RN-2-P-0140

Nº HOJA:/.....

FECHA: .41.41.11

RESPONSABLE: SERGIO LOPEZ ALONSO

HORA/....

					TODAS	LAS COTAS SERAN EN METROS
PROFUNDIDA	AD (H)	· ELEME	PATES POLIETILENO ACERO NO TIENE			
2'03	3		C.T			
	SENTRANTES			-		
CÓDIGO	PROF. (P)	DIMENSIONES. (m)	MATERIAL	ANGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN
	2'02	0′3	H. M.	186		14RN-2-P-0B9
	1'60	02	H.M.	100		A. V.
	1'57	o'2	H.M.	80		A. V.
			<u> </u>			
			note have			
COLECTORES	SALIENTES					
CÓDIGO	PROF. (P)	DIMENSIONES (m)	MATERIAL	ÁNGULO	TIPO DE SECCIÓN	ELEMENTO DESTINO
	2'03	03	H.M.	. 0		14RN-2-P-0141
DIMENSIONES	Y TIPOS DE E	EMENTOS				
	LERÍA DE ACCE			POZO CON GAL	ERÍA DE ACCESO	
	Œ			r ozo oon one	(T.1)	4
	^				A	8
	ب [Å (J	<u> </u>
	c	SALIDA			c_	
	L			*0		GALERÍA
	10-	-0*			ON	
	16	-/X	1		16-12	
	7	SAL	IDA		7	-111-T
						GALERÍA
	9//	\	10		7//	
	7			•	· ·	

	+
	((•))
*****	200
	CYH

TOPOGRAF	A INFERIOR

CODIGO DE ELEMENTO: 14RN-2-P-018

RESPONSABLE: SERGIO LOFEZ ALONSO

Nº HOJA:/....

FECHA: 4.1.41.1.

HORA/....
TODAS LAS COTAS SERAN EN METROS

PROFUNDIDA	AD (H)	· ELEME	ENTO DE REFE	RENCIA	A EN TAPA		PATES POLIETILENO ACERO NOTIENE
2'10	2		C.T	• • • • • • •			POLIETHENO ACERO NOTIENE
COLECTORE	S ENTRANTES	· · · · · · · · · · · · · · · · · · ·					
CÓDIGO	PROF. (P)	DIMENSIONES. (m)	MATERIA	L	ÁNGULO	TIPO DE SECCIÓN	ELEMENTO ORIGEN
	2/10.	06	H-M	,	110		14 RN-4-P-0147
	1'41	03	H.M		40		14RN-4-P-0146
	110	o'z	H- M.		320		A.V.
			=			4	
		<u>ا</u>					
COLECTORES							
CÓDIGO	PROF. (P)	DIMENSIONES (m)	MATERIA		ÁNGULO	TIPO DE SECCIÓN	ELEMENTO DESTINO
	2'04	06	H.M.		0		14RN-2-P-2010
DIMENSIONE	S Y TIPOS DE EL	EMENTOS					
POZO SIN GA	LERÍA DE ACCES	80		POZ	O CON GALE	ERÍA DE ACCESO	
	A		æ *			c T	GALERÍA
	0	SAL	.lOA		· (GALERÍA

57/2010-L1-E001

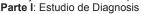
ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº2: ESTUDIO DE LA RED ACTUAL

Dirección de Saneamiento Subdirección de Alcantarillado Departamento de Tecnología del Alcantarillado División de Tecnificación del Drenaje Urbano

Fecha: Septiembre 2012



ESTUDIO DE DIAGNOSIS Y PLAN DIRECTOR DE LA RED DE DRENAJE URBANO DEL MUNICIPIO DE BUITRAGO DEL LOZOYA

PARTE I: ESTUDIO DE DIAGNOSIS

DOCUMENTO Nº2: ESTUDIO DE LA RED ACTUAL

MEMORIA

Canal TYPSA
de Isabel II gestión INGENIEROS
CONSULTOS

1 C	ARACT	ERÍSTICAS GENERALES DEL MODELO DE SIMULACIÓN	1
1.1	EL MC	DDELO HIDRÁULICO	
	1.1.1	MÓDULO HIDROLÓGICO	
1.2		DLOGÍA E HIDRÁULICA	
1.2	1.2.1	SUBCUENCAS	
	1.2.2	MODELO DE INFILTRACIÓN	5
	1.2.3	MODELO DE ESCORRENTÍA. MÉTODO DE LA ONDA CINEMÁTICA	9
	1.2.4	PROPAGACIÓN EN LAS TUBERÍAS	10
1.3	LLUVI	A DE DISEÑO	10
1.4		ALES DE AGUA RESIDUAL	
1.5	1.5.1	ACIÓNDOTACIONES DE CÁLCULO	12 12
	1.5.2	CAUDALES DE CÁLCULO	
	1.5.3	CONCLUSIONES	17
1.6	CONE	DICIONES DE CONTORNO	18
1.7		IDAS DE CARGAIDAS DE CARGA EN ALIVIADEROSIDAS DE DESCARGA EN ALIVIADEROS	
1.8			
2 R	ED DE	DRENAJE MODELIZADA	21
3 M	ODELC	DE LA RED ACTUAL EN TIEMPO SECO	23
3.1	VALID	ACIÓN DEL MODELO EN TIEMPO SECO	23
3.2		RACIÓN DE LAS DOTACIONES	
3.3 3.4		ACIÓN DEL MODELO EN TIEMPO SECOLITADOS DEL MODELO EN TIEMPO SECO	
4 F	UNCIO	NAMIENTO DE LA RED ACTUAL PARA LA LLUVIA DE DISEÑO	25
4.1		RINCIPAL 1	
4.2 4.3		RINCIPAL 2RINCIPAL 3	
4.3 4.4		RINCIPAL 3	
5 D	IAGNO	SIS DE LA RED ACTUAL	32
J			

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

1 CARACTERÍSTICAS GENERALES DEL MODELO DE SIMULACIÓN

1.1 EL MODELO HIDRÁULICO

El modelo hidráulico empleado en el presente estudio es el Infoworks CS de la casa Wallingford Software Ltd. Se trata de un modelo hidráulico que permite estudiar el flujo variable en lámina libre y en presión, con condiciones de contorno variables en el tiempo. El modelo permite la resolución de las ecuaciones de Saint-Venant.

La propagación del flujo en el tiempo a lo largo de una red de drenaje urbano es un fenómeno complejo. Bajo la hipótesis de flujo unidimensional, conductos de poca pendiente, fluido incompresible y presión hidrostática, el fenómeno de la propagación se puede describir mediante las anteriormente citadas ecuaciones de Saint-Venant, que el modelo Infoworks resuelve completamente. El modulo de propagación además, permite la simulación de régimen en presión (sobrecargas).

El programa Infoworks CS incluye los siguientes módulos.

1.1.1 MÓDULO HIDRÁULICO

Módulo hidráulico: transporte en los colectores

Las ecuaciones por las que se rige el modelo son las de Saint Venant:

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + gA \left(\cos \theta \frac{\partial y}{\partial x} - S_0 + \frac{Q|Q|}{K^2} \right) = 0$$

Donde:

Q: Caudal [m³/s]

A: Sección transversal [m²]

g: Aceleración de la gravedad [m/s²]

θ: Ángulo del lecho respecto a la horizontal [°]

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 1 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

S0: Pendiente del lecho

K: Convergencia

El transporte o la transmisión del flujo se resuelven por la expresión de Manning o la de Colebrook-White, habiéndose empleado en nuestro caso la primera:

$$v = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$$

Donde:

v= velocidad

n= número de Manning

S= gradiente hidráulico (pendiente de la línea de energía)

R= radio hidráulico

Además se pueden incluir y modelizar elementos singulares del sistema como son: Estaciones de bombeo, Depósitos de laminación / retención, Vertederos, Compuertas, Secciones de aforo, Sifones, Rejas, Válvulas, Controladores de vórtice, etc.

1.1.2 MÓDULO HIDROLÓGICO

Es posible reproducir los fenómenos de la infiltración y la escorrentía superficial en las cuencas de aportación hasta que el agua entra en la red de colectores por los elementos de captación superficial. En función de los datos que se disponga, el programa permite emplear distintas formulaciones. Para la infiltración puede escogerse entre Green y Ampt, Horton, Wallingford, Infiltración constante, Coeficiente de escorrentía y SCS.

En cuanto a los modelos de propagación cuenta con el tipo Embalse lineal simple, Embalse lineal doble, Large contributing área, SPRINT y método de la onda cinemática.

En el presente estudio se ha empleado el método del Soil Conservation Service para el cálculo de la infiltración y el Método de la onda cinemática para el cálculo de la propagación de la escorrentía superficial.

Las metodologías empleadas se describen en detalle en los apartados 1.2.2.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

1.2 HIDROLOGÍA E HIDRÁULICA

1.2.1 SUBCUENCAS

Una subcuenca representa, por cada eje principal de la red, su superficie de aportación hidrológica.

En el presente estudio se han identificado las cuencas principales del sistema mediante dos metodologías dependiendo del tipo de superficie. En el caso de las cuencas rurales se han utilizado herramientas GIS que, a partir de un modelo digital de terreno (MDT), permiten definir el camino del flujo en superficie según la línea de máxima pendiente.

A continuación se muestra una imagen con las líneas de flujo según el MDT del municipio de Buitrago del Lozoya.

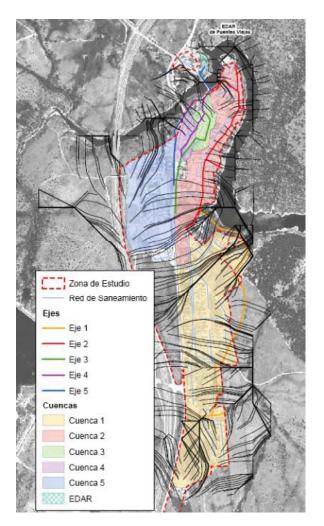


Figura 1. Líneas de flujo de las cuencas rurales del municipio de Buitrago del Lozoya.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 3 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

En el núcleo urbano se han identificado las cuencas según las pendientes del terreno, cercanía al eje y ubicación de los elementos de captación.

A continuación se muestra una imagen del *Plano 8-Cuencas y Ejes Principales* realizado para el *Documento 1- Estudios Previos*, donde se distinguen los ejes principales y las cuencas que estos ejes drenan.

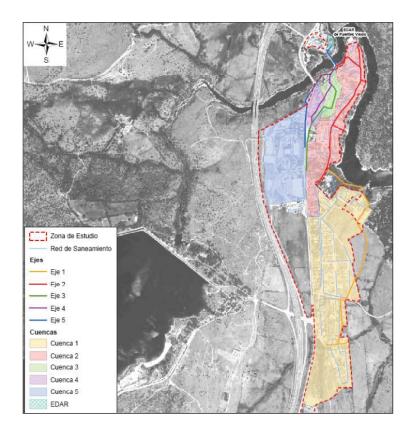


Figura 2. Cuencas de aportación diferenciadas según los ejes principales.

Una vez definidas las cuencas principales, habrá que dividir éstas en subcuencas.

Las subcuencas externas al núcleo urbano se asignan a la red según la información disponible y cuando se ha detectado que no hay barrera física que impida la entrada de la escorrentía superficial a la red.

En núcleo urbano la asignación de aéreas de aportación a cada pozo de la red se realiza según la ubicación de los elementos de captación. Cuando y donde la densidad de los elementos de captación lo permite, la asignación de subcuencas se realiza utilizando el método de los Polígonos de Thiessen.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

Este es uno de los métodos más utilizados de interpolación espacial, basado en la distancia euclidiana. Las áreas de aportación se crean al unir los puntos (pozos) entre sí, trazando las mediatrices de los segmentos de unión. Las intersecciones de estas mediatrices determinan una serie de subcuencas alrededor de los pozos, de manera que el perímetro de los polígonos generados sea equidistante a los puntos vecinos y designando su área de influencia.

Cada subcuenca del sistema es definida por sus características físicas principales.

- Superficie
- Ancho característico
- Pendiente característica

En el caso de subcuencas urbanas se puede aproximar su ancho al radio de un círculo de área equivalente. En cuanto a la pendiente, se puede asignar a cada subcuenca la pendiente del colector al que drena.

En el *Plano 9- Subcuencas* se muestran todas las subcuencas del sistema diferenciadas por uso característico y densidad de población.

En este plano se distinguen tres tipos de subcuencas en función de su uso mayoritario:

- Rural
- Zona Urbana Densa
- Zona Urbana Poco Densa

1.2.2 MODELO DE INFILTRACIÓN

El exceso de precipitación o precipitación efectiva es aquella que no se retiene en la superficie terrestre y tampoco se infiltra en el suelo. Después de fluir a través de la cuenca, el exceso de precipitación se convierte en escorrentía directa. La diferencia entre el hietograma de lluvia total (obtenido en apartados anteriores) y el hietograma de exceso de precipitación se conoce como abstracciones o pérdidas.

En el presente estudio se estima la infiltración utilizando el método del número de curva desarrollado por el Soil Conservation Service. Este método es ampliamente utilizado a nivel mundial por la facilidad para estimar sus parámetros a partir de datos de vegetación y usos del suelo de la zona de estudio.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 5 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

El S.C.S. asume la existencia de un umbral de escorrentía (P0), por debajo del cual las precipitaciones no producen escorrentía. Este valor actúa como una intercepción inicial antes de evaluar qué parte de ésta escurre superficialmente (E) y que parte es retenida (R).

La ecuación básica que define la relación precipitación-escorrentía en este método es la siguiente:

$$\frac{R}{S} = \frac{E}{P - P_0}$$

siendo S la máxima retención posible.

Por otra parte, la retención en cada instante se define con la expresión:

$$R = (P - P_0) - E$$

Finalmente, el resultado de los análisis empíricos del S.C.S. proporciona la siguiente relación entre P0 y S:

$$P_0 = 0.2S$$

Y en definitiva la relación precipitación-escorrentía queda en función de un único parámetro P0, siendo su forma adimensional la siguiente:

$$\begin{split} &\frac{E}{P_0} = 0 \to si \frac{P}{P_0} \le 1 \\ &\frac{E}{P_0} = \frac{\left(P \, / \, P_0 \, - \, 1\right)^2}{P \, / \, P_0 \, + \, 4} \to si \frac{P}{P_0} > 1 \end{split}$$

La formulación original del S.C.S. está desarrollada a partir del número de curva (CN), que es un valor entero entre 0 (no hay escorrentía) y 100 (toda la lluvia genera escorrentía). Estando expresado S en metros, se tiene la relación:

$$S = \frac{25,4}{CN} - 0,254$$

El valor del número de curva en una determinada cuenca es función de:

- Condiciones iniciales de humedad
- Uso y tipo de suelo
- Pendiente media de la cuenca
- Características de la cubierta vegetal

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 6 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

Una intensa labor experimental ha permitido al S.C.S. definir el número de curva (CN) a partir de las características anteriormente indicadas para condiciones medias de humedad del complejo suelo-vegetación. La tabla de valores medios del parámetro P0 [mm] figura en la normativa española anteriormente citada, y son valores que deben modificarse para tener en cuenta el estado previo de humedad del suelo.

En el presente estudio se han identificados 5 diferentes tipos de superficies de escorrentía dentro de la zona de estudio, que se detallan en la tabla a continuación con sus valores de CN característicos para un estado de humedad de tipo II.

TIPO DE SUPERFICIE	CN	S[m]
Zonas Rurales Boscosas	60	0,169
Herbazales y Pastos	68	0,120
Tejados	98	0,005
Viales	98	0,005

Tabla 1. Valores de NC y máxima retención para cada uso del suelo definido

A continuación se muestra una imagen con la ubicación de las superficies de escorrentía.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 7 de 34

Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya **Parte I**: Estudio de Diagnosis **Documento N°2**. Estudio de la Red Actual

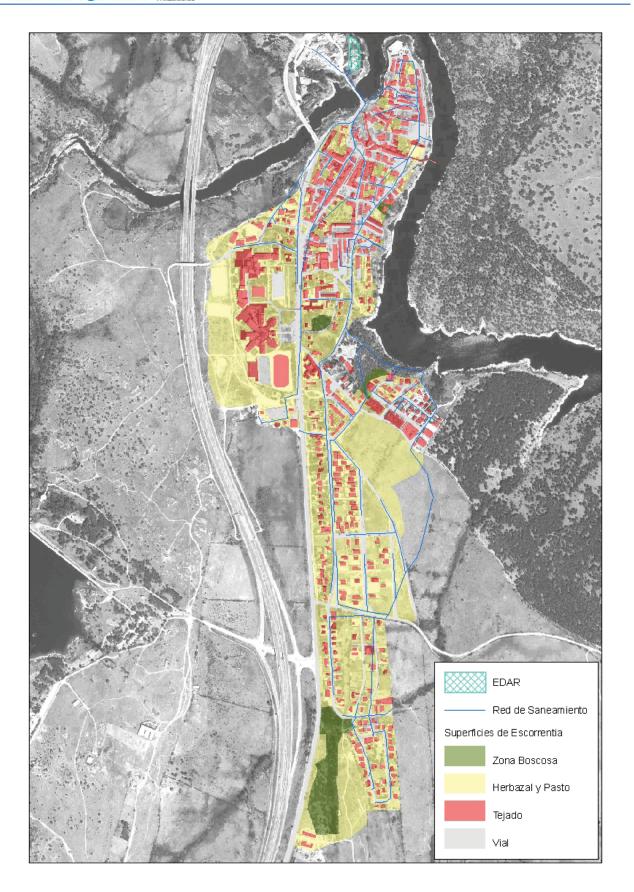


Figura 3. Superficies de escorrentía del municipio de Buitrago del Lozoya.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

Conocido por tanto el hietograma neto por cada tipo de suelo, es decir el volumen de escorrentía a lo largo del tiempo, sólo queda describir la forma en que el agua discurre a lo largo de la superficie de cada subcuenca hasta alcanzar la red de saneamiento.

1.2.3 MODELO DE ESCORRENTÍA. MÉTODO DE LA ONDA CINEMÁTICA

Utilizando como "input" el hietograma neto (obtenido de restar las sustracciones al hietograma bruto por cada tipo de suelo) el modelo aproxima cada subcuenca a superficies inclinadas con pendiente, rugosidad y ancho característico (W). El comportamiento del flujo sobre estos planos inclinados se considera equivalente al comportamiento del mismo sobre la superficie de cada subcuenca.

El flujo en superficie se describe a través de las ecuaciones de Sant-Venant, considerando que sólo las fuerzas de gravedad y de fricción son relevantes en la descripción del movimiento, simplificación que se conoce como aproximación de la onda cinemática.

El cálculo de la propagación se aplica, dentro de cada subcuenca, de forma independiente en cada % de tipo de suelo diferente y las diversas aportaciones se suman para determinar el hidrograma de escorrentía resultante para cada subcuenca.

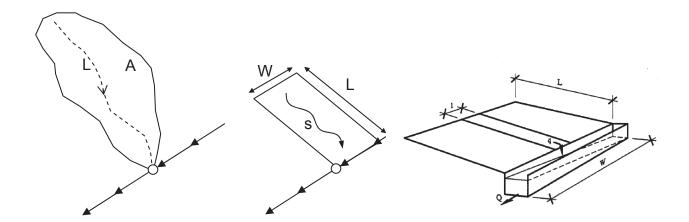


Figura 4. Esquema conceptual de simplificación de las subcuencas según método de la onda cinemática.

Para cada uno de los usos de suelo identificados en la zona de estudio, se ha definido una rugosidad característica, expresada por medio del número de Manning.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 9 de 34

Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya **Parte I**: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

TIPO DE SUPERFICIE	n
Zonas Rurales Boscosas	0,2
Herbazales y Pastos	0,2
Tejados	0,011
Viales	0,011

Tabla 2. Valores de rugosidad de Manning para cada uno de los usos.

1.2.4 PROPAGACIÓN EN LAS TUBERÍAS

La propagación del flujo en las tuberías se describe utilizando las ecuaciones completas de Saint Venant.

En función de los diferentes materiales de las tuberías, se han definidos los valores de rugosidades que se detallan a continuación:

TIPO DE MATERIAL	n
Hormigón en masa	0,015
PVC estructurado	0,012

Tabla 3. Valores de rugosidad de Manning para tuberías.

1.3 LLUVIA DE DISEÑO

Para el estudio de diagnosis se utilizará un suceso de lluvia sintético elaborado con el método de los bloques alternados a partir del estudio pluviométrico y metodologías detallados en el *Documento 1.-Estudios Previos.*

La duración característica del hietograma de diseño se ha determinado a partir de un análisis de las tormentas intensas registradas en la estación pluviográfica de la Presa de Riosequillo entre los años 2.000 y 2.010.

Se han localizado los eventos cuya intensidad sea similar a la adoptada para el estudio, alrededor de 16 mm/h (Dt = 1h y T= 2 años) y se ha obtenido la duración de las mismas. Para discernir cuando acaba un episodio lluvioso y empieza el siguiente no existe un criterio universal. En este estudio se ha considerado que una tormenta ha concluido cuando durante 2 horas la

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

precipitación recogida no supera los 2 mm. Se han analizado un total de 4 episodios lluviosos y sus duraciones obteniéndose la siguiente tabla:

FECHA	HORA	PRECIPITACIÓN HORARIA [mm]	DURACIÓN
13-jun-04	12:00	24	1
12-jun-04	12:00	21	4
23-jun-08	23:00	34,4	3
22-sep-08	5:00	19,2	3

Tabla 4. Tormentas intensas y sus duraciones.

De los resultados obtenidos se deduce que la mayor parte de las tormentas intensas dentro de la serie analizada tiene una duración de 3 horas, de ahí que para este estudio se establece una duración de 3 horas para la tormenta sintética de diseño.

El hietograma de diseño para T= 10 años y duración d=3 horas se muestra a continuación:

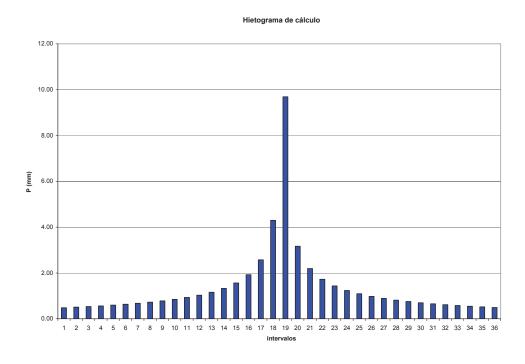


Figura 5. Hietograma introducido en el modelo Infoworks. T= 10 años, Duración: 3h; Δ T=5min.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 11 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

1.4 CAUDALES DE AGUA RESIDUAL

1.5 POBLACIÓN

Según los últimos datos disponibles del Instituto Nacional de Estadística, en el año 2010 el municipio de Buitrago del Lozoya contaba con un total de 2.068 habitantes. Durante los últimos 10 años el municipio ha experimentado un leve crecimiento, con una disminución de población en el último año del 0,5%.

AÑO	POBLACIÓN
2000	1.471
2001	1.565
2002	1.668
2003	1.697
2004	1.755
2005	1.856
2006	1.937
2007	1.936
2008	2.068
2009	2.078
2010	2.068

Tabla 5. Evolución demográfica de Buitrago desde el año 2000 al 2010

1.5.1 DOTACIONES DE CÁLCULO

El primer paso para el cálculo de los caudales de agua residuales es la definición de las dotación de cálculo de aguas domésticas y industriales.

Se entiende por dotación de aguas domésticas el volumen medio diario de agua a suministrar para atender las necesidades domésticas.

Para definir la dotación media de aguas residuales domésticas por habitante/día se utiliza las "Normas para Redes de Saneamiento de Canal de Isabel II (v2006)". En el capítulo III.5.1.2.1 se proponen una serie de dotaciones en función de la tipología y el tamaño de vivienda:

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

TIPOLOGÍA VIVIENDA Y TAMAÑO Sv [m²]	DOTACIÓN [m³/viv/día]
Viviendas multifamiliares Sv ≤ 120	0,90
Viviendas multifamiliares 120 <sv 180<="" td="" ≤=""><td>1,05</td></sv>	1,05
Viviendas multifamiliares Sv > 180	1,20
Viviendas Unifamiliares	1,20

Tabla 6. Valores de dotación. Fuente: (NRSCYII 2006).

Para el caso del núcleo urbano de Buitrago la mayoría de viviendas son del tipo unifamiliar, por tanto se adopta un valor de 1,20 m³/viv/día, que corresponde al valor medio de dotación. Considerando 3 habitantes equivalentes por vivienda (valor contrastado con diversas fuentes de información referentes al municipio), se deduce una dotación de 400 l/hab/día. Para el cálculo del caudal de aguas residuales, se considera, según el NRSCYII, un factor de retorno de 0,8 limitando el consumo medio a 320 l/hab/día.

La dotación de aguas industriales o del sector terciario se refiere al volumen medio diario de agua a suministrar para atender las necesidades hídricas de las actividades de las grandes industrias, la de las actividades del sector terciario, tales como restauración, o las derivadas de los grandes equipamientos dotacionales, como por ejemplo hoteles, hospitales y escuelas. Se expresará en función de la superficie edificable permitida para tales actividades, adoptando el valor genérico de 8,64 l/m²/día para las mismas.

Se introduce en el modelo hidráulico para tiempo seco una curva de consumo típica que representa la variación de generación de aguas residuales a lo largo del día. A continuación se muestra una figura con el perfil de aguas residuales.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

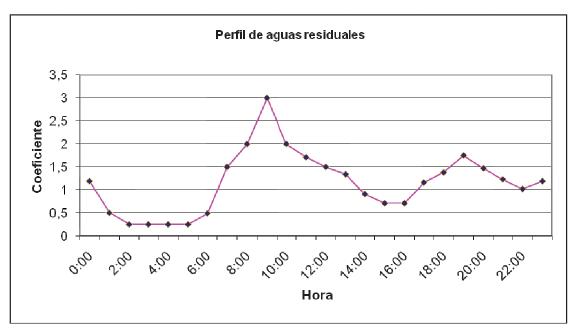


Figura 6. Variación en la producción de aguas residuales a lo largo del día.

Los caudales mínimo y máximo de aguas residuales se obtienen aplicando al caudal medio los coeficientes de 0,25 y 3 respectivamente.

1.5.2 CAUDALES DE CÁLCULO

Para el cálculo del caudal mínimo y punta de aguas domésticas e industriales, se utilizan las siguientes formulas, según las NRSCYII:

• Caudales de aguas residuales domésticas, QD

$$QDm = \frac{Dd \ x \ Cr \ x \ V}{86,40}$$

Caudal mínimo QDmin =
$$0.25 xQDm$$

D_d Dotación de aguas domésticas [m³/viv/día]

C_r Coeficiente de retorno de valor 0,8

V Número de viviendas [ud]

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 14 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

QD_m Caudal medio de aguas residuales domésticas [l/s]

QD_{min} Caudal mínimo de aguas residuales domésticas [l/s]

QDp Caudal punta de aguas residuales domésticas [l/s]

• Caudales de aguas residuales industriales, QI (para cada instalación)

Caudal medio
$$QIm = \frac{Di \times Cr \times Si}{hi \times 3600}$$

Caudal mínimo QImin = 0.25 xQ Im

D_i Dotación de aguas industriales [l/m²/día]

C_r Coeficiente de retorno de valor 0,8

S₁ Superficie edificable permitida para las industrias ó servicios [m²]

H_I Número de horas al día de demanda de agua (a falta de datos concretos se to-

mará un valor de 24h)

Ql_m Caudal medio de aguas residuales industriales [l/s]

QI_{min} Caudal mínimo de aguas residuales industriales [l/s]

• Caudal punta de aguas residuales:

Caudal punta: $QDp = 1.6 \times \left[\left(QD_m + QI_m \right)^{1/2} + \left(QD_m + QI_m \right) \right] \le 3 \times \left(QD_m + QI_m \right)$

Ql_p Caudal medio de aguas residuales industriales [l/s]

QD_m Caudal medio de aguas residuales domésticas [l/s]

QDp Caudal punta de aguas residuales [l/s].

Para cada subcuenca de aportación:

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 15 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

El caudal medio de agua residuales es la suma de los caudales medios de aguas residuales doméstica y industrial/terciario.

- El caudal punta de agua residuales es la suma de los caudales punta de aguas residuales domésticas y industriales o del sector terciario.
- El caudal mínimo de aguas residuales es el menor entre el caudal mínimo de agua doméstica y el de aguas industriales.

A lo largo de la red, el caudal global de aguas residuales es la suma de las aportaciones conjuntas de todas las cuencas de aportación del sistema.

Para transformar los caudales de aguas residuales domésticas en l/s, es necesario definir densidades características para las diferentes tipologías de subcuencas del sistema.

La metodología utilizada para definir las densidades es la siguiente:

- Se conoce el número de habitantes por vivienda en el Municipio de Buitrago del Lozoya (Fuente: INE).
- 2. Se estima el área media que ocupa una parcela de uso unifamiliar. Para ello, se mide el área de tres parcelas tipo y se calcula la media.
- 3. El número de habitantes en viviendas unifamiliares se estima asignando al área media de una parcela, el número de habitantes por vivienda. Sabiendo la superficie total de viviendas de esta tipología, se obtiene el número total de habitantes que habitan las viviendas de tipo unifamiliar.
- 4. La densidad característica para las subcuencas del tipo unifamiliar se obtiene como ratio entre el número de habitantes y el área total de las subcuencas del modelo con uso residencial unifamiliar.
- Para calcular la población que reside en viviendas multifamiliares, se le resta al total de la población (Fuente: INE) el número de habitantes estimados en cuencas de uso unifamiliar.
- 6. La densidad característica para las subcuencas del tipo multifamiliar se obtiene como ratio entre el número de habitantes calculado en el punto 5 y el área total de las subcuencas del modelo con uso residencial multifamiliar.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

En el *Plano 9- Subcuencas* se muestran todas las subcuencas del sistema diferenciadas por uso característico y densidad de población.

Para cada subcuenca de aportación, el modelo calcula los caudales de agua residuales domésticas (QDm, QDmin, QDmax) en l/s.

Los caudales medios de diseño de aguas residuales industriales se calculan por cada sector en función de la superficie ocupada por los tejados y se introducen en el modelo como aportaciones puntuales (IW: Caudales de Aguas Fecales Adicional [m³/s]) dentro de la misma subcuenca.

1.5.3 CONCLUSIONES

Se resumen en las tablas siguientes las densidades, dotaciones y los caudales de diseño, donde las aguas domésticas se miden por habitante y las industriales por m².

Densidades

Tipología	Densidad[Hab/ha]
Zona urbana densa	68
Zona urbana poco densa	25
Zona rural, industrial o terciaria	0

Tabla 7. Densidad de Población de Buitrago.

Dotaciones de aguas residuales domésticas e industriales

Dotaciones	Domésticas [I/hab/día]	Industriales [I/m²/día]
Zona Urbana	400	
Industrial o terciaria		8,64

Tabla 8. Dotaciones de aguas residuales domésticas e industriales de Buitrago

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 17 de 34

Parte I: Estudio de Diagnosis

Documento N°2. Estudio de la Red Actual

Caudales de agua residuales domésticas e industriales I/hab/día y I/m2/día

Caudales	Qm	Qmin	Qp
	[l/hab/día]	[l/hab/día]	[I/hab/día]
Zona Urbana	320	80	608
	Qm	Qmin	Qp
	[I/m²/día]	[l/m²/día]	[l/m²/día]
Industrial o terciaria	8,64	2,41	16,416

Tabla 9. Caudales de aguas residuales domésticas e industriales de Buitrago

CONDICIONES DE CONTORNO

En la modelización hidráulica de la red de drenaje del municipio de Buitrago se han establecido las siguientes condiciones de contorno:

Tiempo seco

	% LLENADO
Desagüe EDAR	Desagüe libre
Desagüe Arroyo (C/ de San Lázaro)	Desagüe libre
Otros desagues	Desagüe libre

Tabla 10. Condiciones de contorno de desagüe del municipio de Buitrago.

Tiempo Iluvioso

	% LLENADO
Desagüe EDAR	50%
Desagüe Arroyo (C/ de San Lázaro)	50%
Otros desagües	Desagüe libre

Tabla 11. Condiciones de contorno de desagüe del municipio de Buitrago.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 18 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

1.7 PÉRDIDAS DE CARGA

El modelo Infoworks calcula automáticamente las pérdidas de carga localizadas en los pozos de la red de alcantarillado, debidas a las turbulencias en cada transición colector/pozo y pozo/colector según la siguiente ecuación:

Dh =
$$ku * ks * kv * (v^2/2g)$$

Donde:

Dh = Pérdidas de carga

ku = Coeficiente de pérdida de carga debido al cambio de dirección

ks = Coeficiente de pérdida de carga en función del grado de presión

kv = Coeficiente de pérdida de carga en función de la velocidad

v = Velocidad del flujo [m/s]

g = Aceleración de gravedad [m/s²]

Esta ecuación es aplicada en el pozo aguas arriba y aguas abajo de cada conducto. El coeficiente Ku relaciona las pérdidas de carga a la salida de un pozo con el ángulo de aproximación de los colectores de entrada.

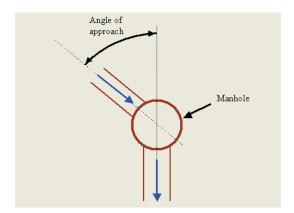


Figura 7. Coeficientes de pérdidas de carga en función del ángulo de aproximación en modelo Infoworks.

El coeficiente Ks relaciona las pérdidas de carga en un pozo con el grado de llenado del conducto inmediatamente aguas abajo o aguas arriba, considerando valores nulos para porcentajes de llenado inferiores al 50% y máximos para (0,2-0,8) para niveles de carga de hasta 1,5 veces el diámetro del conducto.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 19 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

El coeficiente Kv relaciona la pérdida de carga localizada en un pozo con la velocidad del flujo en el conducto entrante o saliente. Para v > 0.2 m/s; Kv = 1.

1.8 COEFICIENTES DE DESCARGA EN ALIVIADEROS

La formulación empleada en el modelo Infowork para el cálculo del caudal desaguado por un aliviadero es la siguiente:

$$Q = C_d * \sqrt{g} * b * h^{3/2}$$

Según "The Kindsvater-Carter rectangular weir equation (ISO, 1980):

b: ancho del aliviadero

h: carga por encima del umbral del aliviadero.

Según Domínguez (1945) para aliviaderos laterales:

$$Q = \phi * \mu * \sqrt{2g} * b * h^{3/2}$$

Por lo que se relacionan las dos formulas:

$$C_d * \sqrt{g} *= \phi * \mu * \sqrt{2g}$$

Según Domínguez los valores de μ varían, para aliviaderos con cresta delgada, entre 0,35 y 0,37 para cargas medias entre 0,1 y 0,7 m.

Los valores de ϕ pueden variar, según Domínguez, entre 0,4 y 1 para valores del ratio entre las cargas sobre el umbral del aliviadero en los dos extremos del mismo entre 0 y 1.

Por lo tanto los valores de coeficiente Cd pueden variar entre 0,2 y 0,5.

Se ha realizado un análisis de sensibilidad para el modelo de cálculo al variar el coeficiente de descarga Cd. Se han detectado variaciones inapreciables en los valores del caudal desaguado por un aliviadero al variar el coeficiente Cd en el rango 0,2 y 0,52.

Por esta razón se ha utilizado un coeficiente de diseño de 0,3 para todos los aliviaderos modelizados en el presente estudio.

Parte I: Estudio de Diagnosis

Documento N°2. Estudio de la Red Actual

RED DE DRENAJE MODELIZADA

Se ha modelizado la red de drenaje de Buitrago en su globalidad.

La tabla resumen de la geometría de la red modelizada se puede consultar en el Apéndice 1.-Geometría de la Red, del Documento 1- Estudios Previos.

A continuación se muestra una imagen de la red de drenaje modelizada con los aliviaderos y puntos de desagüe.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 21 de 34

Estudio de Diagnosis y Plan Director de la Red de Drenaje Urbano del municipio de Buitrago del Lozoya **Parte I**: Estudio de Diagnosis **Documento N°2**. Estudio de la Red Actual

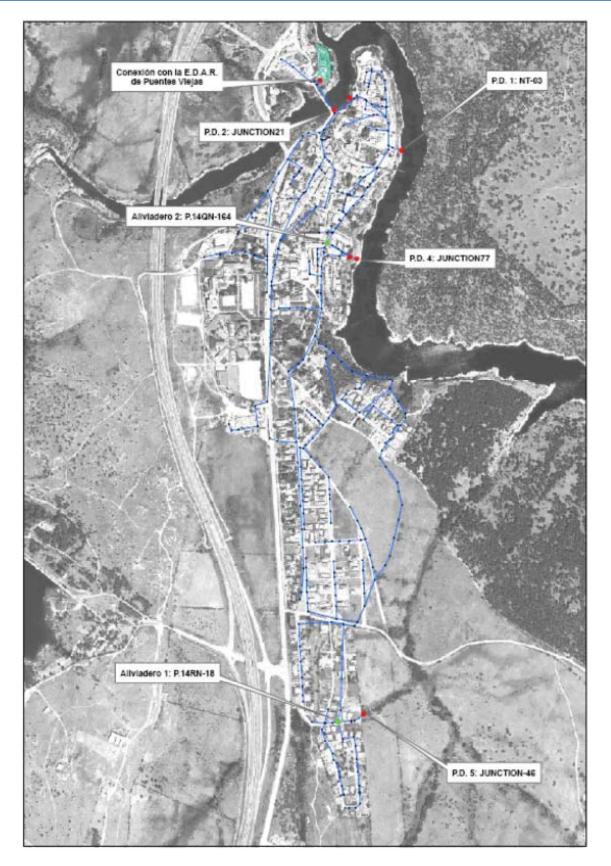


Figura 8. Ubicación de los Puntos de Desagüe y Aliviaderos de la red de drenaje de Buitrago.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

3 MODELO DE LA RED ACTUAL EN TIEMPO SECO

3.1 VALIDACIÓN DEL MODELO EN TIEMPO SECO

3.2 CALIBRACIÓN DE LAS DOTACIONES

Se han analizado los datos de volumen entrantes a la EDAR de Puentes Viejas a lo largo del año 2010. Esta EDAR recoge las aportaciones de aguas residuales de Buitrago y Villavieja de Lozoya. Se observa una variación de los volúmenes entre aproximadamente 600 y 3.000 m³ al día. Estos datos se muestran en la siguiente figura.

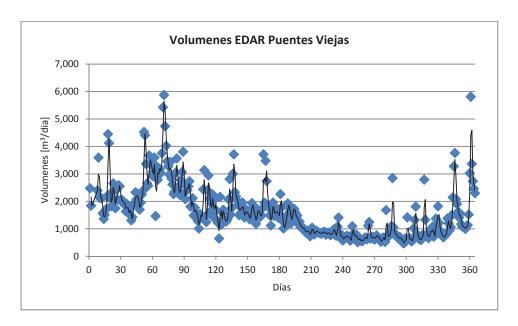


Figura 9. Volúmenes de entrada a la EDAR de Puentes Viejas.

Analizando un valor medio de aproximadamente 1.500 m³ al día y considerando la totalidad de la población de los municipios de Buitrago y Villavieja (2.322 hab) se observa una dotación media diaria por habitante aproximada de 650 l/hab/día excesiva por tratarse de consumos de aguas residuales en zonas residenciales.

Considerando la ausencia de industrias en los dos municipios vertientes a la EDAR, los elevados valores de los volúmenes entrantes se atribuyen a la presencia de infiltraciones en la red

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 23 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

por lluvia. La marcada variación anual y reducción de los valores en los meses estivales justifican las conclusiones.

Para un valor medio en los meses de Agosto, Septiembre y Octubre de 700 m³/día y realizando una proporción por habitantes, se estima para Buitrago un volumen de entrada a la EDAR de 700 m³/día que corresponde a un consumo de aproximadamente 305 l/hab/día similar al consumo por habitante y día utilizado en el estudio de diagnosis (320 l/hab/día).

3.3 VALIDACIÓN DEL MODELO EN TIEMPO SECO

Se han efectuado visitas de inspección de la red de drenaje y saneamiento de Buitrago durante el mes de abril de 2011. Durante la inspección de la red no se han detectados niveles en los colectores que indicaran infiltraciones externas.

Por esta razón se puede asumir como caudal representativo de aportación de aguas residuales a la EDAR de Puentes Viejas desde Buitrago el valor de 305 l/hab/día que se puede traducir en un caudal punta de aguas residuales teórico de aproximadamente 0,02 m³/s directamente comparable con el caudal punta calculado por el modelo de tiempo seco de 0,025 m³/s. Se considera validado el presente modelo hidráulico en tiempo seco.

3.4 RESULTADOS DEL MODELO EN TIEMPO SECO

La modelización en tiempo seco de la red de drenaje de Buitrago se realiza únicamente teniendo en cuenta la aportación de las aguas residuales.

Se ha comprobado que los aliviaderos del sistema no desaguan para un caudal igual a 5 veces el caudal punta de aguas residuales, cumpliendo con la normativa vigente.

Se han analizado las velocidades para los caudales punta de aguas residuales y se ha observado que siempre son inferiores al valor de "auto-limpieza" estimado en 0,6 m/s en redes unitarias.

Los caudales residuales de entrada a la EDAR de Puentes Viejas en la diagnosis se detallan en la siguiente tabla:

Parte I: Estudio de Diagnosis

Documento N°2. Estudio de la Red Actual

Caudal de aguas residuales	[m³/s]
Mínimo	0,003
Medio	0,012
Punta	0,036

Tabla 12. Caudales residuales de entrada a la EDAR de Puentes Viejas.

En el *Apéndice 1-Resultados*, se detallan los resultados de las modelizaciones por tramos, y subcuencas.

4 FUNCIONAMIENTO DE LA RED ACTUAL PARA LA LLUVIA DE DISEÑO

A continuación se describe el funcionamiento de la red de drenaje del municipio de Buitrago del Lozoya para un suceso de lluvia sintética de período de retorno T= 10 años y duración 3 horas. La descripción se realizará diferenciando la red por ejes principales.

En el *Plano 10.-Funcionamiento de la Red Actual T=10 años*, se representa en planta y por tramos, el estado de funcionamiento de la red de drenaje para las condiciones de diseño.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 25 de 34

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

4.1 EJE PRINCIPAL 1

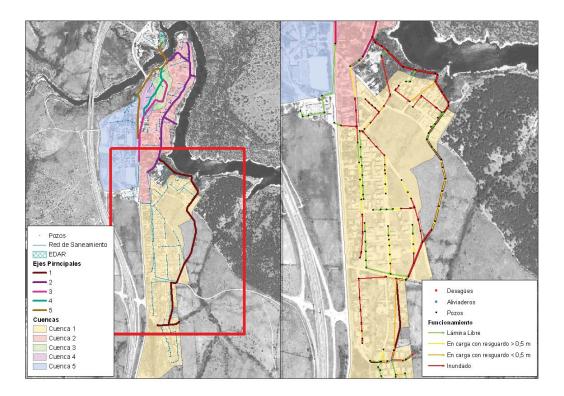


Figura 10. Situación eje 1 y funcionamiento.

El eje principal 1 tiene su inicio en la parte Sur del municipio en la calle San Lázaro y discurre bordeando el municipio hasta la calle del Lozoya.

La cabecera de este colector, que discurre por la calle San Lázaro, recoge las aportaciones del colector secundario de la calle Dehesa que presenta un buen funcionamiento hidráulico.

En el cruce entre calle San Lázaro y calle del Doctor Gilpérez se encuentra un aliviadero que, en caso de lluvia, vierte a un pequeño arroyo que desemboca en el río Lozoya.

Se ha comprobado que en tiempo seco no se vierten aguas residuales al medio receptor.

A lo largo de la calle del Doctor Gilpérez García y hasta el cruce con la calle Mangirón, el colector presenta funcionamiento en carga con resguardos respecto al terreno inferiores a 0,5 m.

En el cruce entre la calle Mangirón y la calle de Cinco Villas, el eje 1 recoge el caudal de un ramal secundario que discurre por las calles de San Lázaro y Mangirón con capacidad insuficiente y presentando desbordamientos a lo largo de toda su longitud.

Parte I: Estudio de Diagnosis

Documento Nº2. Estudio de la Red Actual

En el cruce entre la calle Mangirón y la calle del Doctor Gilpérez García, el eje 1 recibe la aportación de los colectores ubicados bajo la calle San Lázaro (lado norte respecto a la calle Mangirón) y la calle de Santillana del Mar. Los dos presentan funcionamiento en lámina libre y en carga pero con resguardos respecto al terreno mayor de 0,5 m.

Desde la calle Mangirón, el eje 1 toma rumbo hacia la calle de Cotos, bordeando el núcleo urbano en su costado Este.

Al cruce con la calle Manzanares el Real se une un ramal secundario con buena capacidad hidráulica aunque el cruce resulte hidráulicamente inapropriado.

Hasta el camino de las Cariñas el colector presenta desbordamientos a lo largo de su longitud. Al cruzar esta calle el eje 1 recibe la aportación de un ramal secundario con capacidad insuficiente prácticamente a lo largo de todo su recorrido. La conexión entre los dos colectores resulta hidráulicamente muy desfavorable coincidiendo además con un punto bajo topográfico.

Cruzada la calle de las Gariñas, el eje 1 discurre por una zona no urbanizada ni urbanizable hasta la calle de Cotos.

Este tramo se caracteriza por un diámetro de 600 mm y pendiente del 0,5% aproximadamente. Prácticamente todo el tramo funciona en carga con resguardos mayores de 0,5 m hasta llegar a la calle de Cotos, donde el aumento de pendiente favorece el funcionamiento en lámina libre. En el cruce con la calle de la Pinilla la pendiente vuelve a reducirse al 0,5 %.

Los ramales secundarios que discurren a través de la calle de Pinilla y calle de Peñalara sufren desbordamientos en superficie antes de conectar con el eje 1.

El trazado del eje 1 (P.14RN-91 - P.14QN-111) continúa por fuera del ámbito urbano bordeando el río Lozoya desde la calle de la Pinilla hasta la calle del Lozoya. El colector de diámetro variable entre 300-600 mm y pendiente media del 0,3% sufre incapacidad hidráulica con desbordamiento a lo largo de todo el recorrido.

Pese a la incapacidad que sufre este último tramo, el desbordamiento del colector evacuaría rápidamente por las laderas hacia el río Lozoya.

Se remarca la presencia de un estrechamiento entre los pozos P14QN-82 y P14QN-87 que, creando un cuello de botella, afecta negativamente el desagüe ya insuficiente del eje1.

Los ramales secundarios que discurren a través de la calle de Pinilla y calle de Peñalara sufren desbordamientos en superficie antes de conectar con el eje 1.

7394-1-2-MM-Mem-3 DOC 2: MEMORIA 27 de 34