

EVALUACIÓN DE LA EXPOSICIÓN A NANOMATERIALES.

Jornada técnica "RIESGOS QUE NOS ESPERAN: NANOPARTÍCULAS"

Mercedes Colorado Soriano CNNT (INSHT) mcolorados@insht.meyss.es

CAPÍTULO II Obligaciones del empresario

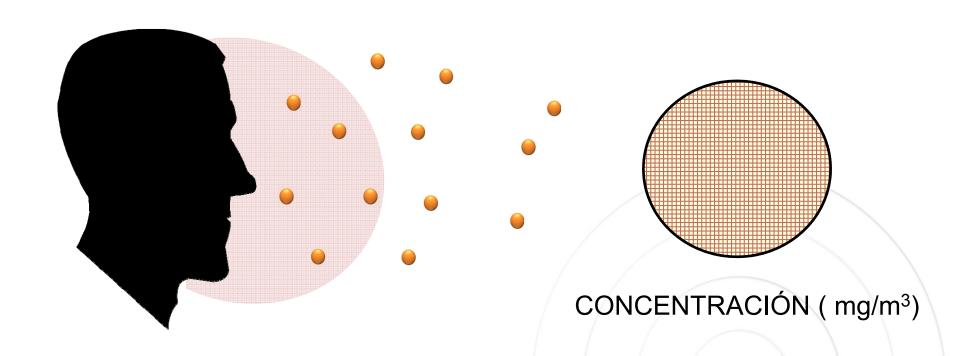
ARTÍCULO 3. Evaluación de los riesgos.

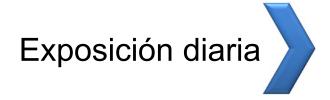
5. La evaluación de los riesgos derivados de la exposición por inhalación a un agente químico peligroso deberá incluir la medición de las concentraciones del agente en el aire, en la zona de respiración del trabajador, y su posterior comparación con el Valor Límite Ambiental que corresponda según lo dispuesto en el apartado anterior. El procedimiento de medición utilizado deberá adaptarse, por tanto, a la naturaleza de dicho Valor Límite.

Las mediciones a las que se refieren los párrafos anteriores no serán sin embargo necesarias, cuando el empresario demuestre claramente por otros medios de evaluación que se ha logrado una adecuada prevención y protección, de conformidad con lo dispuesto en el apartado 1 de este artículo.

GUÍA TÉCNICA QUÍMICOS

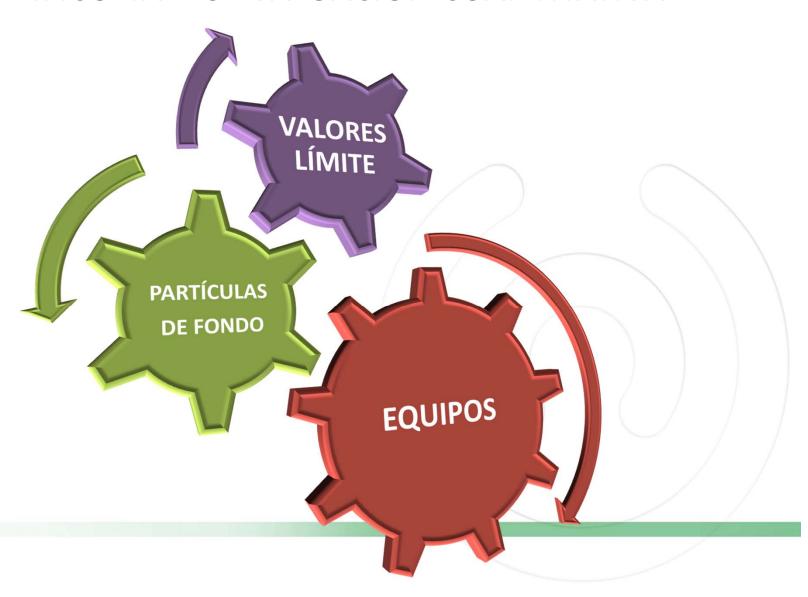
En coherencia con lo anterior, la medición de las concentraciones ambientales se establece como la fórmula general en la que basar la evaluación cuando la exposición se produzca por inhalación, exceptuándose de este requerimiento aquellas situaciones en las que "por otros medios de evaluación" pueda probarse que se ha logrado "una adecuada prevención y protección". Los modelos de evaluación cualitativa o simplificada aparecidos durante la última década cumplen con este objetivo, por lo que en esta nueva versión de la Guía Técnica se incluye, dentro del Apéndice 4, un análisis sobre su fundamento, ámbito de aplicación y limitaciones.





NO SUPERA

SUPERA


MUESTREO PERSONAL

EVALUACIÓN CUANTITATIVA

DIFICULTADES EVALUACIÓN CUANTITATIVA

RECOMMENDED EXPOSURE LIMIT (REL)

National Institute for Occupational Safety and Health (NIOSH)

NIOSH (2011)

0,3 mg/m³

NIOSH (2013)

0,001 mg/m³

BENCHMARK EXPOSURE LEVELS (BEL)

British Standard Institution (BSI)

NANOMATERIAL	BENCHMARK EXPOSURE LEVELS
Insoluble	0,066 x WEL ¹
	20.000 partículas/cm ³
Soluble	0,5 x WEL
CMAR ²	0,1 x WEL
Fibroso	0,01 fibras/cm ³

¹ WEL: workplace exposure level

² CMAR: cancerígeno, mutágeno, asmágeno, tóxico para la reproducción

RECOMMENDED BENCHMARK LEVELS (RBL)

Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA)

NANOMATERIAL	RECOMMENDED BENCHMARK LEVELS
Metales, óxidos metálicos y otros materiales en polvo biopersistentes de densidad > 6.000 kg/m³	20.000 partículas/cm ³
Materiales en polvo biopersistentes de densidad < 6.000 kg/m³	40.000 partículas/cm ³
Nanotubos de carbono	0,01 fibras/cm ³
Partículas líquidas ultrafinas	MAK ^a o AGW ^b

^a MAK- Maximale Arbeitsplatzkonzentrationen (Concentración máxima en lugares de trabajo).

^bAGW- Arbeitsplatzgrenzwerte (Límite de exposición profesional).

NANO REFERENCE VALUES (NRVs) Social and Economic Council of the Netherlands (SER)

NANOMATERIALES	NANO REFERENCE VALUE (NRV)	EJEMPLOS
Granulares biopersistentes de densidad > 6.000 kg/m ³	20.000 partículas/cm³	Ag, Au, CeO ₂
Granulares y fibrosos biopersistentes de densidad < 6.000 kg/m ³	40.000 partículas/cm³	Al ₂ O ₃ , SiO ₂ , TiO ₂ , ZnO, negro de humo, nanoarcilla, C ₆₀
Nanofibras rígidas y biopersistentes para las cuales no se descartan efectos similares a los del amianto	0,01 fibras/cm ³	SWCNT, MWCNT, fibras de óxidos metálicos
Granulares no biopersistentes	Límite de exposición profesional en escala no nanométrica	Lípidos, NaCl

EQUIPOS PORTÁTILES DE LECTURA DIRECTA

Aplicaciones

Localizar fuentes de emisión

Determinar niveles de concentración

Comprobar eficacia de medidas preventivas

Contador de partículas por condensación (CPC)

Contador de partículas óptico (OPC)

Cargador por difusión (DC)

Separador de barrido de las partículas por movilidad (SMPS)

Equipo	Parámetro de medida	Fundamento	Tamaño de partícula ¹	Intervalo de medida
Contador de partículas por condensación (CPC, Condensation Particle Counter)	Número de partículas	Se condensa vapor sobresa- turado sobre las partículas muestreadas que crecen rápi- damente y se pueden detectar utilizando métodos ópticos.	10 nm – 1000 nm	0 - 100 000 partículas/cm³
Cargador por difusión ² (DC, Diffusion Charger)	Área superficial	El aire muestreado se ioniza al pasar a través de un ionizador en corona y los iones positivos se unen a las partículas. Las partículas cargadas se recogen en el filtro de un electrómetro donde se mide la corriente eléctrica.	10 nm – 1000 nm	0 - 10 000 μm²/cm³
Contador de partículas óptico (OPC, Optical Particle Counter)	Distribución de tamaño en número	La radiación láser incide en las partículas, el fotodetector de- tecta la luz dispersada y la con- vie rte en señal eléctrica.		0 - 3000 partículas/cm ³

OTROS EQUIPOS DE LECTURA DIRECTA

Aplicaciones

Trabajos de investigación

Caracterización más exhaustiva

Separador de barrido de las partículas por movilidad (SMPS)

Impactador eléctrico de baja presión (ELPI)

Microbalanza oscilante de elemento cónico (TEOM)

Equipo	Parámetro de medida	Fundamento	Parámetro calculado
Separador de barrido de las partículas por movilidad (SMPS, Scanning Mobility Particle Sizer)	Distribución de tamaño en número	Las partículas se cargan mediante una fuente radioactiva o de rayos X de menor energía, se separan en un campo eléctrico en función de su movilidad eléctrica y se cuenta el número de partículas en cada intervalo de tamaño mediante un CPC. El intervalo de aplicación es para partículas de 3 nm a 800 nm.	Masa y área superficial
Impactador eléctrico de baja presión (ELPI, Electric Low Pressure Impactor)	Área superficial	Las partículas se cargan en un cargador iónico unipolar y se muestrean mediante un impactador de cascada de baja presión, en el que cada etapa está aislada eléctricamente, permitiendo la medición de la carga acumulada con el tiempo.	Masa y número
Microbalanza oscilante de elemento cónico (TEOM, Tapered Element Oscillating Microbalance)	Masa	Cuantifica la masa de partículas en función de la frecuencia de oscilación que experimenta la microbalanza con la cantidad de partículas recogidas en un filtro localizado en el elemento cónico.	

National Institute for Occupational Safety and Health

MEDIDAS PREVENCIÓN ADOPTADAS

ETILUR X-25

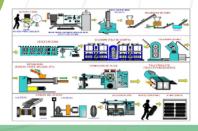
Nº CE: 613-039-00-9

Etiqueta CE

R22 Nocivo por ingestión.

Contiene... ETILENTIOUREA

S53 Evitese la exposición - recábense instrucciones especiales antes del uso.

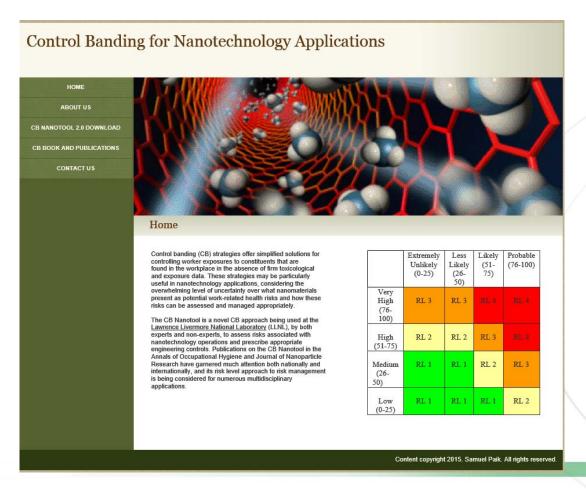

S45 En caso de accidente o malestar, acúdase inmediatamente al médico (si es posible, muéstrele la etiqueta).

QUIMIKS, S.A. Pol. Ind. Nave, 6 28080 MADRID Tlf.: 91 9191919

RECOPILACIÓN INFORMACIÓN

PRODUCTO

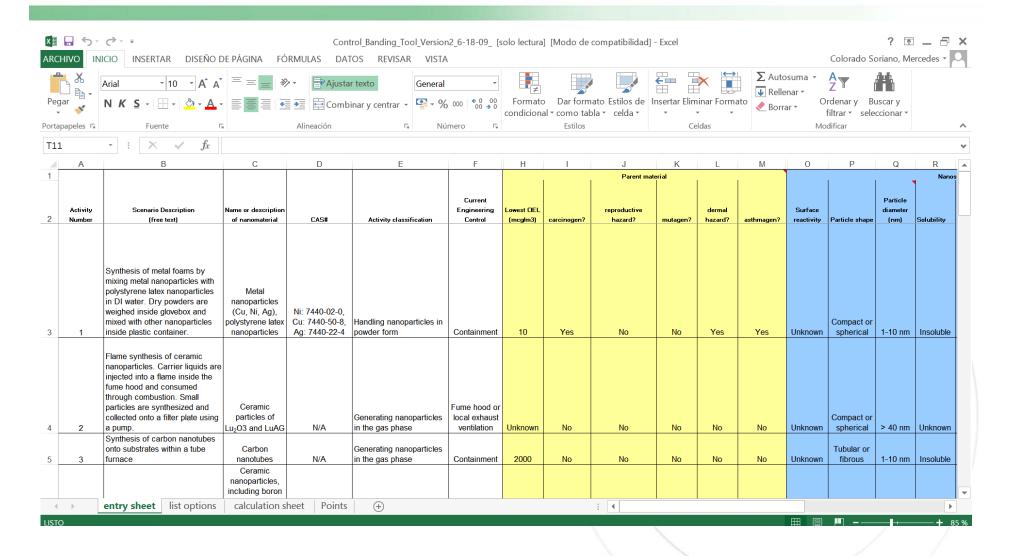
PROCESO PRODUCTIVO



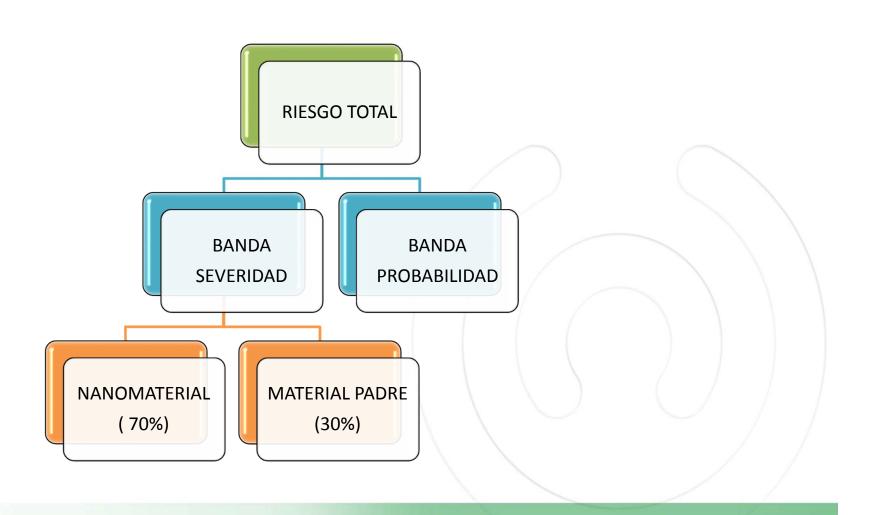
- CB NANOTOOL 2.0
- STOFFENMANAGER NANO
 1.0
- ISO/TS 12901-2:2014
- ANSES
- GUÍA HOLANDA
- NANOSAFER
- GUÍA COMISIÓN EUROPEA

CB NANOTOOL 2.0

www.controlbanding.net


David M. Zalk

Samuel Y. Paik



CB NANOTOOL 2.0

Severidad

NANOMATERIAL 70%

	ВАЈО	MEDIO	DESCONOCIDO	ALTO
QUÍMICA SUPERFICIAL; REACTIVIDAD Y CAPACIDAD DE INDUCIR RADICALES LIBRES	0	5	7,5	10
FORMA	0 Esférica o compacta	5 Irregular	7,5	10 Fibrosa o tubular
DIÁMETRO	0 De 41 a 100 nm	5 De 11 a 40 nm	7,5	10 De 1 a 10 nm
SOLUBILIDAD		5 Soluble	7,5	10 Insoluble
CARCINOGENICIDAD	0 no		4,5	6 sí
TOXICIDAD PARA LA REPRODUCCIÓN	0 no		4,5	6 sí
MUTAGENICIDAD	0 no		4,5	6 sí
TOXICIDAD DÉRMICA	0 no		4,5	6 sí
CAPACIDAD DE PRODUCIR ASMA	0 no		4,5	6 sí

Severidad

MATERIAL PADRE

30%

	ВАЈО	MEDIO	DESCONOCIDO	ALTO
TOXICIDAD	2,5 0,101-1 mg/m ³	5 0,01-0,1 mg/m ³	7,5	10 <0,01 mg/m ³
CARCINOGENICIDAD	0 no		3	4 Sí
TOXICIDAD PARA LA REPRODUCCIÓN	0 no		3	4 Sí
MUTAGENICIDAD	0 no		3	4 Sí
TOXICIDAD DÉRMICA	0 no		3	4 Sí
CAPACIDAD DE PRODUCIR ASMA	0 no		3	4 sí

Probabilidad

CANTIDAD

PULVERULENCIA

NÚMERO TRABAJADORES

FRECUENCIA

DURACIÓN OPERACIÓN

	ВАЈО	MEDIO	DESCONOCIDO	ALTO
CANTIDAD ESTIMADA DEL NANOMATERIAL DURANTE LA TAREA	6,25 Menor de 10 mg	12,5 Entre 11 y 100 mg	18,75	25 Mayor de 100 mg
PULVERULENCIA/CAPACIDAD DE FORMAR NIEBLAS	7,5	15	22,5	30
Nº DE TRABAJADORES CON EXPOSICIÓN SIMILAR	5 6-10	10 11-15	11,25	15 >15
FRECUENCIA DE LA OPERACIÓN	5 mensual	10 semanal	11,25	15 diario
DURACIÓN DE LA OPERACIÓN	5 30-60 min	10 1-4 horas	11,25	15 >4 horas

CB NANOTOOL 2.0

MATRIZ NIVEL DE RIESGO

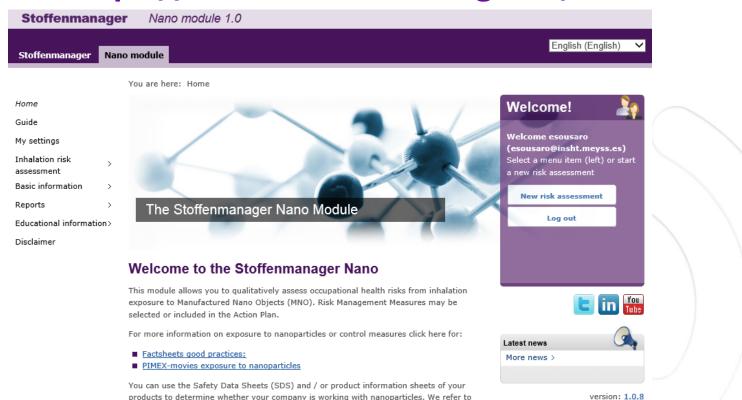
		PROBABILIDAD				
		EXTREMADAMENTE IMPROBABLE (0-25)	POCO PROBABLE (26-50)	PROBABLE (51-75)	MUY PROBABLE (76-100)	
	MUY ALTA (76-100)	CONTENCIÓN	CONTENCIÓN	BUSCAR AYUDA ESPECIALIZADA	BUSCAR AYUDA ESPECIALIZADA	
IIDAD	ALTA (51-75)	EXTRACCIÓN LOCALIZADA	EXTRACCIÓN LOCALIZADA	CONTENCIÓN	BUSCAR AYUDA ESPECIALIZADA	
SEVERIDAD	MEDIA (26-50)	VENTILACIÓN GENERAL	VENTILACIÓN GENERAL	EXTRACCIÓN LOCALIZADA	CONTENCIÓN	
	BAJA (0-25)	VENTILACIÓN GENERAL	VENTILACIÓN GENERAL	VENTILACIÓN GENERAL	EXTRACCIÓN LOCALIZADA	

LIMITACIONES CB NANOTOOL

La información toxicológica disponible necesaria para determinar la severidad es muy limitada en muchos casos.

Para datos desconocidos, se aplica el principio de precaución.

Puede resultar difícil decidir la categoría para la pulverulencia.

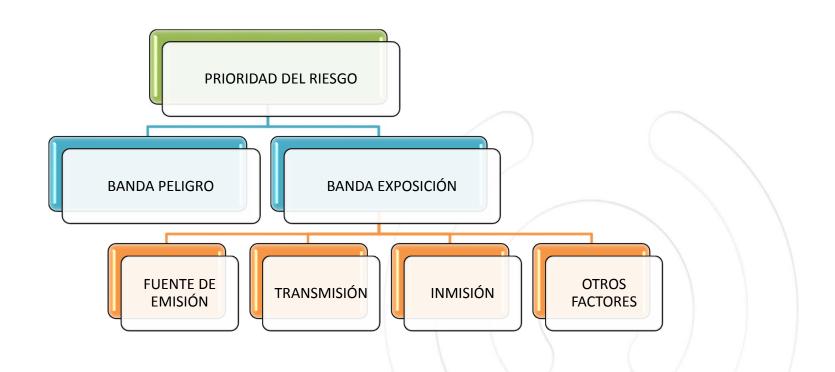

STOFFENMANAGER. NANO

https://nano.stoffenmanager.nl/

the background page for an overview of common work situations in which the presence of

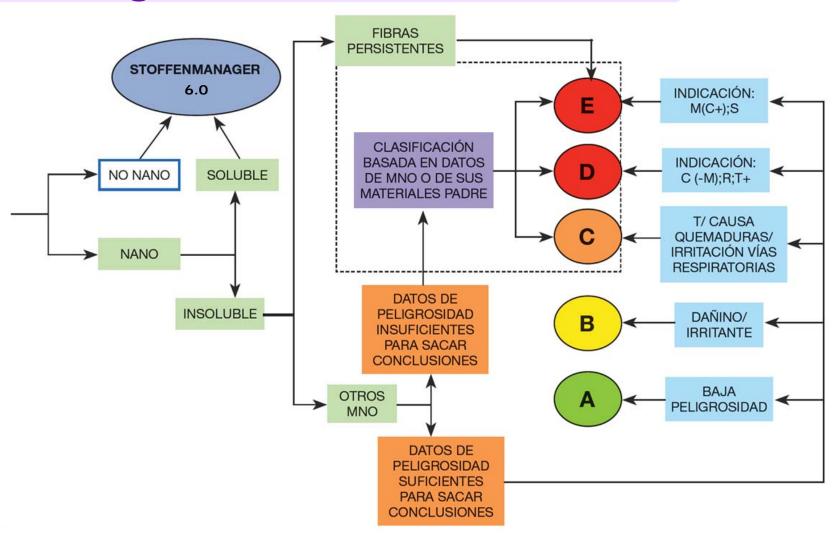
If after consulting the data/information sheets, there is no clear indication of the presence of MNO, but you suspect that your product does contain MNO, please contact your supplier.

It is still possible to use Stoffenmanager Nano



STOFFENMANAGER. NANO

◆ Step 1: General			
i Name risk assessment: •			
i Source domain: •	Select		V
+ Step 2: Product characteristics			
+ Step 3: Handling / Process			
+ Step 4: Working area			
+ Step 5: Local control measures and	personal protective eq	uipment	
+ Step 6: Risk assessment			
			Save Close
			Gavo



STOFFENMANAGER. NANO

Peligro

Exposición

FUENTE DE EMISIÓN

TRANSMISIÓN

INMISIÓN

OTROS FACTORES

Emisión potencial sustancia (E) Emisión potencial actividad (H) Medidas de Control Local (η_{Ic})

Ventilación General (η_{gv}) Contaminación superficie (a)

Separación de la fuente (η_{imm}) Equipos de Protección individual (η_{ppe})

Duración de la tarea (t) Frecuencia de la tarea (f)

EMISIÓN

- Sustancia
- Tarea

TRANSMISIÓN

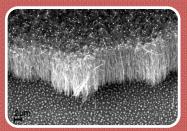
- Ventilación localizada
- Ventilación general

INMISIÓN

- Separación de la fuente
- EPI

OTROS

Cerca del foco Lejos del foco



STOFFENMANAGER. NANO MATRIZ PRIORIDAD RIESGO

Peligro					
	А	В	С	D	Е
Exposición					
1	3	3	3	2	1
2	3	3	2	2	1
3	3	2	2	1	1
4	2	1	1	1	1

LIMITACIONES STOFFENMANAGER NANO

Para MNO de elevado peligro (por ejemplo, fibras) se asigna la banda de riesgo de mayor prioridad, por aplicación del principio de precaución, independientemente de la exposición.

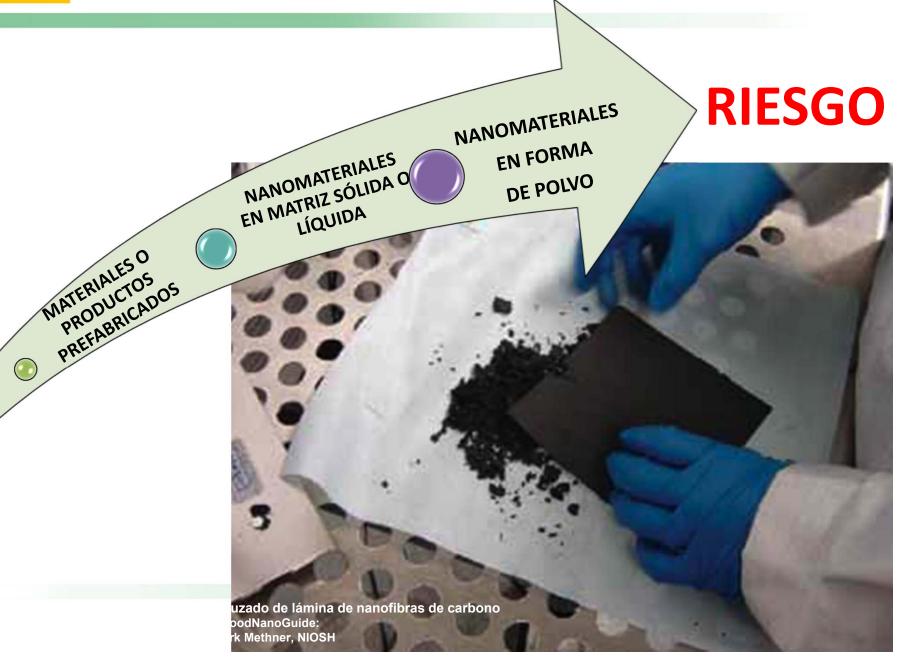
Los MNO desconocidos se asocian a la mayor banda de prioridad si la exposición es elevada.

No indica las medidas de control a aplicar para el nivel de riesgo

MEDIDAS DE CONTROL Y EPI

MEDIDAS DE CONTROL Y EPI

EPI


MEDIDAS
ORGANIZATIVAS

AISLAMIENTO Y MEDIDAS TÉCNICAS DE CONTROL

ELIMINACIÓN O SUSTITUCIÓN

MEDIDAS DE CONTROL Y EPI

Confinamiento

MEDIDAS DE CONTROL Y EPI

GoodNanoGuide: Photo courtesy NIOSH and Nanocomp Technologies, Inc. Hornos de producción de nanotubos de carbono

Confinamiento

Nanoparticle Containment Room, Texas State University

GoodNanoGuide Oak Ridge's research containment
Photos courtesy ORNL

VITRINAS DE LABORATORIO

Tsai S-J et al. [2010]. Ann Occup Hyg 54 (1):78–87.

Medidas técnicas: cajas de guantes

GoodNanoguide: Test de nanomoateriales. Foto cortesía EPI Services, Inc.

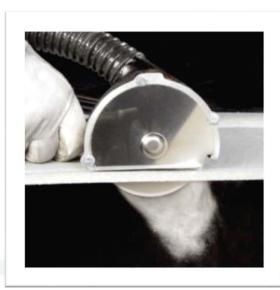
Medidas técnicas: cabinas de seguridad biológica

Cabina de Seguridad Biológica clase II. Foto cortesía: Labconco Corporation.

Medidas técnicas para NM

XPert Nano

DESCARGA DE PRODUCTOS/LLENADO DE SACOS


Con aporte de agua

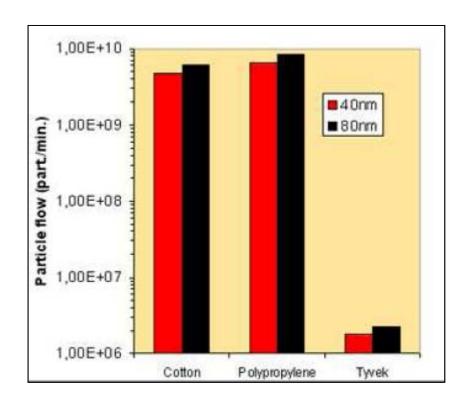
HERRAMIENTAS PORTÁTILES

Con sistemas de aspiración y recogida de polvo

Protección personal: equipos de protección respiratoria

Máscara con filtro P3

Mascarilla (media máscara) con filtro P3


Mascarilla autofiltrante FFP3

FILTROS CONTRA PARTÍCULAS	CÓDIGO
80% de retención	P1
94% de retención	P2
99,95% de retención	P3

HERMETICIDAD

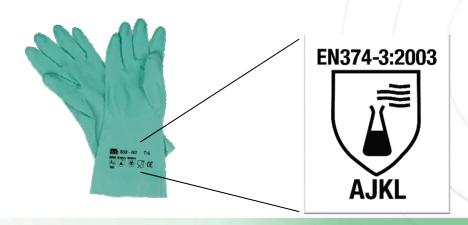
Protección personal: ropa de protección

Tipo 5: polvo

Tipo 6 o 4: disolución coloidal

Traje desechable de polietileno de alta densidad

Tests performed with graphite nanoparticles centred at 40 nm and 80 nm showed that high density polyethylene textile (Tyvek® type) seems to be better than cotton and polypropylene.



Protección personal: guantes

Usar 2 pares

Considerar otros agentes químicos, por ejemplo, disolventes

DOCUMENTACIÓN

NTP 877

Año: 2010

877

Evaluación del riesgo por exposición a nanopartículas mediante el uso de metodologías simplificadas

Flisk level assessment of nanoparticle exposure by control banding.

Evaluation du risque de exposition aux nanoparticules en utilisant l'approche de «control banding».

Redactors:

Cella Tanarro Gozalo Licenciada en Outrica

CENTRO NACIONAL DE NUEVAS TECNOLOGÍAS Aunque el uso de las nanotecnologias es cada vez más frecuente, se dispone aún de pocos datos relativos a su toxicidad para los humanos. Por el momento no se han establecido niveles de exposición profesional específicamente aplicables a las nanoparticulas, por lo que es dificillevar a cabo evaluaciones cuantitativas. Esta NTP propone un método de evaluación de tipo cualitativo similar al utilizado en la evalación de los nesgos relacionados con los agentes químicos.

Las NTP son guías de buenas prácticas. Sus indicaciones no son obligatorias salvo que están recogidas en una disposición normativa vigente. A electos de valorar la pertinencia de las recomendaciones contenidas en una NTP concreta es conveniente tener en cuenta su fecha de adelición.

1. INTRODUCCIÓN

La nanotecnología es un campo mutildisciplinar que se ha ido desarrollando de manera exponencial especialmente en la última década. Las extraordinarias propiedades de las particulas en el rango nanométrico dan lugar a múltiples aplicaciones, algunas ya en el mercado y otras en fase de desarrollo, de modo que ya se habla de la segunda revolución industrial. Dichas aplicaciones revolucionarias podrían suponer un gran beneficio para la sociedad en general, en campos tan diversos como la electrónica o la medicina.

Sin embargo, la rápida aplicación de las nanotecnologias y los nuevos materiales a los que han dado lugar han cuasionado que aún se tenga un conceimiento incompieto con respecto a los daños para la seguridad y salud que puedan suponer estos materiales, pero parece claro que, en general, las nanopartículas son más tóxicas que el mismo material a mayor tamaño de particula. En concreto, los estudios realizados al efecto ponen de manifiesto la importancia del área superficial en la toxicología de las nanocerticulas.

Esta situación pone en duda la validez del entoque clásico, consistente en considerar las concentraciones personales en masa por unidad de volumen (e/mg/hr²) para cada una de las fracciones (inhalable, torácica y resplrable) definidas por la norma de muestreo de aerosoles UNE-EN 481f) para la evaluación de este fiesgo.

En cualquier caso, as complicado obtener datos que permitan evaluar la exposición personal de los trabajadores debido a que al volumen de los equipos comerciales actualmente deponibles implés el muestreo personal y a la difficultad de discriminación entre las nanoparticulas de fondo y aquellas procedentes realmente de la exposición laboral.

En términos generales, la higiene industrial controla las exposiciones de los trabajadores comparando las medidas de las concentraciones de contaminantes en la zona de respiración del trabajador con un valor limite ambiental (VLA).

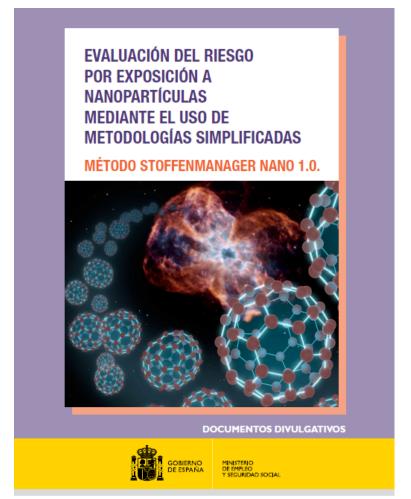
Para poder realizar este tipo de evaluación es necesario que:

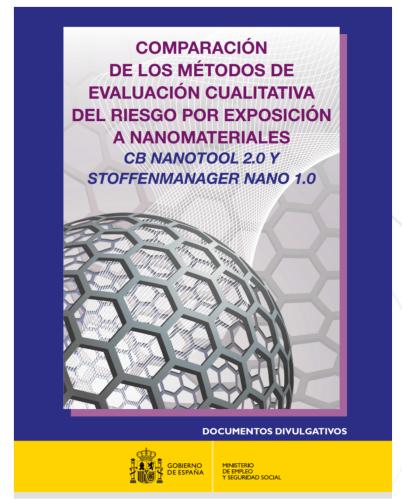
- Exista un indice para definir adecuadamente la exposición.
- La medida que se obtenga de este indice sea representativa de lo que está respirando el trabajador.
 Se disponga de métodos analíticos capaces de medir
- ese indice de exposición.

 4. Se conozcan nivelos a los que dichas particulas tienen.
- se conozcan inveles a los que dichas particulas tienen efectos para la salud.
 Los equipos de medida existentes hasta ahora en el mer-

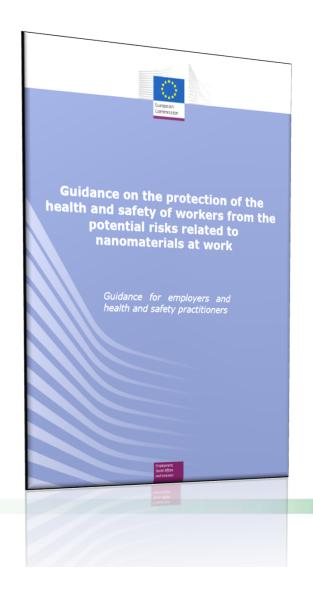
Los equipos de medica expenimen nasta anora en a invacado para medición especificamente de nanopartículasson muy voluminosos, lo que impide realizar un muestreo personal.

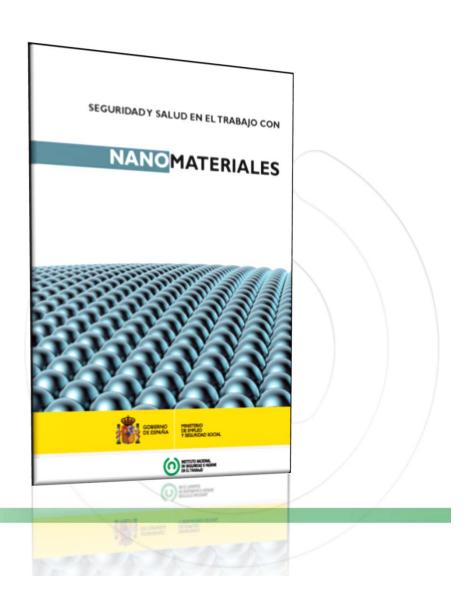
No se ha decidido aún, si lo adecuado sería un índice

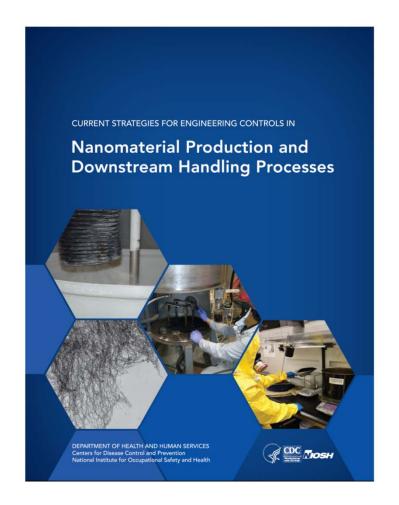

No se ha decinición autri, si lo asecuado seria un indice en forma de concentración másica, numárica o de área superficial. No existen limites de exposición publicados, entre otros motivos porque son difíciles de establecer ya que en general no se conocen los niveles para los cuales las nanoparticulas tienen electos sobre la salud especialmente para materiales sintáticos dado que no hay suficientes estudios epidemiológicos ni toxicológicos, y que aparecen nuevos nanomateriales continuamente en el mercado.


Los equipos de medida actuales además de no resultar adecuados para el muestreo personal, como ya se ha señalado, tampoco permiten discriminar entre las particulas utrafinas de tondo y las generadas por el proceso estudiado. Todos estos aspectos llustran la dificultad de realizar una evaluación basada en el modelo higiánico citásico.

Por alio al uso de matodologías de "control banding" (CB) o metodologías simplificadas de evaluación del risego puede ser una atternativa adecuada. Las primeras metodologías de este tipo fueron aplicadas en el campo de la higiano en la industria termacióutica y microbiológi-






GUÍAS SOBRE NANOMATERIALES

